1
|
Jani K, Kajale S, Shetye M, Palkar S, Sharma A. Marisediminicola senii sp. nov. isolated from Queen Maud Land, Antarctica. Int J Syst Evol Microbiol 2021; 71. [PMID: 33439118 DOI: 10.1099/ijsem.0.004641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-variable, aerobic, orange pigmented, catalase-positive and oxidase-negative, cocci-shaped bacterium, designated SM7_A14T, isolated from glacier fed sediment sample collected from the Queen Maud Land, near India's Maitri station in Antarctica. Phylogenetic analysis based on 16S rRNA gene sequences revealed highest sequence similarity with Marisediminicola antarctica DSM 22350T (97.3 %), demonstrated distinct phylogenetic positioning of strain SM7_A14T within the genus Marisediminicola. Growth of strain SM7_A14T occurs at 5-25 °C (optimum, 20 °C), pH 7.0-10 (optimum, pH 8.0) with 0-5 % NaCl (optimum 1-4 %, w/v). C15 : 0 anteiso, C17 : 0 anteiso, C16 : 0 iso and C15 : 1 anteiso A are the major fatty acids (>5 % of the total fatty acids). The polar lipid profile consisted of diphosphatidylglycerol and phosphatidylglycerol. The average nucleotide identity (ANI) and digital DNA-DNA hybridization values between SM7_A14T and DSM 22350T were 80.3 and 21.3 %, respectively. The genomic DNA G+C content of the strain SM7_A14T was 68.5 %. Distinguishing characteristics based on the polyphasic analysis indicates strain SM7_A14T as a novel species of genus Marisediminicola for which the name Marisediminicola senii sp. nov., is proposed. The type strain is SM7_A14T (=MCC 4327T=JCM 33936T=LMG 31795T).
Collapse
Affiliation(s)
- Kunal Jani
- National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Swapnil Kajale
- National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Meghana Shetye
- National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Shivani Palkar
- National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Avinash Sharma
- National Centre for Cell Science, Pune, Maharashtra 411007, India
| |
Collapse
|
2
|
Zhang D, Gui J, Zheng S, Zhu X, Wu S, Tian Y, Lai Q, Xu H. Marisediminitalea mangrovi gen. nov., sp. nov., isolated from marine mangrove sediment, and reclassification of Aestuariibacter aggregatus as Marisediminitalea aggregata comb. nov. Int J Syst Evol Microbiol 2020; 70:457-464. [PMID: 31626587 DOI: 10.1099/ijsem.0.003773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain GS-14T was isolated from a mangrove sediment sample collected at Beilun Estuary National Nature Reserve, Guangxi Province, PR China. Cells were Gram-stain-negative, strictly aerobic and rod-shaped with a polar flagellum. Optimal growth occurred in the presence of 3-6 % (w/v) NaCl, at pH 6-8 and at a temperature of 37 °C. The predominant polar lipids were phosphatidylglycerol and phosphatidylethanolamine. Ubiquinone 8 (Q-8) was the sole respiratory quinone. The major fatty acids (>10 % of the total fatty acids) were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0. The DNA G+C content was 47.6 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain GS-14T had the highest sequence similarity to Aestuariibacter aggregatus WH169T (96.63 %), Aliiglaciecola coringensis AK49T (96.56 %) and Alteromonas lipolytica JW12T (96.22 %). In addition, the OrthoANIu value and dDDH values calculated from the genomes of strain GS-14T and A. aggregatus WH169T were 79.5 and 21.9 %, respectively. Based on the polyphasic taxonomic results, strain GS-14T is considered to represent a novel species in a new genus, for which the name Marisediminitalea mangrovi gen. nov., sp. nov. is proposed. The type strain of Marisediminitalea mangrovi is GS-14T (=KCTC 72401T=MCCC 1K03622T). Because Aestuariibacter aggregatus WH169T clustered with strain GS-14T in the phylogenetic trees and was clearly separated from the two species within the genus Aestuariibacter, it is reclassified as a member of the genus Marisediminitalea as Marisediminitalea aggregata comb. nov. (type strain WH169T=CGMCC 1.8995T=LMG 25283T). The type species of the genus Marisediminitalea is Marisediminitalea aggregata gen. nov., comb. nov.
