1
|
Veronese P, Dodi I. Campylobacter jejuni/ coli Infection: Is It Still a Concern? Microorganisms 2024; 12:2669. [PMID: 39770871 PMCID: PMC11728820 DOI: 10.3390/microorganisms12122669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Campylobacteriosis is a leading cause of infectious diarrhea and foodborne illness worldwide. Campylobacter infection is primarily transmitted through the consumption of contaminated food, especially uncooked meat, or untreated water; contact with infected animals or contaminated environments; poultry is the primary reservoir and source of human transmission. The clinical spectrum of Campylobacter jejuni/coli infection can be classified into two distinct categories: gastrointestinal and extraintestinal manifestations. Late complications are reactive arthritis, Guillain-Barré syndrome, and Miller Fisher syndrome. In the pediatric population, the 0-4 age group has the highest incidence of campylobacteriosis. Regarding the use of specific antimicrobial therapy, international guidelines agree in recommending it for severe intestinal infections. Host factors, including malnutrition, immunodeficiency, and malignancy, can also influence the decision to treat. The Centers for Disease Control and Prevention (CDC) has identified antibiotic resistance in Campylobacter as a 'significant public health threat' due to increasing resistance to FQs or macrolides. Although numerous vaccines have been proposed in recent years to reduce the intestinal colonization of poultry, none have shown sufficient efficacy to provide a definitive solution.
Collapse
Affiliation(s)
- Piero Veronese
- Pediatric Infectious Disease Unit, Barilla Children’s Hospital of Parma, 43126 Parma, Italy;
| | | |
Collapse
|
2
|
Dermatas A, Rozos G, Zaralis K, Dadamogia A, Fotou K, Bezirtzoglou E, Akrida-Demertzi K, Demertzis P, Voidarou C(C. Overview of Ecology and Aspects of Antibiotic Resistance in Campylobacter spp. Isolated from Free-Grazing Chicken Tissues in Rural Households. Microorganisms 2024; 12:368. [PMID: 38399772 PMCID: PMC10892918 DOI: 10.3390/microorganisms12020368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Rural households all over the world rear backyard chicken mainly for their own consumption and, to a lesser extent, for barter trade. These chickens represent a staple dish with numerous culinary variations and a cheap source of protein. Although some Campylobacter species, and particularly Campylobacter jejuni and Campylobacter coli, have been associated with industrial poultry carcasses, studies concerning the ecology of this genus in rural households do not exist. To assess the prevalence of Campylobacter species in the tissues of backyard chickens, samples were collected from birds Gallus domesticus bred in households in the rural area of Epirus (Greece), and Campylobacter strains were isolated by quantitative methods at 37 °C and 42 °C. In total, 256 strains were identified, belonging to 17 Campylobacter species, with C. jejuni and C. coli being the most prevalent. From the four ecological parameters studied (size of the flock, presence of small ruminants in the same household, presence of other poultry species in the same household, and feeding leftovers of the household), the size of the flock and the presence of small ruminants and/or pigs in the same household mostly affected the distribution of these strains. To study the phenotypical resistance against 14 antibiotics, 215 strains were selected. The results showed a high prevalence of multidrug-resistance (MDR) strains extending to all classes of antibiotics. Further genome analysis revealed the presence of genes coding resistance (blaOxA-61, tet(O), tet(A) cmeA, cmeB, cmeC, and gyrA (Thr-86-Ile mutation)), with the efflux pump CmeABC being the most prevalent. All antimicrobial resistance-encoded genes co-circulated, except for blaOXA-61, which moved independently. The minimum inhibitory concentration (MIC) values of two out of three antibiotics (representing different classes) were reduced when the strains tested were exposed to carbonyl cyanide 3-chlorophenylhydrazone (CCCP), a known efflux pump inhibitor. The same result was obtained with the addition of CCCP to the MIC values of bile salts. These results lead to the conclusion that Campylobacter species are present in an impressive diversity in backyard chicken tissues and that they exert a significant resistance to antibiotics, raising a potential danger for public health.
Collapse
Affiliation(s)
- Argyrios Dermatas
- Food Chemistry Laboratory, Section of Industrial and Food Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.D.); (K.A.-D.); (P.D.)
| | - Georgios Rozos
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47132 Arta, Greece; (G.R.); (A.D.); (K.F.)
- Department of Agriculture, School of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece;
| | - Konstantinos Zaralis
- Department of Agriculture, School of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece;
| | - Aikaterini Dadamogia
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47132 Arta, Greece; (G.R.); (A.D.); (K.F.)
| | - Konstantina Fotou
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47132 Arta, Greece; (G.R.); (A.D.); (K.F.)
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Konstantoula Akrida-Demertzi
- Food Chemistry Laboratory, Section of Industrial and Food Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.D.); (K.A.-D.); (P.D.)
| | - Panagiotis Demertzis
- Food Chemistry Laboratory, Section of Industrial and Food Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.D.); (K.A.-D.); (P.D.)
| | - Chrysoula (Chrysa) Voidarou
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47132 Arta, Greece; (G.R.); (A.D.); (K.F.)
| |
Collapse
|
3
|
Linz B, Sharafutdinov I, Tegtmeyer N, Backert S. Evolution and Role of Proteases in Campylobacter jejuni Lifestyle and Pathogenesis. Biomolecules 2023; 13:biom13020323. [PMID: 36830692 PMCID: PMC9953165 DOI: 10.3390/biom13020323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/26/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Infection with the main human food-borne pathogen Campylobacter jejuni causes campylobacteriosis that accounts for a substantial percentage of gastrointestinal infections. The disease usually manifests as diarrhea that lasts for up to two weeks. C. jejuni possesses an array of peptidases and proteases that are critical for its lifestyle and pathogenesis. These include serine proteases Cj1365c, Cj0511 and HtrA; AAA+ group proteases ClpP, Lon and FtsH; and zinc-dependent protease PqqE, proline aminopeptidase PepP, oligopeptidase PepF and peptidase C26. Here, we review the numerous critical roles of these peptide bond-dissolving enzymes in cellular processes of C. jejuni that include protein quality control; protein transport across the inner and outer membranes into the periplasm, cell surface or extracellular space; acquisition of amino acids and biofilm formation and dispersal. In addition, we highlight their role as virulence factors that inflict intestinal tissue damage by promoting cell invasion and mediating cleavage of crucial host cell factors such as epithelial cell junction proteins. Furthermore, we reconstruct the evolution of these proteases in 34 species of the Campylobacter genus. Finally, we discuss to what extent C. jejuni proteases have initiated the search for inhibitor compounds as prospective novel anti-bacterial therapies.
