1
|
Okazaki S, Komatsu A, Nakano M, Taguchi G, Shimosaka M. A novel endo-type chitinase possessing chitobiase activity derived from the chitinolytic bacterium, Chitiniphilus shinanonensis SAY3T. Biosci Biotechnol Biochem 2023; 87:1543-1550. [PMID: 37715302 DOI: 10.1093/bbb/zbad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
One of the chitinases (ChiG) derived from the chitinolytic bacterium Chitiniphilus shinanonensis SAY3T exhibited chitobiase activity cleaving dimers of N-acetyl-D-glucosamine (GlcNAc) into monomers, which is not detected in typical endo-type chitinases. Analysis of the reaction products for GlcNAc hexamers revealed that all the five internal glycosidic bonds were cleaved at the initial stage. The overall reaction catalyzed by chitobiases toward GlcNAc dimers was similar to that catalyzed by N-acetyl-D-glucosaminidases (NAGs). SAY3 possesses two NAGs (ChiI and ChiT) that are thought to be important in chitin catabolism. Unexpectedly, a triple gene-disrupted mutant (ΔchiIΔchiTΔchiG) was still able to grow on synthetic medium containing GlcNAc dimers or powdered chitin, similar to the wild-type SAY3, although it exhibited only 3% of total cellular NAG activity compared to the wild-type. This indicates the presence of unidentified enzyme(s) capable of supporting normal bacterial growth on the chitin medium by NAG activity compensation.
Collapse
Affiliation(s)
- Sayaka Okazaki
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, Japan
| | - Akane Komatsu
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, Japan
| | - Moe Nakano
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, Japan
| | - Goro Taguchi
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, Japan
| | - Makoto Shimosaka
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, Japan
| |
Collapse
|
2
|
Tran DM, Sugimoto H, Nguyen DA, Watanabe T, Suzuki K. Identification and characterization of chitinolytic bacteria isolated from a freshwater lake. Biosci Biotechnol Biochem 2018; 82:343-355. [DOI: 10.1080/09168451.2017.1422969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
To develop a novel type of biocontrol agent, we focus on bacteria that are characterized by both chitinase activity and biofilm development. Chitinolytic bacteria were isolated from sediments and chitin flakes immersed in the water of a sand dune lake, Sakata, in Niigata, Japan. Thirty-one isolates from more than 5100 isolated strains were examined chitinase activity and biofilm formation. Phylogenetic analysis of these isolates based on the 16S rRNA gene sequences revealed that most isolates belonged to the family Aeromonadaceae, followed by Paenibacillaceae, Enterobacteriaceae, and Neisseriaceae. The specific activity of chitinase of four selected strains was higher than that of a reference strain. The molecular size of one chitinase produced by Andreprevotia was greater than that of typical bacterial chitinases. The dialyzed culture supernatant containing chitinases of the four strains suppressed hyphal growth of Trichoderma reesei. These results indicate that these four strains are good candidates for biocontrol agents.
Collapse
Affiliation(s)
- Dinh Minh Tran
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot City, Vietnam
| | - Hayuki Sugimoto
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Dzung Anh Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot City, Vietnam
| | - Takeshi Watanabe
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Kazushi Suzuki
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| |
Collapse
|
3
|
Moß KS, Hartmann SC, Müller I, Fritz C, Krügener S, Zibek S, Hirth T, Rupp S. Amantichitinum ursilacus gen. nov., sp. nov., a chitin-degrading bacterium isolated from soil. Int J Syst Evol Microbiol 2012; 63:98-103. [PMID: 22345133 DOI: 10.1099/ijs.0.034447-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A bacterial strain named IGB-41(T) was isolated from a soil sample from an ant hill near Stuttgart, Germany. The strain was Gram-negative, rod-shaped, motile and facultatively anaerobic. Phylogenetic analysis based on 16S rRNA grouped the strain IGB-41(T) within the class Betaproteobacteria into the family Neisseriaceae together with Silvimonas amylolytica NBRC 103189(T), Silvimonas iriomotensis NBRC 103188(T) and Silvimonas terrae KM-45(T) as the closest relatives with sequence similarities of 96.7, 96.6 and 96.1 %, respectively. The G+C content of the genomic DNA was determined to be 61.5 mol% and quinone analysis revealed Q-8 as the only detectable quinone. Major cellular fatty acids were identified as C(16 : 0), summed feature 3 (iso-C(15 : 0) 2-OH and/or C(16 : 1)ω7c) and C(18 : 1)ω7c . Strain IGB-41(T) was unique in harbouring phosphoaminolipids, aminolipids and glycoaminolipids when compared with Silvimonas amylolytica NBRC 103189(T) in polar lipid analysis. On the basis of the physiological, phenotypic and genotypic characteristics of strain IGB-41(T), we suggest that the novel strain should be assigned to a new genus Amantichitinum and novel species Amantichitinum ursilacus. The type species of the genus Amantichitinum is Amantichitinum ursilacus and the type strain is IGB-41(T) (=DSM 23761(T) =CIP 110167(T)).
Collapse
Affiliation(s)
- Karin S Moß
- Institute for Interfacial Engineering, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Stefan C Hartmann
- Institute for Interfacial Engineering, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Isabell Müller
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Christina Fritz
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Sven Krügener
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Susanne Zibek
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Thomas Hirth
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstraße 12, 70569 Stuttgart, Germany.,Institute for Interfacial Engineering, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Steffen Rupp
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstraße 12, 70569 Stuttgart, Germany
| |
Collapse
|