Collapse
Affiliation(s)
- Danyang Zhang
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, PR China.,Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Jiali Gui
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, PR China.,Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Sisi Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Xiaoying Zhu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Shiyin Wu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Qiliang Lai
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, 361005, PR China
| | - Hong Xu
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, PR China.,Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, PR China
| |
Collapse
|
3
|
Goh KM, Shahar S, Chan KG, Chong CS, Amran SI, Sani MH, Zakaria II, Kahar UM. Current Status and Potential Applications of Underexplored Prokaryotes. Microorganisms 2019; 7:E468. [PMID: 31635256 PMCID: PMC6843859 DOI: 10.3390/microorganisms7100468] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022] Open
Abstract
Thousands of prokaryotic genera have been published, but methodological bias in the study of prokaryotes is noted. Prokaryotes that are relatively easy to isolate have been well-studied from multiple aspects. Massive quantities of experimental findings and knowledge generated from the well-known prokaryotic strains are inundating scientific publications. However, researchers may neglect or pay little attention to the uncommon prokaryotes and hard-to-cultivate microorganisms. In this review, we provide a systematic update on the discovery of underexplored culturable and unculturable prokaryotes and discuss the insights accumulated from various research efforts. Examining these neglected prokaryotes may elucidate their novelties and functions and pave the way for their industrial applications. In addition, we hope that this review will prompt the scientific community to reconsider these untapped pragmatic resources.
Collapse
Affiliation(s)
- Kian Mau Goh
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Saleha Shahar
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
- International Genome Centre, Jiangsu University, ZhenJiang 212013, China.
| | - Chun Shiong Chong
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Syazwani Itri Amran
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Mohd Helmi Sani
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Iffah Izzati Zakaria
- Malaysia Genome Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang 43000, Selangor, Malaysia.
| | - Ummirul Mukminin Kahar
- Malaysia Genome Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang 43000, Selangor, Malaysia.
| |
Collapse
|
4
|
Dahal RH, Kim J. Glaciihabitans arcticus sp. nov., a psychrotolerant bacterium isolated from Arctic soil. Int J Syst Evol Microbiol 2019; 69:2492-2497. [DOI: 10.1099/ijsem.0.003520] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ram Hari Dahal
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon Gyeonggi-Do 16227, Republic of Korea
| | - Jaisoo Kim
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon Gyeonggi-Do 16227, Republic of Korea
| |
Collapse
|
5
|
Liao L, Su S, Zhao B, Fan C, Zhang J, Li H, Chen B. Biosynthetic Potential of a Novel Antarctic Actinobacterium Marisediminicola antarctica ZS314 T Revealed by Genomic Data Mining and Pigment Characterization. Mar Drugs 2019; 17:md17070388. [PMID: 31266176 PMCID: PMC6669644 DOI: 10.3390/md17070388] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 11/24/2022] Open
Abstract
Rare actinobacterial species are considered as potential resources of new natural products. Marisediminicola antarctica ZS314T is the only type strain of the novel actinobacterial genus Marisediminicola isolated from intertidal sediments in East Antarctica. The strain ZS314T was able to produce reddish orange pigments at low temperatures, showing characteristics of carotenoids. To understand the biosynthetic potential of this strain, the genome was completely sequenced for data mining. The complete genome had 3,352,609 base pairs (bp), much smaller than most genomes of actinomycetes. Five biosynthetic gene clusters (BGCs) were predicted in the genome, including a gene cluster responsible for the biosynthesis of C50 carotenoid, and four additional BGCs of unknown oligosaccharide, salinixanthin, alkylresorcinol derivatives, and NRPS (non-ribosomal peptide synthetase) or amino acid-derived compounds. Further experimental characterization indicated that the strain may produce C.p.450-like carotenoids, supporting the genomic data analysis. A new xanthorhodopsin gene was discovered along with the analysis of the salinixanthin biosynthetic gene cluster. Since little is known about this genus, this work improves our understanding of its biosynthetic potential and provides opportunities for further investigation of natural products and strategies for adaptation to the extreme Antarctic environment.