Collapse
Affiliation(s)
- Bodo Linz
- Correspondence: ; Tel.: +49-(0)-9131-8528988
| | | | | | | |
Collapse
|
4
|
Phung C, Scott PC, Dekiwadia C, Moore RJ, Van TTH. Campylobacter bilis sp. nov., isolated from chickens with spotty liver disease. Int J Syst Evol Microbiol 2022; 72. [PMID: 35442881 DOI: 10.1099/ijsem.0.005314] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel species of Campylobacter was isolated from bile samples of chickens with spotty liver disease in Australia, making it the second novel species isolated from chickens with the disease, after Campylobacter hepaticus was isolated and described in 2016. Six independently derived isolates were obtained. They were Gram-stain-negative, microaerobic, catalase-positive, oxidase-positive and urease-negative. Unlike most other species of the genus Campylobacter, more than half of the tested strains of this novel species hydrolysed hippurate and most of them could not reduce nitrate. Distinct from C. hepaticus, many of the isolates were sensitive to 2,3,5-triphenyltetrazolium chloride (0.04%) and metronidazole (4 mg ml-1), and all strains were sensitive to nalidixic acid. Phylogenetic analysis using 16S rRNA and hsp60 gene sequences demonstrated that the strains formed a robust clade that was clearly distinct from recognized Campylobacter species. Whole genome sequence analysis of the strains showed that the average nucleotide identity and the genome blast distance phylogeny values compared to other Campylobacter species were less than 86 and 66%, respectively, which are below the cut-off values generally recognized for isolates of the same species. The genome of the novel species has a DNA G+C content of 30.6 mol%, while that of C. hepaticus is 27.9 mol%. Electron microscopy showed that the cells were spiral-shaped, with bipolar unsheathed flagella. The protein spectra generated from matrix-assisted laser desorption/ionization time of flight analysis demonstrated that they are different from the most closely related Campylobacter species. These data indicate that the isolates belong to a novel Campylobacter species, for which the name Campylobacter bilis sp. nov. is proposed. The type strain is VicNov18T (=ATCC TSD-231T=NCTC 14611T).
Collapse
Affiliation(s)
- Canh Phung
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| | | | - Chaitali Dekiwadia
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| | - Robert J Moore
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| |
Collapse
|
5
|
Fusco V, Chieffi D, Fanelli F, Logrieco AF, Cho G, Kabisch J, Böhnlein C, Franz CMAP. Microbial quality and safety of milk and milk products in the 21st century. Compr Rev Food Sci Food Saf 2020; 19:2013-2049. [DOI: 10.1111/1541-4337.12568] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Vincenzina Fusco
- Institute of Sciences of Food Production National Research Council of Italy (CNR‐ISPA) Bari Italy
| | - Daniele Chieffi
- Institute of Sciences of Food Production National Research Council of Italy (CNR‐ISPA) Bari Italy
| | - Francesca Fanelli
- Institute of Sciences of Food Production National Research Council of Italy (CNR‐ISPA) Bari Italy
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production National Research Council of Italy (CNR‐ISPA) Bari Italy
| | - Gyu‐Sung Cho
- Department of Microbiology and BiotechnologyMax‐Rubner Institut Kiel Germany
| | - Jan Kabisch
- Department of Microbiology and BiotechnologyMax‐Rubner Institut Kiel Germany
| | - Christina Böhnlein
- Department of Microbiology and BiotechnologyMax‐Rubner Institut Kiel Germany
| | | |
Collapse
|
6
|
Campylobacter portucalensis sp. nov., a new species of Campylobacter isolated from the preputial mucosa of bulls. PLoS One 2020; 15:e0227500. [PMID: 31923228 PMCID: PMC6953823 DOI: 10.1371/journal.pone.0227500] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/19/2019] [Indexed: 01/31/2023] Open
Abstract
A new species of the Campylobacter genus is described, isolated from the preputial mucosa of bulls (Bos taurus). The five isolates obtained exhibit characteristics of Campylobacter, being Gram-negative non-motile straight rods, oxidase positive, catalase negative and microaerophilic. Phenotypic characteristics and nucleotide sequence analysis of 16S rRNA and hsp60 genes demonstrated that these isolates belong to a novel species within the genus Campylobacter. Based on hsp60 gene phylogenetic analysis, the most related species are C. ureolyticus, C. blaseri and C. corcagiensis. The whole genome sequence analysis of isolate FMV-PI01 revealed that the average nucleotide identity with other Campylobacter species was less than 75%, which is far below the cut-off for isolates of the same species. However, whole genome sequence analysis identified coding sequences highly homologous with other Campylobacter spp. These included several virulence factor coding genes related with host cell adhesion and invasion, transporters involved in resistance to antimicrobials, and a type IV secretion system (T4SS), containing virB2-virB11/virD4 genes, highly homologous to the C. fetus subsp. venerealis. The genomic G+C content of isolate FMV-PI01 was 28.3%, which is one of the lowest values reported for species of the genus Campylobacter. For this species the name Campylobacter portucalensis sp. nov. is proposed, with FMV-PI01 (= LMG 31504, = CCUG 73856) as the type strain.
