1
|
Wang G, Li X, Zheng J, Li X, Bai L, Yue W, Li J. Isolation of a diazinon-degrading strain Sphingobium sp. DI-6 and its novel biodegradation pathway. Front Microbiol 2022; 13:929147. [PMID: 36081782 PMCID: PMC9445152 DOI: 10.3389/fmicb.2022.929147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Diazinon is one of the most widely used organophosphate insecticides, one that is frequently detected in the environment. In this study, a diazinon-degrading bacterium, DI-6, previously isolated from diazinon-contaminated soil in China has been subsequently identified as Sphingobium sp. on the basis of its physiological and biochemical characteristics, as well as by virtue of a comparative analysis of 16S rRNA gene sequences. This strain is capable of using diazinon as its sole carbon source for growth and was able to degrade 91.8% of 100 mg L–1 diazinon over a 60-h interval. During the degradation of diazinon, the following seven metabolites were captured and identified by gas chromatography/mass spectrometry (GC–MS) analysis: diazoxon, diazinon aldehyde, isopropenyl derivative of diazinon, hydroxyethyl derivative of diazinon, diazinon methyl ketone, O-[2-(1-hydroxyethyl)-6-methylpyrimidin-4-yl] O-methyl O-hydrogen phosphorothioate, and O-(6-methyl pyrimidin-4-yl) O,O-dihydrogen phosphorothioate. Based on these metabolites, a novel microbial biodegradation pathway of diazinon by Sphingobium sp. DI-6 is proposed. This research provides potentially useful information for the application of the DI-6 strain in bioremediation of diazinon-contaminated environments.
Collapse
Affiliation(s)
- Guangli Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Xiang Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Jiaxin Zheng
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Xuedong Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Lingling Bai
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Wenlong Yue
- Laboratory of Applied Microbiology and Biotechnology, School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, China
- *Correspondence: Wenlong Yue,
| | - Jiang Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Jiang Li,
| |
Collapse
|
2
|
Zhao T, Hu K, Li J, Zhu Y, Liu A, Yao K, Liu S. Current insights into the microbial degradation for pyrethroids: strain safety, biochemical pathway, and genetic engineering. CHEMOSPHERE 2021; 279:130542. [PMID: 33866100 DOI: 10.1016/j.chemosphere.2021.130542] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/09/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
As a biologically inspired insecticide, pyrethroids (PYRs) exert evident toxic side effects on non-target organisms. PYRs and their general toxic intermediate 3-phenoxybenzoic acid (3-PBA) have shown high detection rates/levels in human beings recently, for which diet was identified as the major exposure route. Microbial mineralization has emerged as a versatile strategy in addressing such escalating concern. Herein, PYRs and 3-PBA biodegradation with regards to strain safety, application and surfactant were summarized. Numerous PYRs-degrading microbes have been reported yet with a minority focused on 3-PBA. Most isolates were from contaminated sites while several microbial food cultures (MFCs) have been investigated. MFCs such as Bacillus spp. and Aspergillus spp. that dominate in PYRs-degrading microbial pools are applicable candidates for agricultural by-products detoxification during the postharvest process. Subsequently, we discussed committed degradation steps, wherein hydrolase responsible for PYRs ester linkage cleavage and oxygenase for 3-PBA diphenyl ether bond rupture play vital roles. Finally, comprehensive information of the key enzyme genes is outlined along with methodologies concerning gene cloning. Cytochrome P450 monooxygenases (CYP) is competent for diphenyl ether scission. Newly-developed omics has become a feasible gene and enzyme mining technology. To achieve PYRs mineralization in feed and food commodities, the screening of MFCs rich in related enzymes and the construction of MFCs-derived genetically modified microbes (GMMs) exhibit great potential considering the safety issues.