Collapse
Affiliation(s)
- Li Liao
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China.
| | - Shiyuan Su
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Zhao
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China
- School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Chengqi Fan
- Key Laboratory of East China Sea & Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Jin Zhang
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China
| | - Huirong Li
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China
| | - Bo Chen
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China.
| |
Collapse
|
6
|
Liu SW, Li FN, Zheng HY, Qi X, Huang DL, Xie YY, Sun CH. Planctomonas deserti gen. nov., sp. nov., a new member of the family Microbacteriaceae isolated from soil of the Taklamakan desert. Int J Syst Evol Microbiol 2018; 69:616-624. [PMID: 30387709 DOI: 10.1099/ijsem.0.003095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-staining-positive, aerobic, irregular coccoid- to ovoid-shaped, non-spore-forming and motile bacterium, designated strain 13S1-3T, was isolated from a soil sample from the rhizosphere of Tamarix collected in the Taklamakan desert in Xinjiang Uygur Autonomous Region, PR China. The strain was examined by a polyphasic approach to clarify its taxonomic position. Strain 13S1-3T grew optimally at 28-30 °C, pH 7.0 and with 0-1 % (w/v) NaCl. The cell-wall peptidoglycan was of the B2γ type and contained d-alanine, d-glutamic acid, glycine, d-2,4-diaminobutyric acid and l-2,4-diaminobutyric acid. Ribose, xylose, glucose and galactose were detected as cell-wall sugars. The acyl type of the muramic acid was acetyl. The predominant menaquinones were MK-12, MK-11, MK-13 and MK-10. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, two unidentified glycolipids and one unidentified phospholipid. The major whole-cell fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The DNA G+C content was 70.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that 13S1-3T represented a member of the family Microbacteriaceae and showed the highest level of 16S rRNA gene sequence similarity with Frondihabitans australicus E1HC-02T (97.11 %). Phylogenetic trees revealed that 13S1-3T formed a distinct lineage with respect to closely related genera within the family Microbacteriaceae. On the basis of the results of phylogenetic, phenotypic and chemotaxonomic analyses, 13S1-3T is distinguishable from phylogenetically related genera in the family Microbacteriaceae, and represents a novel species of a new genus, for which the name Planctomonas deserti gen. nov., sp. nov. is proposed. The type strain is 13S1-3T (=KCTC 49115T=CGMCC 1.16554T).
Collapse
Affiliation(s)
- Shao-Wei Liu
- 1Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Fei-Na Li
- 1Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Hong-Yun Zheng
- 1Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.,2College of Basic Medical Sciences, Guilin Medical University, Guilin 541004, PR China
| | - Xin Qi
- 1Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Da-Lin Huang
- 2College of Basic Medical Sciences, Guilin Medical University, Guilin 541004, PR China
| | - Yun-Ying Xie
- 1Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Cheng-Hang Sun
- 1Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| |
Collapse
|
7
|
Villalobos AS, Wiese J, Aguilar P, Dorador C, Imhoff JF. Subtercola vilae sp. nov., a novel actinobacterium from an extremely high-altitude cold volcano lake in Chile. Antonie van Leeuwenhoek 2017; 111:955-963. [PMID: 29214367 PMCID: PMC5945732 DOI: 10.1007/s10482-017-0994-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/01/2017] [Indexed: 11/08/2022]
Abstract
A novel actinobacterium, strain DB165T, was isolated from cold waters of Llullaillaco Volcano Lake (6170 m asl) in Chile. Phylogenetic analysis based on 16S rRNA gene sequences identified strain DB165T as belonging to the genus Subtercola in the family Microbacteriaceae, sharing 97.4% of sequence similarity with Subtercola frigoramans DSM 13057T, 96.7% with Subtercola lobariae DSM 103962T, and 96.1% with Subtercola boreus DSM 13056T. The cells were observed to be Gram-positive, form rods with irregular morphology, and to grow best at 10–15 °C, pH 7 and in the absence of NaCl. The cross-linkage between the amino acids in its peptidoglycan is type B2γ; 2,4-diaminobutyric acid is the diagnostic diamino acid; the major respiratory quinones are MK-9 and MK-10; and the polar lipids consist of phosphatidylglycerol, diphosphatidylglycerol, 5 glycolipids, 2 phospholipids and 5 additional polar lipids. The fatty acid profile of DB165T (5% >) contains iso-C14:0, iso-C16:0, anteiso-C15:0, anteiso-C17:0, and the dimethylacetal iso-C16:0 DMA. The genomic DNA G+C content of strain DB165T was determined to be 65 mol%. Based on the phylogenetic, phenotypic, and chemotaxonomic analyses presented in this study, strain DB165T (= DSM 105013T = JCM 32044T) represents a new species in the genus Subtercola, for which the name Subtercola vilae sp. nov. is proposed.