Collapse
|
7
|
Abstract
Campylobacter is among the four main causes of gastroenteritis worldwide and has increased in both developed and developing countries over the last 10 years. The vast majority of reported Campylobacter infections are caused by Campylobacter jejuni and, to a lesser extent, C. coli; however, the increasing recognition of other emerging Campylobacter pathogens is urgently demanding a better understanding of how these underestimated species cause disease, transmit, and evolve. In parallel to the enhanced clinical awareness of campylobacteriosis due to improved diagnostic protocols, the application of high-throughput sequencing has increased the number of whole-genome sequences available to dozens of strains of many emerging campylobacters. This has allowed for comprehensive comparative pathogenomic analyses for several species, such as C. fetus and C. concisus These studies have started to reveal the evolutionary forces shaping their genomes and have brought to light many genomic features related to pathogenicity in these neglected species, promoting the development of new tools and approaches relevant for clinical microbiology. Despite the need for additional characterization of genomic diversity in emerging campylobacters, the increasing body of literature describing pathogenomic studies on these species deserves to be discussed from an integrative perspective. This review compiles the current knowledge and highlights future work toward deepening our understanding about genome dynamics and the mechanisms governing the evolution of pathogenicity in emerging Campylobacter species, which is urgently needed to develop strategies to prevent or control the spread of these pathogens.
Collapse
Affiliation(s)
- Daniela Costa
- Microbial Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Gregorio Iraola
- Microbial Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Center for Integrative Biology, Universidad Mayor, Santiago de Chile, Chile
- Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
8
|
García-Sánchez L, Melero B, Rovira J. Campylobacter in the Food Chain. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 86:215-252. [PMID: 30077223 DOI: 10.1016/bs.afnr.2018.04.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Currently Campylobacter is the most commonly reported zoonosis in developed and developing countries. In the European Union, the number of reported confirmed cases of human campylobacteriosis was 246,307 in 2016, which represents 66.3 cases per 100,000 population. The genus Campylobacter includes 31 species with 10 subspecies. Within the genus Campylobacter, C. jejuni subsp. jejuni and C. coli are most frequently associated with human illness. Mainly, the infection is sporadic and self-limiting, although some cases of outbreaks have been also reported and some complications such as Guillain-Barré syndrome might appear sporadically. Although campylobacters are fastidious microaerophilic, unable to multiply outside the host and generally very sensitive, they can adapt and survive in the environment, exhibiting aerotolerance and resistance to starvation. Many mechanisms are involved in this, including pathogenicity, biofilm formation, and antibiotic resistant pathways. This chapter reviews the sources, transmission routes, the mechanisms, and strategies used by Campylobacter to persist in the whole food chain, from farm to fork. Additionally, different strategies are recommended for application along the poultry food chain to avoid the public health risk associated with this pathogen.
Collapse
Affiliation(s)
| | - Beatriz Melero
- Biotechnology and Food Science Department, University of Burgos, Burgos, Spain
| | - Jordi Rovira
- Biotechnology and Food Science Department, University of Burgos, Burgos, Spain.
| |
Collapse
|
9
|
On SLW, Miller WG, Houf K, Fox JG, Vandamme P. Minimal standards for describing new species belonging to the families Campylobacteraceae and Helicobacteraceae: Campylobacter, Arcobacter, Helicobacter and Wolinella spp. Int J Syst Evol Microbiol 2017; 67:5296-5311. [PMID: 29034857 PMCID: PMC5845751 DOI: 10.1099/ijsem.0.002255] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/24/2017] [Indexed: 01/25/2023] Open
Abstract
Ongoing changes in taxonomic methods, and in the rapid development of the taxonomic structure of species assigned to the Epsilonproteobacteria have lead the International Committee of Systematic Bacteriology Subcommittee on the Taxonomy of Campylobacter and Related Bacteria to discuss significant updates to previous minimal standards for describing new species of Campylobacteraceae and Helicobacteraceae. This paper is the result of these discussions and proposes minimum requirements for the description of new species belonging to the families Campylobacteraceae and Helicobacteraceae, thus including species in Campylobacter, Arcobacter, Helicobacter, and Wolinella. The core underlying principle remains the use of appropriate phenotypic and genotypic methods to characterise strains sufficiently so as to effectively and unambiguously determine their taxonomic position in these families, and provide adequate means by which the new taxon can be distinguished from extant species and subspecies. This polyphasic taxonomic approach demands the use of appropriate reference data for comparison to ensure the novelty of proposed new taxa, and the recommended study of at least five strains to enable species diversity to be assessed. Methodological approaches for phenotypic and genotypic (including whole-genome sequence comparisons) characterisation are recommended.
Collapse
Affiliation(s)
- Stephen L. W. On
- Department of Wine, Food and Molecular Biosciences, Lincoln University, PO Box 85084, Lincoln, New Zealand
| | - William G. Miller
- U.S. Department of Agriculture, Produce Safety and Microbiology Research Unit, Agricultural Research Service, Albany, CA, USA
| | - Kurt Houf
- Department of Veterinary Public Health, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
- Department of Biochemistry and Microbiology, Laboratory of Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - James G. Fox
- Department of Comparative Medicine, Massachusetts Institute of Technology, 77, Massachusetts Avenue, Cambiridge, MA 02139, USA
| | - Peter Vandamme
- Department of Biochemistry and Microbiology, Laboratory of Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| |
Collapse
|
10
|
Magana M, Chatzipanagiotou S, Burriel AR, Ioannidis A. Inquiring into the Gaps of Campylobacter Surveillance Methods. Vet Sci 2017; 4:E36. [PMID: 29056694 PMCID: PMC5644652 DOI: 10.3390/vetsci4030036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/07/2017] [Accepted: 07/17/2017] [Indexed: 01/20/2023] Open
Abstract
Campylobacter is one of the most common pathogen-related causes of diarrheal illnesses globally and has been recognized as a significant factor of human disease for more than three decades. Molecular typing techniques and their combinations have allowed for species identification among members of the Campylobacter genus with good resolution, but the same tools usually fail to proceed to subtyping of closely related species due to high sequence similarity. This problem is exacerbated by the demanding conditions for isolation and detection from the human, animal or water samples as well as due to the difficulties during laboratory maintenance and long-term storage of the isolates. In an effort to define the ideal typing tool, we underline the strengths and limitations of the typing methodologies currently used to map the broad epidemiologic profile of campylobacteriosis in public health and outbreak investigations. The application of both the old and the new molecular typing tools is discussed and an indirect comparison is presented among the preferred techniques used in current research methodology.