Collapse
Affiliation(s)
- Tianye Zhao
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yuanting Zhu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Kai Yao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
3
|
Pyrethroid Carboxylesterase PytH from Sphingobium faniae JZ-2: Structure and Catalytic Mechanism. Appl Environ Microbiol 2020; 86:AEM.02971-19. [PMID: 32303545 DOI: 10.1128/aem.02971-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/07/2020] [Indexed: 01/24/2023] Open
Abstract
Carboxylesterase PytH, isolated from the pyrethroid-degrading bacterium Sphingobium faniae JZ-2, could rapidly hydrolyze the ester bond of a wide range of pyrethroid pesticides, including permethrin, fenpropathrin, cypermethrin, fenvalerate, deltamethrin, cyhalothrin, and bifenthrin. To elucidate the catalytic mechanism of PytH, we report here the crystal structures of PytH with bifenthrin (BIF) and phenylmethylsulfonyl fluoride (PMSF) and two PytH mutants. Though PytH shares low sequence identity with reported α/β-hydrolase fold proteins, the typical triad catalytic center with Ser-His-Asp triad (Ser78, His230, and Asp202) is present and vital for the hydrolase activity. However, no contact was found between Ser78 and His230 in the structures we solved, which may be due to the fact that the PytH structures we determined are in their inactive or low-activity forms. The structure of PytH is composed of a core domain and a lid domain; some hydrophobic amino acid residues surrounding the substrate from both domains form a deeper and wider hydrophobic pocket than its homologous structures. This indicates that the larger hydrophobic pocket makes PytH fit for its larger substrate binding; both lid and core domains are involved in substrate binding, and the lid domain-induced core domain movement may make the active center correctly positioned with substrates.IMPORTANCE Pyrethroid pesticides are widely applied in agriculture and household; however, extensive use of these pesticides also causes serious environmental and health problems. The hydrolysis of pyrethroids by carboxylesterases is the major pathway of microbial degradation of pyrethroids, but the structure of carboxylesterases and its catalytic mechanism are still unknown. Carboxylesterase PytH from Sphingobium faniae JZ-2 could effectively hydrolyze a wide range of pyrethroid pesticides. The crystal structures of PytH are solved in this study. This showed that PytH belongs to the α/β-hydrolase fold proteins with typical catalytic Ser-His-Asp triad, though PytH has a low sequence identity (about 20%) with them. The special large hydrophobic binding pocket enabled PytH to bind bigger pyrethroid family substrates. Our structures shed light on the substrate selectivity and the future application of PytH and deepen our understanding of α/β-hydrolase members.
Collapse
|
4
|
Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM, Tindall BJ, Gronow S, Kyrpides NC, Woyke T, Göker M. Analysis of 1,000+ Type-Strain Genomes Substantially Improves Taxonomic Classification of Alphaproteobacteria. Front Microbiol 2020; 11:468. [PMID: 32373076 PMCID: PMC7179689 DOI: 10.3389/fmicb.2020.00468] [Citation(s) in RCA: 298] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
The class Alphaproteobacteria is comprised of a diverse assemblage of Gram-negative bacteria that includes organisms of varying morphologies, physiologies and habitat preferences many of which are of clinical and ecological importance. Alphaproteobacteria classification has proved to be difficult, not least when taxonomic decisions rested heavily on a limited number of phenotypic features and interpretation of poorly resolved 16S rRNA gene trees. Despite progress in recent years regarding the classification of bacteria assigned to the class, there remains a need to further clarify taxonomic relationships. Here, draft genome sequences of a collection of genomes of more than 1000 Alphaproteobacteria and outgroup type strains were used to infer phylogenetic trees from genome-scale data using the principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families and genera, including taxa recognized as problematic long ago but also quite recent taxa, as well as a few species were shown to be in need of revision. According proposals are made for the recognition of new orders, families and genera, as well as the transfer of a variety of species to other genera and of a variety of genera to other families. In addition, emended descriptions are given for many species mainly involving information on DNA G+C content and (approximate) genome size, both of which are confirmed as valuable taxonomic markers. Similarly, analysis of the gene content was shown to provide valuable taxonomic insights in the class. Significant incongruities between 16S rRNA gene and whole genome trees were not found in the class. The incongruities that became obvious when comparing the results of the present study with existing classifications appeared to be caused mainly by insufficiently resolved 16S rRNA gene trees or incomplete taxon sampling. Another probable cause of misclassifications in the past is the partially low overall fit of phenotypic characters to the sequence-based tree. Even though a significant degree of phylogenetic conservation was detected in all characters investigated, the overall fit to the tree varied considerably.
Collapse
Affiliation(s)
- Anton Hördt
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marina García López
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Jan P. Meier-Kolthoff
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marcel Schleuning
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Lisa-Maria Weinhold
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Brian J. Tindall
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Sabine Gronow
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Markus Göker
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| |
Collapse
|
5
|
Jiang W, Gao Q, Zhang L, Wang H, Zhang M, Liu X, Zhou Y, Ke Z, Wu C, Qiu J, Hong Q. Identification of the key amino acid sites of the carbofuran hydrolase CehA from a newly isolated carbofuran-degrading strain Sphingbium sp. CFD-1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109938. [PMID: 31759739 DOI: 10.1016/j.ecoenv.2019.109938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
A novel carbofuran-degrading strain CFD-1 was isolated and preliminarily identified as Sphingbium sp. This strain was able to utilize carbofuran as the sole carbon source for growth. The carbofuran hydrolase gene cehA was cloned from strain CFD-1 and expressed in Escherichia coli. CehA could hydrolyze carbamate pesticides including carbofuran and carbaryl efficiently, while it showed poor hydrolysis ability against isoprocarb, propoxur, oxamyl and aldicarb. CehA displayed maximal enzymatic activity at 40 °C and pH 7.0. The apparent Km and Kcat values of CehA for carbofuran were 133.22 ± 5.70 μM and 9.48 ± 0.89 s-1, respectively. The site-directed mutation experiment showed that His313, His315, His453 and His495 played important roles in the hydrolysis of carbofuran by CehA. Furthermore, the sequence of cehA is highly conserved among different carbofuran-degrading strains, and there are mobile elements around cehA, indicating that it may be transferred horizontally between different strains.