Collapse
Affiliation(s)
- Alvaro S Villalobos
- Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Jutta Wiese
- Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Pablo Aguilar
- Laboratorio de Complejidad Microbiana y Ecología Funcional and Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile.,Lake and Glacier Ecology Research Group, Institute of Ecology, University of Innsbruck, Techniker Str. 25, 6020, Innsbruck, Austria
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional and Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile.,Centre for Biotechnology and Bioengineering (CeBiB), Universidad de Antofagasta, Antofagasta, Chile
| | - Johannes F Imhoff
- Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany.
| |
Collapse
|
8
|
Zhang L, Chen XL, Hu Q, Ruan ZP, Chen K, Li SP, Jiang JD. Huakuichenia soli gen. nov., sp. nov., a new member of the family Microbacteriaceae, isolated from contaminated soil. Int J Syst Evol Microbiol 2016; 66:5399-5405. [DOI: 10.1099/ijsem.0.001531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Long Zhang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Xiao-Long Chen
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Qiang Hu
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Zhe-Pu Ruan
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Kai Chen
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Shun-Peng Li
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Jian-Dong Jiang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| |
Collapse
|
9
|
Kong D, Guo X, Zhou S, Wang H, Wang Y, Zhu J, Dong W, Li Y, He M, Hu G, Zhao B, Ruan Z. Frigoribacterium salinisoli sp. nov., isolated from saline soil, transfer of Frigoribacterium mesophilum to Parafrigoribacterium gen. nov. as Parafrigoribacterium mesophilum comb. nov. Int J Syst Evol Microbiol 2016; 66:5252-5259. [PMID: 27654623 DOI: 10.1099/ijsem.0.001504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, short-rod, aerobic bacterium, designated as strain LAM9155T, was isolated from saline soil sample collected from Lingxian County, Shandong Province, PR China. The strain grew optimally at 25-30 °C, pH 7.0 and 0.5 % (w/v) NaCl. The 16S rRNA gene sequence analysis revealed that strain LAM9155T belonged to the genus Frigoribacterium and was closely related to Frigoribacteriumendophyticum EGI 6500707T (99.4 %), Frigoribacteriumfaeni 801T (98.6 %) and Frigoribacteriummesophilum MSL-08T (96.2 %). The DNA-DNA hybridization values between strain LAM9155T and F. endophyticum JCM 30093T and between strain LAM9155T and F. faeni DSM 10309T were 40.2±2.1 and 32.8±1.6 %, respectively. The major fatty acids of LAM9155T were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The cell-wall analysis showed the B-type peptidoglycan containing alanine, glutamate, glycine, serine and lysine and that the cell wall contained the sugars galactose and ribose. The genomic DNA G+C content of strain LAM9155T was 68.2 mol%. The predominant menaquinone was MK-9. The main polar lipids were diphosphatidylglycerol, phosphatidylglycerol, one unknown glycolipid and four unknown lipids. Based on the DNA-DNA hybridization and phenotypic, phylogenetic and chemotaxonomic properties, strain LAM9155T could be distinguished from the recognized species of the genus Frigoribacterium and was suggested to represent a novel species, for which the name Frigoribacterium salinisoli sp. nov. is proposed. The type strain is LAM9155T (=ACCC 19902T=JCM 30848T). Moreover, the transfer of F. mesophilum Dastager et al. 2008 to Parafrigoribacterium gen. nov. as Parafrigoribacterium mesophilum comb. nov. (type strain MSL-08T=DSM 19442T=KCTC 19311T) is also proposed.