Collapse
Affiliation(s)
- Maria Magana
- Department of Biopathology and Clinical Microbiology, Aeginition Hospital, Athens Medical School, Athens 15772, Greece.
| | - Stylianos Chatzipanagiotou
- Department of Biopathology and Clinical Microbiology, Aeginition Hospital, Athens Medical School, Athens 15772, Greece.
| | - Angeliki R Burriel
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta 23100, Greece.
| | - Anastasios Ioannidis
- Department of Biopathology and Clinical Microbiology, Aeginition Hospital, Athens Medical School, Athens 15772, Greece.
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta 23100, Greece.
| |
Collapse
|
11
|
Complete Genome Sequence of the Campylobacter cuniculorum Type Strain LMG 24588. GENOME ANNOUNCEMENTS 2017; 5:5/24/e00543-17. [PMID: 28619810 PMCID: PMC5473279 DOI: 10.1128/genomea.00543-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Campylobacter cuniculorum is a thermotolerant species isolated from farmed rabbits (Oryctolagus cuniculus). Although C. cuniculorum is highly prevalent in rabbits farmed for human consumption, the pathogenicity of this organism in humans is still unknown. This study describes the whole-genome sequence of the C. cuniculorum type strain LMG 24588 (=CCUG 56289T).
Collapse
|
12
|
Casey E, Fitzgerald E, Lucey B. Towards understanding clinical campylobacter infection and its transmission: time for a different approach? Br J Biomed Sci 2017; 74:53-64. [PMID: 28367739 DOI: 10.1080/09674845.2017.1291205] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Campylobacter spp. are among the most commonly diagnosed causes of human infection. Methods for detection of the 29 campylobacter species have mainly focused on cultivation of the thermophilic species. More than 99% of clinical campylobacter isolates notified in the UK in the recent past have been from faecal samples and associated with gastroenteritis. Campylobacter enteritis notifications in temperate zones show a seasonal increase during the summer months with a sharp decrease in the winter months, a pattern which remains incompletely understood. The striking seasonality in the expression of many human genes, some concerned with inflammation and immunity, suggests a need for further study of the host regarding the temporal distribution of many human infections, including campylobacteriosis. A tendency for campylobacter to enter a non-cultivable state under adverse conditions effects a reduction in the number of isolations. A Polymerase Chain Reaction (PCR)-based screening approach for the presence of the Campylobacter genus and followed by speciation has provided some insight into the limitations of cultivation for campylobacter, also allowing the discovery of new species. The increased sensitivity of the PCR-based approach over culture-based methods may make it difficult for the laboratory to differentiate asymptomatic campylobacter carriage from clinical campylobacter infection in non-sterile body sites. Campylobacter infection depends on a combination of host factors, and on acquisition of a suitably virulent strain with a tropism for human epithelium. The possibility of persistence of campylobacter in a viable but non-culturable latent form in the human body may also require further investigation. The scope of this review includes a discussion of current methods for diagnosing acute campylobacter infection and for detecting campylobacter in water and foodstuffs. The review also questions the prevailing view that poultry is the most common source of campylobacteriosis.
Collapse
Affiliation(s)
- E Casey
- a Department of Biological Sciences , Cork Institute of Technology , Bishopstown , Ireland
| | - E Fitzgerald
- a Department of Biological Sciences , Cork Institute of Technology , Bishopstown , Ireland
| | - B Lucey
- a Department of Biological Sciences , Cork Institute of Technology , Bishopstown , Ireland
| |
Collapse
|
13
|
Van TTH, Elshagmani E, Gor MC, Scott PC, Moore RJ. Campylobacter hepaticus sp. nov., isolated from chickens with spotty liver disease. Int J Syst Evol Microbiol 2016; 66:4518-4524. [DOI: 10.1099/ijsem.0.001383] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Thi Thu Hao Van
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| | | | - Mian Chee Gor
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Peter C. Scott
- Scolexia Pty Ltd, Moonee Ponds, Victoria 3039, Australia
- Poultry Cooperative Research Centre, Armidale, New South Wales 2351, Australia
| | - Robert J. Moore
- Poultry Cooperative Research Centre, Armidale, New South Wales 2351, Australia
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
14
|
Piva S, Florio D, Mion D, Zanoni RG. Antimicrobial Susceptibility of Campylobacter Cuniculorum Isolated from Rabbits Reared in Intensive and Rural Farms. Ital J Food Saf 2016; 5:5829. [PMID: 27853713 PMCID: PMC5090117 DOI: 10.4081/ijfs.2016.5829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/25/2016] [Accepted: 03/27/2016] [Indexed: 11/23/2022] Open
Abstract
The present study aimed to investigate the antimicrobial susceptibility in Campylobacter cuniculorum. To do so, 29 isolates from rabbits reared in 18 intensive and 11 rural farms not epidemiologically correlated were tested. Minimum inhibitory concentration of 8 antimicrobial agents was determined using the agar dilution method recommended by the Clinical and Laboratory Standards Institute (Wayne, PA, USA), modified - for what supplements in the base medium and incubation conditions concern - for C. cuniculorum isolates. The isolates obtained from rural farming resulted susceptible to all the antimicrobial agents tested, with the exception of one isolate resistant to nalidixic acid. All the isolates obtained from intensively farmed rabbits were sensitive to chloramphenicol and ampicillin; 16 isolates were resistant to tetracycline; 15 to nalidixic acid and erythromycin; 13 and 10 isolates to ciprofloxacin and enrofloxacin, respectively; and only 1 to gentamicin. The resistance of several isolates to macrolides and fluoroquinolones, which are the drugs of choice in treatment of human campylobacteriosis, could pose a risk to human health if a pathogenic role of C. cuniculorum was demonstrated.