Collapse
Affiliation(s)
- Wankui Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Qinqin Gao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Lu Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Hui Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Mingliang Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Xiaoan Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Yidong Zhou
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Zhijian Ke
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Chenglong Wu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
6
|
Liu B, Peng Q, Sheng M, Ni H, Xiao X, Tao Q, He Q, He J. Isolation and Characterization of a Topramezone-Resistant 4-Hydroxyphenylpyruvate Dioxygenase from Sphingobium sp. TPM-19. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1022-1029. [PMID: 31884791 DOI: 10.1021/acs.jafc.9b06871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Topramezone is a 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor. Due to its broad-spectrum, high efficiency, and low toxicity, topramezone is a candidate herbicide for the construction of genetically modified (GM) herbicide-resistant crops. In the present study, we screened a topramezone-resistant isolate Sphingobium sp. TPM-19 and cloned a topramezone-resistant HPPD gene (SphppD) from this isolate. SpHPPD shared the highest similarity (53%) with an HPPD from Vibrio vulnificus CMCP6. SpHPPD was synthesized in Escherichia coli BL21(DE3) and purified to homogeneity using Co2+-affinity chromatography. SpHPPD was found to be a monomer. The Km and kcat of SpHPPD for 4-hydroxyphenylpyruvate (4-HPP) were 82.8 μM and 15.0 s-1, respectively. SpHPPD showed high resistance to topramezone with half maximal inhibitory concentration (IC50) and Ki values of 5.2 and 2.5 μM, respectively. Additionally, SpHPPD also showed high resistance to isoxaflutole (DKN) (IC50: 8.7 μM; Ki: 6.0 μM) and mesotrione (IC50: 4.2 μM; Ki: 1.3 μM) and moderate resistance to tembotrione (IC50: 2.5 μM; Ki: 1.0 μM). The introduction of the SphppD gene into Arabidopsis thaliana enhanced obvious resistance against topramezone. In conclusion, this study provides a novel topramezone-resistant HPPD gene for the genetic engineering of GM herbicide-resistant crops.
Collapse
Affiliation(s)
- Bin Liu
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , Nanjing 210095 , Jiangsu , P. R. China
| | - Qian Peng
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , Nanjing 210095 , Jiangsu , P. R. China
| | - Mengyao Sheng
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , Nanjing 210095 , Jiangsu , P. R. China
| | - Haiyan Ni
- College of Life Science , Jiangxi Normal University , Nanchang 330022 , Jiangxi , China
| | - Xiang Xiao
- DBN Biotech Center, Beijing DBN Technology Group Co., Ltd. , Beijing 100193 , P. R. China
| | - Qing Tao
- DBN Biotech Center, Beijing DBN Technology Group Co., Ltd. , Beijing 100193 , P. R. China
| | - Qin He
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , Nanjing 210095 , Jiangsu , P. R. China
| | - Jian He
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , Nanjing 210095 , Jiangsu , P. R. China
| |
Collapse
|
7
|
Dada N, Lol JC, Benedict AC, López F, Sheth M, Dzuris N, Padilla N, Lenhart A. Pyrethroid exposure alters internal and cuticle surface bacterial communities in Anopheles albimanus. THE ISME JOURNAL 2019; 13:2447-2464. [PMID: 31171859 PMCID: PMC6776023 DOI: 10.1038/s41396-019-0445-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/02/2019] [Accepted: 05/09/2019] [Indexed: 01/19/2023]
Abstract
A deeper understanding of the mechanisms underlying insecticide resistance is needed to mitigate its threat to malaria vector control. Following previously identified associations between mosquito microbiota and insecticide resistance, we demonstrate for the first time, the effects of pyrethroid exposure on the microbiota of F1 progeny of field-collected Anopheles albimanus. Larval and adult mosquitoes were exposed to the pyrethroids alphacypermethrin (only adults), permethrin, and deltamethrin. While there were no significant differences in bacterial composition between insecticide-resistant and insecticide-susceptible mosquitoes, bacterial composition between insecticide-exposed and non-exposed mosquitoes was significantly different for alphacypermethrin and permethrin exposure. Along with other bacterial taxa not identified to species, Pantoea agglomerans (a known insecticide-degrading bacterial species) and Pseudomonas fragi were more abundant in insecticide-exposed compared to non-exposed adults, demonstrating that insecticide exposure can alter mosquito bacterial communities. We also show for the first time that the cuticle surfaces of both larval and adult An. albimanus harbor more diverse bacterial communities than their internal microbial niches. Together, these findings demonstrate how insecticide pressure could be selecting for certain bacteria within mosquitoes, especially insecticide-metabolizing bacteria, thus potentially contributing to insecticide resistance.