Collapse
Affiliation(s)
- Delong Kong
- Key Laboratory of Microbial Resources (Ministry of Agriculture, China), Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China
| | - Xiang Guo
- Key Laboratory of Development and Application of Rural Renewable Energy (MOA, China), Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China
| | - Shan Zhou
- Key Laboratory of Microbial Resources (Ministry of Agriculture, China), Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China
| | - Huimin Wang
- Key Laboratory of Microbial Resources (Ministry of Agriculture, China), Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China
| | - Yanwei Wang
- Key Laboratory of Development and Application of Rural Renewable Energy (MOA, China), Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China
| | - Jie Zhu
- Key Laboratory of Microbial Resources (Ministry of Agriculture, China), Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China
| | - Weiwei Dong
- Key Laboratory of Microbial Resources (Ministry of Agriculture, China), Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China
| | - Yanting Li
- Key Laboratory of Microbial Resources (Ministry of Agriculture, China), Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China
| | - Mingxiong He
- Key Laboratory of Development and Application of Rural Renewable Energy (MOA, China), Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China
| | - Guoquan Hu
- Key Laboratory of Development and Application of Rural Renewable Energy (MOA, China), Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China
| | - Bingqiang Zhao
- Key Laboratory of Microbial Resources (Ministry of Agriculture, China), Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China
| | - Zhiyong Ruan
- Key Laboratory of Microbial Resources (Ministry of Agriculture, China), Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China
| |
Collapse
|
10
|
Tuo L, Guo L, Liu SW, Liu JM, Zhang YQ, Jiang ZK, Liu XF, Chen L, Zu J, Sun CH. Lysinibacter cavernae gen. nov., sp. nov., a new member of the family Microbacteriaceae isolated from a karst cave. Int J Syst Evol Microbiol 2016; 65:3305-3312. [PMID: 26296577 DOI: 10.1099/ijsem.0.000415] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, aerobic, straight or slightly bent rod-shaped, non-motile, non-spore-forming bacterium, designated strain CC5-806T, was isolated from a soil sample collected from a wild karst cave in the Wulong region, Chongqing, PR China and examined using a polyphasic approach to clarify its taxonomic position. This bacterium did not produce substrate mycelium or aerial hyphae, and no diffusible pigments were observed on the media tested. Strain CC5-806T grew optimally without NaCl at 20 °C and at pH 7.0. Phylogenetic analysis, based on 16S rRNA gene sequences, indicated that strain CC5-806T belonged to the family Microbacteriaceae and showed the highest levels of 16S rRNA gene sequence similarities with Frigoribacterium endophyticum EGI 6500707T (97.56 %), Frigoribacterium faeni 801T (97.53 %) and Glaciihabitans tibetensis MP203T (97.42 %). Phylogenetic trees revealed that strain CC5-806T did not show a clear affiliation to any genus within the family Microbacteriaceae. The DNA G+C content of strain CC5-806T was 62.6 mol%. The cell-wall peptidoglycan contained l-lysine as a diagnostic diamino acid. The predominant menaquinones were MK-11, MK-10 and MK-9. Phosphatidylglycerol, diphosphatidylglycerol, an unidentified glycolipid, four unidentified phospholipids and other polar lipids were detected in the polar lipid extracts. The major fatty acids were anteiso-C15 : 0, iso-C16 : 0 and iso-C14 : 0. On the basis of the phylogenetic analysis, and phenotypic and chemotaxonomic characteristics, strain CC5-806T was distinguishable from phylogenetically related genera in the family Microbacteriaceae. It represents a novel species of a novel genus, for which the name Lysinibacter cavernae gen. nov., sp. nov. is proposed. The type strain is CC5-806T ( = DSM 27960T = CGMCC 1.14983T).