Collapse
Affiliation(s)
- Silvia Piva
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna , Ozzano dell'Emilia (BO), Italy
| | - Daniela Florio
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna , Ozzano dell'Emilia (BO), Italy
| | - Domenico Mion
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna , Ozzano dell'Emilia (BO), Italy
| | - Renato Giulio Zanoni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna , Ozzano dell'Emilia (BO), Italy
| |
Collapse
|
15
|
Fusco V, Quero GM. Culture-Dependent and Culture-Independent Nucleic-Acid-Based Methods Used in the Microbial Safety Assessment of Milk and Dairy Products. Compr Rev Food Sci Food Saf 2014; 13:493-537. [DOI: 10.1111/1541-4337.12074] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/08/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Vincenzina Fusco
- Nal. Research Council of Italy; Inst. of Sciences of Food Production (CNR-ISPA); Bari Italy
| | - Grazia Marina Quero
- Nal. Research Council of Italy; Inst. of Sciences of Food Production (CNR-ISPA); Bari Italy
| |
Collapse
|
16
|
Koziel M, O'Doherty P, Vandamme P, Corcoran GD, Sleator RD, Lucey B. Campylobacter corcagiensis sp. nov., isolated from faeces of captive lion-tailed macaques (Macaca silenus). Int J Syst Evol Microbiol 2014; 64:2878-2883. [PMID: 24876239 DOI: 10.1099/ijs.0.063867-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An investigation of the prevalence of Campylobacter ureolyticus in a variety of animals led to the identification of the strain CIT 045(T), in the faeces of captive lion-tailed macaques (Macaca silenus). Originally, believed to be Campylobacter ureolyticus based on the colony morphology and positive urease test, analysis of 16S rRNA and hsp60 gene sequences of this isolate revealed that the strain differs significantly from other species of the genus Campylobacter described to date. Species-specific primers for 16S rRNA and hsp60 genes were designed and used to identify two additional strains isolated from faeces samples from other macaques. Nucleotide sequence analysis of the 16S rRNA and hsp60 genes revealed ≤95% and ≤82 % sequence similarity to recognized species of the genus Campylobacter respectively. All three isolates formed a distinct group within the genus Campylobacter based on their 16S rRNA and hsp60 sequences and matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) profiles. The unique species status was further supported by phenotypic characteristics of the isolates. All isolates were found to be oxidase-, catalase- and urease-positive, they grew well at 37 °C and 42 °C and produced H2S on TSI (triple-sugar iron) and SIM (sulfide indole motility) media. The name Campylobacter corcagiensis sp. nov. is proposed for this novel species, with the strain CIT 045(T) as the type strain CIT 045(T) ( = LMG 27932(T), CCUG 64942(T)).
Collapse
Affiliation(s)
- Monika Koziel
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Pat O'Doherty
- Gilabbey Veterinary Hospital, Vicars Road, Cork, Ireland
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Gerard D Corcoran
- Department of Microbiology, Cork University Hospital, Wilton, Cork, Ireland
| | - Roy D Sleator
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Brigid Lucey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| |
Collapse
|
17
|
Vela AI, Sánchez Del Rey V, Zamora L, Casamayor A, Domínguez L, Fernández-Garayzábal JF. Streptococcus cuniculi sp. nov., isolated from the respiratory tract of wild rabbits. Int J Syst Evol Microbiol 2014; 64:2486-2490. [PMID: 24801153 DOI: 10.1099/ijs.0.063123-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biochemical and molecular genetic studies were performed on four unknown Gram-stain-positive, catalase-negative, coccus-shaped organisms isolated from tonsils (n = 3) and nasal samples (n = 1) of four wild rabbits. The micro-organism was identified as a streptococcal species based on its cellular morphological and biochemical tests. Comparative 16S rRNA gene sequencing confirmed its identification as a member of the genus Streptococcus, but the organism did not correspond to any recognized species of this genus. The closest phylogenetic relative of the unknown cocci from wild rabbits was Streptococcus acidominimus NCIMB 702025(T) (97.9% 16S rRNA gene sequence similarity). rpoB and sodA sequence analysis of the novel isolate showed interspecies divergence of 16.2% and 20.3%, respectively, from the type strain of its closest 16S rRNA gene phylogenetic relative, S. acidominimus. The novel bacterial isolate could be distinguished from the type strain of S. acidominimus by several biochemical characteristics, such as the production of esterase C4, acid phosphatase and naphthol-AS-BI-phosphohydrolase and acidification of different sugars. Based on both phenotypic and phylogenetic findings, it is proposed that the unknown bacterium be classified as a novel species of the genus Streptococcus, Streptococcus cuniculi sp. nov. The type strain is NED12-00049-6B(T) ( = CECT 8498(T) = CCUG 65085(T)).
Collapse
Affiliation(s)
- A I Vela
- Departamento de Sanidad Animal. Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain.,Centro de Vigilancia Sanitaria Veterinaria (VISAVET). Universidad Complutense, 28040 Madrid, Spain
| | - V Sánchez Del Rey
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET). Universidad Complutense, 28040 Madrid, Spain
| | - L Zamora
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET). Universidad Complutense, 28040 Madrid, Spain
| | - A Casamayor
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET). Universidad Complutense, 28040 Madrid, Spain
| | - L Domínguez
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET). Universidad Complutense, 28040 Madrid, Spain
| | - J F Fernández-Garayzábal
- Departamento de Sanidad Animal. Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain.,Centro de Vigilancia Sanitaria Veterinaria (VISAVET). Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
18
|
van Alphen LB, Wenzel CQ, Richards MR, Fodor C, Ashmus RA, Stahl M, Karlyshev AV, Wren BW, Stintzi A, Miller WG, Lowary TL, Szymanski CM. Biological roles of the O-methyl phosphoramidate capsule modification in Campylobacter jejuni. PLoS One 2014; 9:e87051. [PMID: 24498018 PMCID: PMC3907429 DOI: 10.1371/journal.pone.0087051] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 12/18/2013] [Indexed: 01/02/2023] Open
Abstract
Campylobacter jejuni is a major cause of bacterial gastroenteritis worldwide, and the capsular polysaccharide (CPS) of this organism is required for persistence and disease. C. jejuni produces over 47 different capsular structures, including a unique O-methyl phosphoramidate (MeOPN) modification present on most C. jejuni isolates. Although the MeOPN structure is rare in nature it has structural similarity to some synthetic pesticides. In this study, we have demonstrated, by whole genome comparisons and high resolution magic angle spinning NMR, that MeOPN modifications are common to several Campylobacter species. Using MeOPN biosynthesis and transferase mutants generated in C. jejuni strain 81-176, we observed that loss of MeOPN from the cell surface correlated with increased invasion of Caco-2 epithelial cells and reduced resistance to killing by human serum. In C. jejuni, the observed serum mediated killing was determined to result primarily from activation of the classical complement pathway. The C. jejuni MeOPN transferase mutant showed similar levels of colonization relative to the wild-type in chickens, but showed a five-fold drop in colonization when co-infected with the wild-type in piglets. In Galleria mellonella waxmoth larvae, the MeOPN transferase mutant was able to kill the insects at wild-type levels. Furthermore, injection of the larvae with MeOPN-linked monosaccharides or CPS purified from the wild-type strain did not result in larval killing, indicating that MeOPN does not have inherent insecticidal activity.