Collapse
Affiliation(s)
- Nsa Dada
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, United States Centers for Disease Control and Prevention, Atlanta, GA, USA.
- American Society for Microbiology, Washington, DC, USA.
| | - Juan C Lol
- Grupo de Biología y Control de Vectores, Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala, Guatemala
| | - Ana Cristina Benedict
- Grupo de Biología y Control de Vectores, Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala, Guatemala
| | - Francisco López
- Grupo de Biología y Control de Vectores, Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala, Guatemala
| | - Mili Sheth
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging & Zoonotic Infectious Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nicole Dzuris
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, United States Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Norma Padilla
- Grupo de Biología y Control de Vectores, Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala, Guatemala
| | - Audrey Lenhart
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, United States Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
8
|
Oh S, Choi D. Microbial Community Enhances Biodegradation of Bisphenol A Through Selection of Sphingomonadaceae. MICROBIAL ECOLOGY 2019; 77:631-639. [PMID: 30251120 DOI: 10.1007/s00248-018-1263-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/16/2018] [Indexed: 06/08/2023]
Abstract
Bisphenol A (BPA) is a common ingredient in plastic wares and epoxy resins that are essential for our daily life. Despite the obvious benefits, BPA may act as an environmental endocrine disruptor, causing metabolic, reproductive, and/or developmental consequences and diseases in humans and other organisms. Although previous studies have yielded progress toward the microbial breakdown of BPA, the work has primarily been focused on pure cultures rather than complex microbial communities. In this study, we examined microbial communities in bioreactors that control the fate of BPA at various levels (up to 5000 μg L-1). Microbial communities rapidly increased removal rates of 500-5000 μg L-1 BPA from 23-29 to 89-99% during the first 2 weeks of the acclimation period, after which > 90% stable removal rates were maintained over 3 months. Biochemical assays demonstrated that BPA was removed by biodegradation, rather than other abiotic removal routes (e.g., adsorption and volatilization). The 16S rRNA gene-based community analysis revealed that 50-5000 μg L-1 of BPA exposure systematically selected for three Sphingomonadaceae species (Sphingobium, Novosphingobium, and Sphingopyxis). The Sphingomonadaceae-enriched communities acclimated to BPA showed a 7.0-L gVSS-1 day-1 BPA degradation rate constant, which is comparable to that (4.1-6.3) of Sphingomonadaceae isolates and is higher than other potential BPA degraders. Taken together, our results advanced the understanding of how microbial communities acclimate to environmentally relevant levels of BPA, gradually enhancing BPA degradation via selective enrichment of a few Sphingomonadaceae populations with higher BPA metabolic activity.
Collapse
Affiliation(s)
- Seungdae Oh
- Department of Civil Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea.
| | - Donggeon Choi
- Department of Civil Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
9
|
Choi D, Oh S. Removal of Chloroxylenol Disinfectant by an Activated Sludge Microbial Community. Microbes Environ 2019; 34:129-135. [PMID: 30799319 PMCID: PMC6594741 DOI: 10.1264/jsme2.me18124] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chloroxylenol (CHL) is an antimicrobial ingredient that is frequently used in antiseptics/disinfectants for skin (e.g. hand soap) and non-living surfaces. CHL is an alternative to triclosan and triclocarban, the use of which has recently been banned in some countries. Accordingly, the more widespread use of CHL may significantly increase its occurrence and level in aquatic environments in the near future, eventually resulting in potential ecological risks. Wastewater treatment plants (WWTPs) may be a point source of CHL in natural environments due to extensive discharge through urban waste stream disposal. While the satisfactory removal of CHL in WWTPs is critical for maintaining healthy aquatic ecosystems, the extent of CHL removal and whether CHL causes system upset/failure in WWTPs currently remain unknown. In the present study, we conducted bioreactor operation and batch experiments to investigate the fate and effects of CHL and elucidate the mechanisms underlying degradation at various levels from environmentally relevant to high levels (0.5–5 mg L−1). Bioreactors partially removed CHL (44–87%) via a largely biological route. Microbial association networks constructed using 16S rRNA gene sequencing data revealed selective enrichment and a correlation between Sphingobium and CHL, implying its involvement in the biological breakdown of CHL through dehalogenation and ring hydroxylation pathways. The present results provide insights into the behavior and effects of CHL in activated sludge communities and important information for the sustainable management of CHL that may be an emerging issue in the urban water cycle.