Collapse
Affiliation(s)
- Li Tuo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Lin Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Shao-Wei Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Jia-Meng Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Yu-Qin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Zhong-Ke Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Xian-Fu Liu
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Li Chen
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jian Zu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Cheng-Hang Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| |
Collapse
|
11
|
Seasonal Microbial Population Shifts in a Bioremediation System Treating Metal and Sulfate-Rich Seepage. MINERALS 2016. [DOI: 10.3390/min6020036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Claverías FP, Undabarrena A, González M, Seeger M, Cámara B. Culturable diversity and antimicrobial activity of Actinobacteria from marine sediments in Valparaíso bay, Chile. Front Microbiol 2015; 6:737. [PMID: 26284034 PMCID: PMC4516979 DOI: 10.3389/fmicb.2015.00737] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 07/06/2015] [Indexed: 12/21/2022] Open
Abstract
Marine-derived Actinobacteria are a source of a broad variety of secondary metabolites with diverse biological activities, such as antibiotics and antitumorals; many of which have been developed for clinical use. Rare Actinobacteria represent an untapped source of new bioactive compounds that have been scarcely recognized. In this study, rare Actinobacteria from marine sediments were isolated from the Valparaíso bay, Chile, and their potential to produce antibacterial compounds was evaluated. Different culture conditions and selective media that select the growth of Actinobacteria were used leading to the isolation of 68 bacterial strains. Comparative analysis of the 16S rRNA gene sequences led to identifying isolates that belong to the phylum Actinobacteria with genetic affiliations to 17 genera: Aeromicrobium, Agrococcus, Arthrobacter, Brachybacterium, Corynebacterium, Dietzia, Flaviflexus, Gordonia, Isoptericola, Janibacter, Microbacterium, Mycobacterium, Ornithinimicrobium, Pseudonocardia, Rhodococcus, Streptomyces, and Tessaracoccus. Also, one isolate could not be consistently classified and formed a novel phylogenetic branch related to the Nocardiopsaceae family. The antimicrobial activity of these isolates was evaluated, demonstrating the capability of specific novel isolates to inhibit the growth of Gram-positive and Gram-negative bacteria. In conclusion, this study shows a rich biodiversity of culturable Actinobacteria, associated to marine sediments from Valparaíso bay, highlighting novel rare Actinobacteria, and their potential for the production of biologically active compounds.
Collapse
Affiliation(s)
| | | | | | | | - Beatriz Cámara
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa MaríaValparaíso, Chile
| |
Collapse
|
13
|
Dong N, Li HR, Yuan M, Zhang XH, Yu Y. Deinococcus antarcticus sp. nov., isolated from soil. Int J Syst Evol Microbiol 2015; 65:331-335. [DOI: 10.1099/ijs.0.066324-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
A pink-pigmented, non-motile, coccoid bacterial strain, designated G3-6-20T, was isolated from a soil sample collected in the Grove Mountains, East Antarctica. This strain was resistant to UV irradiation (810 J m−2) and slightly more sensitive to desiccation as compared with
Deinococcus radiodurans
. Phylogenetic analyses based on the 16S rRNA gene sequence of the isolate indicated that the organism belongs to the genus
Deinococcus
. Highest sequence similarities were with
Deinococcus ficus
CC-FR2-10T (93.5 %),
Deinococcus xinjiangensis
X-82T (92.8 %),
Deinococcus indicus
Wt/1aT (92.5 %),
Deinococcus daejeonensis
MJ27T (92.3 %),
Deinococcus wulumuqiensis
R-12T (92.3 %),
Deinococcus aquaticus
PB314T (92.2 %) and
Deinococcus radiodurans
DSM 20539T (92.2 %). Major fatty acids were C18 : 1ω7c, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), anteiso-C15 : 0 and C16 : 0. The G+C content of the genomic DNA of strain G3-6-20T was 63.1 mol%. Menaquinone 8 (MK-8) was the predominant respiratory quinone. Based on its phylogenetic position, and chemotaxonomic and phenotypic characteristics, strain G3-6-20T represents a novel species of the genus
Deinococcus
, for which the name Deinococcus antarcticus sp. nov. is proposed. The type strain is G3-6-20T ( = DSM 27864T = CCTCC AB 2013263T).