Collapse
Affiliation(s)
- Lieke B. van Alphen
- Alberta Glycomics Centre, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Cory Q. Wenzel
- Alberta Glycomics Centre, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Michele R. Richards
- Alberta Glycomics Centre, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Christopher Fodor
- Alberta Glycomics Centre, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Roger A. Ashmus
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Martin Stahl
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Brendan W. Wren
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - William G. Miller
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, US Department of Agriculture, Albany, California, United States of America
| | - Todd L. Lowary
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Christine M. Szymanski
- Alberta Glycomics Centre, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
19
|
On S, Brandt S, Cornelius A, Fusco V, Quero G, Maćkiw E, Houf K, Bilbao A, Díaz A, Benejat L, Megraud F, Collins-Emerson J, French N, Gotcheva V, Angelov A, Alakomi HL, Saarela M, Paulin S. PCR revisited: a case for revalidation of PCR assays for microorganisms using identification ofCampylobacterspecies as an exemplar. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2013. [DOI: 10.3920/qas2012.0158] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- S.L.W. On
- Christchurch Science Centre, Institute of Environmental Science and Research (ESR), Food Programme, 27 Creyke Road, Ilam, 8041, Christchurch, New Zealand
| | - S.M. Brandt
- Christchurch Science Centre, Institute of Environmental Science and Research (ESR), Food Programme, 27 Creyke Road, Ilam, 8041, Christchurch, New Zealand
| | - A.J. Cornelius
- Christchurch Science Centre, Institute of Environmental Science and Research (ESR), Food Programme, 27 Creyke Road, Ilam, 8041, Christchurch, New Zealand
| | - V. Fusco
- National Research Council of Italy, Institute of Sciences and Food Protection (CNR-ISPA), Via Amendola 122/o, 70126 Bari, Italy
| | - G.M. Quero
- National Research Council of Italy, Institute of Sciences and Food Protection (CNR-ISPA), Via Amendola 122/o, 70126 Bari, Italy
| | - E. Maćkiw
- National Food and Nutrition Institute (NFNI), Powsińska 61/63, 02-093 Warsaw, Poland
- Department of Food and Consumer Articles Research, National Institute of Public Health - National Institute of Hygiene, ul. Chocimska 24, 00-791 Warszawa, Poland
| | - K. Houf
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - A. Bilbao
- Gaiker-IK 4 Zentru Teknologikoa, Teknologi Parkea, 202 Eraikina, 48170 Zamudio, Bizkaia, Spain
| | - A.I. Díaz
- Gaiker-IK 4 Zentru Teknologikoa, Teknologi Parkea, 202 Eraikina, 48170 Zamudio, Bizkaia, Spain
| | - L. Benejat
- Laboratoire de Bacteriologie (INSERM U853), Campylobacter National Reference Centre, University Bordeaux Segalen, 146 Rue Leo Saigent, 33076 Bordeaux, France
| | - F. Megraud
- Laboratoire de Bacteriologie (INSERM U853), Campylobacter National Reference Centre, University Bordeaux Segalen, 146 Rue Leo Saigent, 33076 Bordeaux, France
| | - J. Collins-Emerson
- mEpiLab, Hopkirk Research Institute, Massey University, IVABS, Tennent Drive, 4442 Massey, New Zealand
| | - N.P. French
- mEpiLab, Hopkirk Research Institute, Massey University, IVABS, Tennent Drive, 4442 Massey, New Zealand
| | - V. Gotcheva
- Department of Biotechnology, University of Food Technologies, 26 Maritza Blvd, 4002 Plovdiv, Bulgaria
| | - A. Angelov
- Department of Biotechnology, University of Food Technologies, 26 Maritza Blvd, 4002 Plovdiv, Bulgaria
| | - H.-L. Alakomi
- VTT, Technical Research Centre of Finland, Tietotiez, 02044 Espoo, Finland
| | - M. Saarela
- VTT, Technical Research Centre of Finland, Tietotiez, 02044 Espoo, Finland
| | - S.M. Paulin
- Christchurch Science Centre, Institute of Environmental Science and Research (ESR), Food Programme, 27 Creyke Road, Ilam, 8041, Christchurch, New Zealand
| |
Collapse
|
20
|
Occurrence of ε-proteobacterial species in rabbits (Oryctolagus cuniculus) reared in intensive and rural farms. Vet Microbiol 2013; 162:288-92. [PMID: 22944072 DOI: 10.1016/j.vetmic.2012.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 08/10/2012] [Accepted: 08/11/2012] [Indexed: 11/23/2022]
Abstract
In order to investigate the occurrence of Campylobacter, Helicobacter and Arcobacter species in caecal contents of rabbits reared in intensive and rural farms, a total of 87 samples from animals belonging to 29 farms were analysed by both cultural and PCR analyses. PCR analysis directly from faecal samples detected 100% positive samples for Campylobacter genus, 3.4% for Helicobacter genus and none for Arcobacter genus. 83 out of 87 animals (95.4%) and all the 29 farms were positive for Campylobacter cuniculorum as also determined by cultural examination. Campylobacter coli and Campylobacter jejuni were isolated only from three animals reared in two rural farms. No Helicobacter and Arcobacter species were isolated. To evaluate a possible genetic variability, one strain of C. cuniculorum from each farm was analysed by Pulsed Field Gel Electrophoresis (PFGE) and Amplified Fragment Length Polymorphism (AFLP). Genotyping revealed that C. cuniculorum population is heterogeneous among the different sources and no dominant clone has spread in the investigated farms. This survey highlighted a high presence of C. cuniculorum with a high rate of intestinal colonization, low presence of C. jejuni-coli, Helicobacter spp. and any Arcobacter spp. in farmed rabbits.