Collapse
Affiliation(s)
- Donggeon Choi
- Department of Civil Engineering, Kyung Hee University
| | - Seungdae Oh
- Department of Civil Engineering, Kyung Hee University
| |
Collapse
|
10
|
Nguyen TM, Kim J. Sphingobium aromaticivastans sp. nov., a novel aniline- and benzene-degrading, and antimicrobial compound producing bacterium. Arch Microbiol 2018; 201:155-161. [PMID: 30560286 DOI: 10.1007/s00203-018-1611-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 11/26/2022]
Abstract
A strictly aerobic, orange-pigmented strain was isolated and designated as UCM-25T. This strain is capable of degrading aniline and benzene, while is also producing antimicrobial compounds which inhibit the growth of some common pathogenic microbes. A near full-length 16S rRNA gene sequence revealed similarity to Sphingobium chlorophenolicum NBRC 16172T (98.6%). The level of DNA-DNA hybridization between the new isolate and the related species suggests UCM-25T to be a new species belonging to the genus Sphingobium. The bacterial cells contained phosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid, phosphatidylcholine, phosphatidylmonomethylethanolamine, phosphatidyldimethylethanolamine, three unidentified polar lipids, and an unidentified aminophospholipid. Ubiquinone Q-10 was the major quinone and spermidine was the major polyamine. The G+C content in the DNA of strain UCM-25T was 62.9 mol%. Cells contained summed feature 8 (C18:1ω7c and/or C18:1ω6c), summed feature 3 (C16:1ω7c and/or C16:1ω6c), C16:0, and C14:0 2-OH as major fatty acids. Based on the comparison of phenotypic, genotypic, and chemotaxonomic characteristics, strain UCM-25T represents a new member of the genus Sphingobium, for which the name S. aromaticivastans sp. nov. is proposed. The type strain is UCM-25T (=KACC 19288T =DSM 105181T).
Collapse
Affiliation(s)
- Tuan Manh Nguyen
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Gyeonggi-Do, 16227, Republic of Korea
- Thai Nguyen University of Agriculture and Forestry, Quyet Thang commune, Thai Nguyen, Vietnam
| | - Jaisoo Kim
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Gyeonggi-Do, 16227, Republic of Korea.
| |
Collapse
|
11
|
Choi J, Kim ES, Ahn Y. Microbial community analysis of bulk sludge/cake layers and biofouling-causing microbial consortia in a full-scale aerobic membrane bioreactor. BIORESOURCE TECHNOLOGY 2017; 227:133-141. [PMID: 28013129 DOI: 10.1016/j.biortech.2016.12.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 06/06/2023]
Abstract
Pyrosequencing was used to investigate biofouling-causing microbial consortia at the community level in bulk sludge and cake layers within a full-scale membrane bioreactor (MBR). The analysis revealed Chao's estimates of total operational taxonomic units (OTUs) of 1726, 1806, and 1362 for bulk sludge, cake outer layer, and cake inner layer, respectively. The bulk sludge and cake outer layer OTUs clustered together, whereas the cake inner layer OTUs formed a separate group, indicating that environmental conditions affected the microbial community composition within the MBR. Bacteroidetes, Proteobacteria, and Chloroflexi were the dominant phyla in both the bulk sludge and the cake layers. Comparison at the genus level showed twelve distinct genera in the cake layers that were absent in bulk sludge. Twenty distinct genera were recorded in the inner cake layer. Those genera are likely the microbial colonization pioneers in full-scale membrane bioreactors.
Collapse
Affiliation(s)
- Jeongdong Choi
- Department of Environmental Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Eun-Sik Kim
- Department of Environmental System Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Youngho Ahn
- Department of Civil Engineering, Yeungnam University, Gyungsan 38541, Republic of Korea.