Collapse
Affiliation(s)
- Ning Dong
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, PR China
| | - Hui-Rong Li
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, PR China
| | - Meng Yuan
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, PR China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Yong Yu
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, PR China
| |
Collapse
|
14
|
Glaciihabitans tibetensis gen. nov., sp. nov., a psychrotolerant bacterium of the family Microbacteriaceae, isolated from glacier ice water. Int J Syst Evol Microbiol 2014; 64:579-587. [DOI: 10.1099/ijs.0.052670-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, aerobic, non-spore-forming, short-rod-shaped bacterium, designated strain MP203T, was isolated from ice water of Midui Glacier in Tibet Autonomous Region, China. The strain was psychrotolerant, growing at 0–25 °C. 16S rRNA gene sequence analysis showed that strain MP203T was most similar to
Frigoribacterium faeni
NBRC 103066T,
Compostimonas suwonensis
KACC 13354T,
Frigoribacterium mesophilum
KCTC 19311T,
Marisediminicola antarctica
CCTCC AB 209077T and
Alpinimonas psychrophila
JCM 18951T, with similarities of 97.4, 97.2, 97.2, 97.1 and 97.1 %, respectively. The maximum-likelihood phylogenetic tree indicated that strain MP203T clustered with nine genera of the family
Microbacteriaceae
, namely
Frigoribacterium
,
Compostimonas
,
Marisediminicola
,
Alpinimonas
,
Frondihabitans
,
Clavibacter
,
Subtercola
,
Klugiella
and
Agreia
. However, bootstrap analysis showed that there was no significance in the branching pattern of the linage comprising strain MP203T and any existing generic lineage of the family
Microbacteriaceae
. DNA–DNA hybridization results indicated levels of relatedness between strain MP203T and
Marisediminicola antarctica
CCTCC AB 209077T,
Frigoribacterium faeni
NBRC 103066T,
Frigoribacterium mesophilum
KCTC 19311T,
Compostimonas suwonensis
KACC 13354T and
Alpinimonas psychrophila
JCM 18951T were 25.8±7.3, 29.6±7.6, 19.7±6.7, 16.0±4.2 and 12.4±5.1 % (mean±sd), respectively. The G+C content of the genomic DNA was 64.1 mol%. Analysis of the cell-wall peptidoglycan revealed that the peptidoglycan structure of strain MP203T was B10 type with Gly[l-Hse]–d-Glu–d-DAB, containing 2, 4-diaminobutyric acid (DAB) as a diagnostic amino acid. The cell-wall sugars were rhamnose, ribose, mannose and glucose. The major fatty acids were anteiso-C15 : 0, iso-C16 : 0 and anteiso A-C15 : 1. An unusual compound identified as anteiso-C15 : 0-DMA (1, 1-dimethoxy-anteiso-pentadecane) was also present in strain MP203T. The predominant menaquinone was MK-10. Diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), one unknown glycolipid and four unknown lipids were detected in the polar lipid extracts. As strain MP203T was distinguishable from phylogenetically related genera in the family
Microbacteriaceae
in terms of its physiological and chemotaxonomic characteristics and phylogenetic position, it was considered to represent a novel species of a new genus. Thus, the name Glaciihabitans tibetensis gen. nov., sp. nov. is proposed. The type strain of Glaciihabitans tibetensis is MP203T ( = CGMCC 1.12484T = KCTC 29148T).
Collapse
|
15
|
Subramani R, Aalbersberg W. Culturable rare Actinomycetes: diversity, isolation and marine natural product discovery. Appl Microbiol Biotechnol 2013; 97:9291-321. [DOI: 10.1007/s00253-013-5229-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/29/2013] [Accepted: 09/02/2013] [Indexed: 11/30/2022]
|
16
|
Diaminobutyricimonas aerilata gen. nov., sp. nov., a novel member of the family Microbacteriaceae isolated from an air sample in Korea. J Microbiol 2012; 50:1047-52. [DOI: 10.1007/s12275-012-2118-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 07/20/2012] [Indexed: 10/27/2022]
|
17
|