Collapse
|
21
|
Nothaft H, Scott NE, Vinogradov E, Liu X, Hu R, Beadle B, Fodor C, Miller WG, Li J, Cordwell SJ, Szymanski CM. Diversity in the protein N-glycosylation pathways within the Campylobacter genus. Mol Cell Proteomics 2012; 11:1203-19. [PMID: 22859570 DOI: 10.1074/mcp.m112.021519] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The foodborne bacterial pathogen, Campylobacter jejuni, possesses an N-linked protein glycosylation (pgl) pathway involved in adding conserved heptasaccharides to asparagine-containing motifs of >60 proteins, and releasing the same glycan into its periplasm as free oligosaccharides. In this study, comparative genomics of all 30 fully sequenced Campylobacter taxa revealed conserved pgl gene clusters in all but one species. Structural, phylogenetic and immunological studies showed that the N-glycosylation systems can be divided into two major groups. Group I includes all thermotolerant taxa, capable of growth at the higher body temperatures of birds, and produce the C. jejuni-like glycans. Within group I, the niche-adapted C. lari subgroup contain the smallest genomes among the epsilonproteobacteria, and are unable to glucosylate their pgl pathway glycans potentially reminiscent of the glucosyltransferase regression observed in the O-glycosylation system of Neisseria species. The nonthermotolerant Campylobacters, which inhabit a variety of hosts and niches, comprise group II and produce an unexpected diversity of N-glycan structures varying in length and composition. This includes the human gut commensal, C. hominis, which produces at least four different N-glycan structures, akin to the surface carbohydrate diversity observed in the well-studied commensal, Bacteroides. Both group I and II glycans are immunogenic and cell surface exposed, making these structures attractive targets for vaccine design and diagnostics.
Collapse
Affiliation(s)
- Harald Nothaft
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
A growing number of Campylobacter species other than C. jejuni and C. coli have been recognized as emerging human and animal pathogens. Although C. jejuni continues to be the leading cause of bacterial gastroenteritis in humans worldwide, advances in molecular biology and development of innovative culture methodologies have led to the detection and isolation of a range of under-recognized and nutritionally fastidious Campylobacter spp., including C. concisus, C. upsaliensis and C. ureolyticus. These emerging Campylobacter spp. have been associated with a range of gastrointestinal diseases, particularly gastroenteritis, IBD and periodontitis. In some instances, infection of the gastrointestinal tract by these bacteria can progress to life-threatening extragastrointestinal diseases. Studies have shown that several emerging Campylobacter spp. have the ability to attach to and invade human intestinal epithelial cells and macrophages, damage intestinal barrier integrity, secrete toxins and strategically evade host immune responses. Members of the Campylobacter genus naturally colonize a wide range of hosts (including pets, farm animals and wild animals) and are frequently found in contaminated food products, which indicates that these bacteria are at risk of zoonotic transmission to humans. This Review presents the latest information on the role and clinical importance of emerging Campylobacter spp. in gastrointestinal health and disease.
Collapse
Affiliation(s)
- Si Ming Man
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| |
Collapse
|
23
|
Lynch OA, Cagney C, McDowell DA, Duffy G. Occurrence of fastidious Campylobacter spp. in fresh meat and poultry using an adapted cultural protocol. Int J Food Microbiol 2011; 150:171-7. [PMID: 21855156 DOI: 10.1016/j.ijfoodmicro.2011.07.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 07/26/2011] [Accepted: 07/30/2011] [Indexed: 02/08/2023]
Abstract
This study used an adapted cultural protocol for the recovery of fastidious species of Campylobacter, to gain a more accurate understanding of the diversity of Campylobacter populations in fresh meats. Chicken (n=185), pork (n=179) and beef (n=186) were collected from supermarkets and butchers throughout the Republic of Ireland. Samples were enriched in Campylobacter enrichment broth for 24h under an atmosphere of 2.5% O(2), 7% H(2), 10% CO(2), and 80.5% N(2). The enriched samples were then filtered onto non-selective Anaerobe Basal Agar supplemented with lysed horse blood using mixed ester filter membranes. Isolates were identified by both genus and species-specific PCR assays and biochemical testing. The incidence of campylobacters on beef (36%) was significantly higher than on pork (22%) or chicken (16%), and far exceeds previously reported prevalence levels. The method was successful in recovering 7 species of Campylobacter, including the fastidious spp. C. concisus and C. mucosalis, from chicken meat, and 10 species, including C. concisus, C. curvus, C. mucosalis, C. sputorum, and C. upsaliensis, from minced beef. The isolation of C. concisus and C. upsaliensis from meat in this study is of particular significance, due to their emerging clinical relevance. The results of this study confirm that the diversity of Campylobacter species on fresh meats is greater than previously reported and highlights the bias of cultural methods towards the recovery of C. jejuni.