| |
Collapse
|
12
|
Du J, Singh H, Yang JE, Yin CS, Kook M, Yu H, Yi TH. Sphingobium soli sp. nov. isolated from rhizosphere soil of a rose. Antonie van Leeuwenhoek 2015; 108:1091-7. [PMID: 26427858 DOI: 10.1007/s10482-015-0562-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/19/2015] [Indexed: 11/26/2022]
Abstract
Strain THG-SQA7(T), a Gram-negative, strictly aerobic, non-motile, rod-shaped bacterium was isolated from rhizosphere soil of a rose in PR China. Strain THG-SQA7(T) is closely related to the members of the genus Sphingobium, showing the highest 16S rRNA gene sequence similarities with Sphingobium lactosutens KACC 18100(T) (98.2%) and Sphingobium abikonense KCTC 2864(T) (98.1%). The DNA-DNA relatedness between strain THG-SQA7(T) and S. lactosutens KACC 18100(T) and S. abikonense KCTC 2864(T) was 26.2 ± 0.9 and 28.3 ± 1.2%, respectively. Chemotaxonomic data showed that strain THG-SQA7(T) possesses ubiquinone Q-10 as the predominant respiratory quinone, and C(18:1)ω7c, C(16:0), summed feature 3 (C(16:1)ω7c and/or C(16:1)ω6c) and C(14:0) 2OH as the major fatty acids. The major polar lipids were found to be phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol, sphingoglycolipid, diphosphatidylglycerol and phosphatidyldimethylethanolamine. Based on these results, together with phenotypic characterization, a novel species, Sphingobium soli sp. nov. is proposed.with the type strain is THG-SQA7(T) (=CCTCC AB 2015125(T) = KCTC 42607(T)).
Collapse
Affiliation(s)
- Juan Du
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University Global Campus, 1732 Deokyoungdaero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, Republic of Korea
| | - Hina Singh
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University Global Campus, 1732 Deokyoungdaero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, Republic of Korea
| | - Jung-Eun Yang
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Chang Shik Yin
- Department of Acupuncture Meridian Science Research Center, College of Korean Medicine, Kyung Hee University Global Campus, Yongin-si, Republic of Korea
| | - MooChang Kook
- Department of Marine Biotechnology, Anyang University, Incheon, 417-833, Republic of Korea
| | - Hongshan Yu
- College of Bio and Food Technology, Dalian Polytechnic University, Qinggong-yuan No. 1, Ganjingzi-qu, Dalian, 116034, People's Republic of China
| | - Tae-Hoo Yi
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University Global Campus, 1732 Deokyoungdaero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, Republic of Korea.
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
13
|
Diegelmann C, Weber J, Heinzel-Wieland R, Kemme M. Characterization of a cypermethrin-degradingMethylobacteriumsp. strain A-1 and molecular cloning of its carboxylesterase gene. J Basic Microbiol 2015; 55:1245-54. [DOI: 10.1002/jobm.201500186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/14/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Corinna Diegelmann
- Department of Chemical Engineering and Biotechnology, Hochschule Darmstadt; University of Applied Sciences; Darmstadt Germany
| | - Joachim Weber
- Department of Chemical Engineering and Biotechnology, Hochschule Darmstadt; University of Applied Sciences; Darmstadt Germany
| | - Regina Heinzel-Wieland
- Department of Chemical Engineering and Biotechnology, Hochschule Darmstadt; University of Applied Sciences; Darmstadt Germany
| | - Michael Kemme
- Department of Chemical Engineering and Biotechnology, Hochschule Darmstadt; University of Applied Sciences; Darmstadt Germany
| |
Collapse
|
14
|
Cai S, Shi C, Zhao JD, Cao Q, He J, Chen LW. Sphingobium phenoxybenzoativorans sp. nov., a 2-phenoxybenzoic-acid-degrading bacterium. Int J Syst Evol Microbiol 2015; 65:1986-1991. [PMID: 25807977 DOI: 10.1099/ijs.0.000209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, aerobic, yellow-pigmented, rod-shaped bacterium, designated strain SC_3T, was isolated from pesticide-contaminated soil sediment. The strain was able to mineralize 2-phenoxybenzoic acid. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain SC_3T formed a monophyletic lineage in the genus Sphingobium, and showed highest similarity to the type strains of Sphingobium abikonense (97.0 %), followed by Sphingobium lactosutens (96.8 %) and Sphingobium cloacae (96.7 %). The DNA-DNA relatedness between strain SC_3T and its closest phylogenetic neighbours was lower than 70 %. The major fatty acids (>5 % of the total) were summed feature 8 (comprising C18:1ω7c/C18:1ω6c), summed feature 3 (comprising C16:1ω7c/C16:1ω6c), C14:0 2-OH, C16:0 and C17:1ω6c. The predominant quinone was ubiquinone Q-10, and the major polyamine was spermidine. The polar lipid profile contained diphosphatidylglycerol (DPG), sphingoglycolipid (SGL), phosphatidylethanolamine (PDME), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), phosphatidylmonomethylethanolamine (PMME), an unknown aminolipid (AL), two unknown lipids (L1, L2) and several unknown phospholipids (PL1-6). The genomic DNA G+C content of strain SC_3T was 62.9 mol%. On the basis of phenotypic, chemotaxonomic, phylogenetic and genotypic data, strain SC_3T represents a novel species of the genus Sphingobium, for which the name Sphingobium phenoxybenzoativorans sp. nov. is proposed. The type strain is SC_3T ( = CCTCC AB 2014349T = KACC 42448T).
Collapse
Affiliation(s)
- Shu Cai
- College of Life Science, Nanjing Agricultural University, Nanjing, PR China
| | - Chao Shi
- College of Life Science, Nanjing Agricultural University, Nanjing, PR China
| | - Jia-Dong Zhao
- College of Life Science, Nanjing Agricultural University, Nanjing, PR China
| | - Qin Cao
- China National Center for Biotechnology Development, Building 4, No. 16, Xisihuanzhonglu, Haidian District, 100039, Beijing, 100039, PR China
| | - Jian He
- College of Life Science, Nanjing Agricultural University, Nanjing, PR China
| | - Li-Wei Chen
- The College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
15
|
Tian HL, Zhao JY, Zhang HY, Chi CQ, Li BA, Wu XL. Bacterial community shift along with the changes in operational conditions in a membrane-aerated biofilm reactor. Appl Microbiol Biotechnol 2014; 99:3279-90. [DOI: 10.1007/s00253-014-6204-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 10/24/2022]
|
16
|
Hou Y, Dong W, Wang F, Li J, Shen W, Li Y, Cui Z. Degradation of acetochlor by a bacterial consortium of Rhodococcus sp.T3-1, Delftia sp.T3-6 and Sphingobium sp.MEA3-1. Lett Appl Microbiol 2014; 59:35-42. [PMID: 24605783 DOI: 10.1111/lam.12242] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/19/2014] [Accepted: 02/26/2014] [Indexed: 11/28/2022]
Abstract
UNLABELLED Owing to acetochlor persistence in the environment and its perceptible threats to the ecosystem and human health, it is urgent to search for effective approaches to decontaminate acetochlor. In this study, an acetochlor-degrading enrichment culture was obtained by continuous enrichment from acetochlor-contaminated soil and named T3. T3 could completely degrade 100 mg l(-1) acetochlor and butachlor within 6 days. Two bacterial strains Rhodococcus sp.T3-1 and Delftia sp.T3-6 and one strain Sphingobium sp.MEA3-1 were isolated and identified from T3 by using acetochlor and MEA as sole carbon source, respectively. These three bacteria could completely mineralize acetochlor by the cooperative metabolism. The biochemical pathway of acetochlor degradation by these three bacteria in a consortium was proposed: acetochlor to 2'-methyl-6'-ethyl-2-chloroacetanilide (CMEPA) by Rhodococcus sp. T3-1, CMEPA to 2-methyl-6-ethyl aniline (MEA) by Delftia sp.T3-6 and MEA by Sphingobium sp.MEA3-1 based on the identified degradation intermediates. Under laboratory conditions, the consortium was effective in the acetochlor mineralization. SIGNIFICANCE AND IMPACT OF THE STUDY This study presents a bacterial consortium consisting of Rhodococcus sp.T3-1, Delftia sp.T3-6 and Sphingobium sp.MEA3-1 could completely mineralize acetochlor by biochemical cooperation. The study reveals the metabolic mechanism of acetochlor biodegradation and highlights the potential of the bacterial consortium for cleaning up acetochlor and its metabolites subsisting in the environment.
Collapse
Affiliation(s)
- Y Hou
- Key Lab of Microbiology of Agricultural Environment, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, China; College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Wang BZ, Guo P, Zheng JW, Hang BJ, Li L, He J, Li SP. Sphingobium wenxiniae sp. nov., a synthetic pyrethroid (SP)-degrading bacterium isolated from activated sludge in an SP-manufacturing wastewater treatment facility. Int J Syst Evol Microbiol 2011; 61:1776-1780. [DOI: 10.1099/ijs.0.023309-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A synthetic pyrethroid (SP)-degrading bacterial strain, designated JZ-1T, was isolated from activated sludge of a SP-manufacturing wastewater treatment facility and studied using a polyphasic taxonomic approach. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JZ-1T belonged to the genus Sphingobium, showing highest sequence similarities to Sphingobium faniae DSM 21829T (98.6 %), Sphingobium cloacae JCM 10874T (98.5 %), Sphingobium vermicomposti DSM 21299T (97.4 %) and Sphingobium ummariense CCM 7431T (96.9 %). The polar lipid pattern, the presence of spermidine and ubiquinone Q-10, the predominance of the cellular fatty acids C18 : 1ω7c, C19 : 0 cyclo ω8c, 11 methyl C18 : 1ω7c, C16 : 0 and C14 : 0 2-OH, and the G+C content of the genomic DNA also supported the affiliation of the strain with the genus Sphingobium. Strain JZ-1T showed low DNA–DNA relatedness values with S. faniae DSM 21829T (30.2 %), S. cloacae JCM 10874T (23.3 %), S. vermicomposti DSM 21299T (10.9 %) and S. ummariense CCM 7431T (7.9 %). Based on its phylogenetic position and its phenotypic and genotypic properties, strain JZ-1T represents a novel species of the genus Sphingobium, for which the name Sphingobium wenxiniae sp. nov. is proposed. The type strain is JZ-1T ( = CGMCC 1.7748T = DSM 21828T).