Collapse
Affiliation(s)
- Orla A Lynch
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | | | | | | |
Collapse
|
24
|
Campylobacter troglodytis sp. nov., isolated from feces of human-habituated wild chimpanzees (Pan troglodytes schweinfurthii) in Tanzania. Appl Environ Microbiol 2011; 77:2366-73. [PMID: 21278267 DOI: 10.1128/aem.01840-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transmission of simian immunodeficiency and Ebola viruses to humans in recent years has heightened awareness of the public health significance of zoonotic diseases of primate origin, particularly from chimpanzees. In this study, we analyzed 71 fecal samples collected from 2 different wild chimpanzee (Pan troglodytes) populations with different histories in relation to their proximity to humans. Campylobacter spp. were detected by culture in 19/56 (34%) group 1 (human habituated for research and tourism purposes at Mahale Mountains National Park) and 0/15 (0%) group 2 (not human habituated but propagated from an introduced population released from captivity over 30 years ago at Rubondo Island National Park) chimpanzees, respectively. Using 16S rRNA gene sequencing, all isolates were virtually identical (at most a single base difference), and the chimpanzee isolates were most closely related to Campylobacter helveticus and Campylobacter upsaliensis (94.7% and 95.9% similarity, respectively). Whole-cell protein profiling, amplified fragment length polymorphism analysis of genomic DNA, hsp60 sequence analysis, and determination of the mol% G+C content revealed two subgroups among the chimpanzee isolates. DNA-DNA hybridization experiments confirmed that both subgroups represented distinct genomic species. In the absence of differential biochemical characteristics and morphology and identical 16S rRNA gene sequences, we propose to classify all isolates into a single novel nomenspecies, Campylobacter troglodytis, with strain MIT 05-9149 as the type strain; strain MIT 05-9157 is suggested as the reference strain for the second C. troglodytis genomovar. Further studies are required to determine whether the organism is pathogenic to chimpanzees and whether this novel Campylobacter colonizes humans and causes enteric disease.
Collapse
|
25
|
Paulin SM, On SLW. ORIGINAL ARTICLE: Campylobacter fact sheet: taxonomy, pathogenesis, isolation, detection and future perspectives. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2010. [DOI: 10.1111/j.1757-837x.2010.00067.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Debruyne L, Broman T, Bergström S, Olsen B, On SLW, Vandamme P. Campylobacter volucris sp. nov., isolated from black-headed gulls (Larus ridibundus). Int J Syst Evol Microbiol 2009; 60:1870-1875. [PMID: 19767353 DOI: 10.1099/ijs.0.013748-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During a study of the prevalence of Campylobacter jejuni in black-headed gulls (Larus ridibundus) in Sweden, three isolates, strains LMG 24379, LMG 24380T and LMG 24381, were initially identified as Campylobacter lari. Further characterization by both AFLP and whole-cell protein SDS-PAGE analyses revealed that they formed a distinct group in the genus Campylobacter. This unique position was confirmed by phenotypic characterization, 16S rRNA and hsp60 gene sequence analysis and DNA-DNA hybridizations. The combined data confirm that these isolates represent a novel species within the genus Campylobacter, for which the name Campylobacter volucris sp. nov. is proposed. The type strain is LMG 24380T (=CCUG 57498T).
Collapse
Affiliation(s)
- Lies Debruyne
- Department of Biochemistry, Physiology and Microbiology, Faculty of Sciences, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Tina Broman
- CBRN Defence and Security, FOI, Swedish Defence Research Institute, SE-901 82 Umeå, Sweden
| | - Sven Bergström
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Björn Olsen
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University Hospital, SE-751 85 Uppsala, Sweden
| | - Stephen L W On
- Danish Institute of Food and Veterinary Research, DK-1790 Copenhagen, Denmark
| | - Peter Vandamme
- Department of Biochemistry, Physiology and Microbiology, Faculty of Sciences, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium
| |
Collapse
|
27
|
Debruyne L, Broman T, Bergström S, Olsen B, On SLW, Vandamme P. Campylobacter subantarcticus sp. nov., isolated from birds in the sub-Antarctic region. Int J Syst Evol Microbiol 2009; 60:815-819. [PMID: 19661523 DOI: 10.1099/ijs.0.011056-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Six Gram-stain-negative, spiral-shaped, microaerobic isolates were obtained during a sampling from wild birds in the sub-Antarctic region. Based on initial observations, these isolates were classified as Campylobacter lari-like. The isolates were further characterized by whole-cell protein and amplified fragment length polymorphism (AFLP) analysis, which revealed that they were distinct from C. lari and all other known species of the genus Campylobacter. Here, we present comprehensive phylogenetic, genomic and phenotypic evidence that these isolates represent a novel species within the genus Campylobacter, for which the name Campylobacter subantarcticus sp. nov. is proposed. The type strain is R-3023(T) (=LMG 24377(T) =CCUG 38513(T)).
Collapse
Affiliation(s)
- Lies Debruyne
- Department of Biochemistry, Physiology and Microbiology, Faculty of Sciences, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Tina Broman
- CBRN Defence and Security, FOI, Swedish Defence Research Institute, SE-901 82 Umeå, Sweden
| | - Sven Bergström
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Björn Olsen
- Section for Zoonotic Ecology and Epidemiology, Department of Natural Sciences, Kalmar University, SE-391 82 Kalmar, Sweden.,Department of Medical Sciences, Section of Infectious Diseases, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Stephen L W On
- Institute of Environmental Research and Science, Food Safety Programme, PO Box 29 181, Christchurch, New Zealand
| | - Peter Vandamme
- Department of Biochemistry, Physiology and Microbiology, Faculty of Sciences, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium
| |
Collapse
|
28
|
Rossi M, Debruyne L, Zanoni RG, Manfreda G, Revez J, Vandamme P. Campylobacter avium sp. nov., a hippurate-positive species isolated from poultry. Int J Syst Evol Microbiol 2009; 59:2364-9. [PMID: 19620353 DOI: 10.1099/ijs.0.007419-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three strains of an unusual hippurate-positive Campylobacter species were isolated at 37 degrees C from caecal contents of broiler chickens and a turkey. All strains were initially identified as Campylobacter by means of genus-specific PCR, but none was further identified using specific PCRs for known thermophilic species. Phylogenetic analyses based on 16S rRNA, rpoB and groEL gene sequences revealed that these strains formed a robust clade distinct from other Campylobacter species. Amplified fragment length polymorphism analysis and whole-cell protein electrophoresis were subsequently carried out and confirmed the divergence between the avian strains and other taxa. These data indicate that the unidentified Campylobacter strains belong to a novel taxon which could be distinguished from other campylobacters through its phenotypic and genotypic characteristics. The name Campylobacter avium sp. nov., is proposed for the novel species, with the type strain 86/06T (=LMG 24591T=CCUG 56292T).
Collapse
Affiliation(s)
- Mirko Rossi
- Department of Veterinary Public Health and Animal Pathology, Alma Mater Studiorum, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Bologna, Italy.
| | | | | | | | | | | |
Collapse
|