Collapse
Affiliation(s)
- Bao-Zhan Wang
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Peng Guo
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jin-Wei Zheng
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Bao-Jian Hang
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Lian Li
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jian He
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Shun-Peng Li
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
18
|
Zhang J, Lang ZF, Zheng JW, Hang BJ, Duan XQ, He J, Li SP. Sphingobium jiangsuense sp. nov., a 3-phenoxybenzoic acid-degrading bacterium isolated from a wastewater treatment system. Int J Syst Evol Microbiol 2011; 62:800-805. [PMID: 21571933 DOI: 10.1099/ijs.0.029827-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A non-sporulating, non-motile, catalase- and oxidase-positive, Gram-negative, rod-shaped bacterial strain, designated BA-3T, was isolated from activated sludge of a wastewater treatment facility. The strain was able to degrade about 95 % of 100 mg 3-phenoxybenzoic acid l(-1) within 2 days of incubation. Growth occurred in the presence of 0-2 % (w/v) NaCl [optimum, 0.5 % (w/v) NaCl], at pH 5.5-9.0 (optimum, pH 7.0) and at 10-37 °C (optimum, 28 °C). Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain BA-3T was a member of the genus Sphingobium; it showed highest gene sequence similarity to Sphingobium qiguonii X23T (98.2 %), and similarities of <97.0 % with strains of other Sphingobium species. The polar lipid pattern, the presence of spermidine and ubiquinone Q-10, the predominance of summed feature 8 (C18:1ω6c and/or C18:1ω7c) in the cellular fatty acid profile and the DNA G+C content also supported affiliation of the isolate to the genus Sphingobium. Strain BA-3T showed low DNA-DNA relatedness values (21.3±0.8 %) with Sphingobium qiguonii X23(T). Based on phenotypic, genotypic and phylogenetic data, strain BA-3T represents a novel species of the genus Sphingobium, for which the name Sphingobium jiangsuense sp. nov. is proposed; the type strain is BA-3T (=CCTCC AB 2010217T= KCTC 23196T=KACC 16433T).
Collapse
Affiliation(s)
- Jun Zhang
- Key Laboratory for Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Life Sciences College of Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhi-Fei Lang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jin-Wei Zheng
- Key Laboratory for Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Life Sciences College of Nanjing Agricultural University, Nanjing 210095, PR China
| | - Bao-Jian Hang
- Key Laboratory for Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Life Sciences College of Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiao-Qin Duan
- Key Laboratory for Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Life Sciences College of Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jian He
- Key Laboratory for Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Life Sciences College of Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shun-Peng Li
- Key Laboratory for Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Life Sciences College of Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
19
|
Zhang J, Zheng JW, Liang B, Wang CH, Cai S, Ni YY, He J, Li SP. Biodegradation of chloroacetamide herbicides by Paracoccus sp. FLY-8 in vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:4614-4621. [PMID: 21417467 DOI: 10.1021/jf104695g] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A butachlor-degrading strain, designated FLY-8, was isolated from rice field soil and was identified as Paracoccus sp. Strain FLY-8 could degrade and utilize six chloroacetamide herbicides as carbon sources for growth, and the degradation rates followed the order alachlor > acetochlor > propisochlor > butachlor > pretilachlor > metolachlor. The influence of molecular structure of the chloroacetamide herbicides on the microbial degradation rate was first analyzed; the results indicated that the substitutions of alkoxymethyl side chain with alkoxyethyl side chain greatly reduced the degradation efficiencies; the length of amide nitrogen's alkoxymethyl significantly affected the biodegradability of these herbicides: the longer the alkyl was, the slower the degradation efficiencies occurred. The phenyl alkyl substituents have no obvious influence on the degradation efficiency. The pathway of butachlor complete mineralization was elucidated on the basis of the results of metabolite identification and enzyme assays. Butachlor was degraded to alachlor by partial C-dealkylation and then converted to 2-chloro-N-(2,6-dimethylphenyl)acetamide by N-dealkylation, which subsequently transformed to 2,6-diethylaniline, which was further degraded via the metabolites aniline and catechol, and catechol was oxidized through an ortho-cleavage pathway. This study highlights an important potential use of strain FLY-8 for the in situ bioremediation of chloroacetamide herbicides and their metabolite-contaminated environment.
Collapse
Affiliation(s)
- Jun Zhang
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|