Jang GI, Cho Y, Cho BC. Pontimonas salivibrio gen. nov., sp. nov., a new member of the family Microbacteriaceae isolated from a seawater reservoir of a solar saltern. Int J Syst Evol Microbiol 2012; 63:2124-2131. [PMID: 23104361 DOI: 10.1099/ijs.0.043661-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-staining-positive, non-motile, strictly aerobic, non-spore-forming, vibrio-shaped bacterial strain, CL-TW6(T), was isolated from a reservoir seawater sample from a solar saltern in Korea. Analysis of the 16S rRNA gene sequence of strain CL-TW6(T) revealed a clear affiliation with the family Microbacteriaceae. Strain CL-TW6(T) showed the closest phylogenetic relationships with the genera Yonghaparkia and Microcella, with 16S rRNA gene sequence similarity of 94.8-95.3%. The strain grew in the presence of 1-9% sea salts, at 15-35 °C and at pH 7.0-9.0. The major cellular fatty acids of strain CL-TW6(T) were anteiso-C15:0 (32.6%), iso-C16:0 (20.4%), iso-C15:0 (13.2%) and iso-C14:0 (11.8%) and the major menaquinones were MK-9 and MK-10. Cell-wall analysis showed that the peptidoglycan of strain CL-TW6(T) contained 2,4-diaminobutyric acid, alanine, glycine and glutamic acid. The major polar lipids were diphosphatidylglycerol and phosphatidylglycerol. The genomic DNA G+C content of strain CL-TW6(T) was 60.0 mol%. The combined phenotypic, chemotaxonomic and phylogenetic data showed clearly that strain CL-TW6(T) could be distinguished from members of the family Microbacteriaceae with validly published names. Thus, strain CL-TW6(T) should be classified as representing a novel genus and species in the family Microbacteriaceae, for which the name Pontimonas salivibrio gen. nov., sp. nov. is proposed. The type strain of Pontimonas salivibrio is CL-TW6(T) (=KCCM 90105(T) =JCM 18206(T)).
Collapse
Affiliation(s)
- Gwang Il Jang
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Yirang Cho
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Byung Cheol Cho
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| |
Collapse
|
18
|
Kim SJ, Tamura T, Hamada M, Ahn JH, Weon HY, Park IC, Suzuki KI, Kwon SW. Compostimonas suwonensis gen. nov., sp. nov., isolated from spent mushroom compost. Int J Syst Evol Microbiol 2012; 62:2410-2416. [DOI: 10.1099/ijs.0.036343-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-positive, aerobic, non-motile, short rod, designated SMC46T, was isolated from a spent mushroom compost sample collected in the Suwon region, South Korea. 16S rRNA gene sequence analysis revealed that strain SMC46T was a member of the family
Microbacteriaceae
; however, the isolate formed a branch separate from other genera within the family. Sequence similarity between strain SMC46T and other members of the family
Microbacteriaceae
was ≤97 %, the highest sequence similarity being with
Frigoribacterium faeni
801T and
Frondihabitans australicus
E1HC-02T (both 97.0 %). Some chemotaxonomic properties of strain SMC46T were consistent with those of the family
Microbacteriaceae
: MK-11 and MK-12 as the predominant menaquinones, anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0 as the major cellular fatty acids and diphosphatidylglycerol, phosphatidylglycerol and an unidentified glycolipid as the polar lipids. However, strain SMC46T contained a B-type peptidoglycan not previously found in the family
Microbacteriaceae
. The DNA G+C content was 68 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic distinctiveness, strain SMC46T was considered to represent a novel genus and species in the family
Microbacteriaceae
, for which the name Compostimonas suwonensis gen. nov., sp. nov. is proposed. The type strain of the type species is SMC46T ( = KACC 13354T = NBRC 106304T).
Collapse
Affiliation(s)
- Soo-Jin Kim
- Korean Agricultural Culture Collection (KACC), National Academy of Agricultural Science, Rural Development Administration, Suwon, Republic of Korea
| | - Tomohiko Tamura
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation, 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Moriyuki Hamada
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation, 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Jae-Hyung Ahn
- Korean Agricultural Culture Collection (KACC), National Academy of Agricultural Science, Rural Development Administration, Suwon, Republic of Korea
| | - Hang-Yeon Weon
- Korean Agricultural Culture Collection (KACC), National Academy of Agricultural Science, Rural Development Administration, Suwon, Republic of Korea
| | - In-Cheol Park
- Korean Agricultural Culture Collection (KACC), National Academy of Agricultural Science, Rural Development Administration, Suwon, Republic of Korea
| | - Ken-ichiro Suzuki
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation, 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Soon-Wo Kwon
- Korean Agricultural Culture Collection (KACC), National Academy of Agricultural Science, Rural Development Administration, Suwon, Republic of Korea
| |
Collapse
|
19
|
Kim SJ, Jang YH, Hamada M, Tamura T, Ahn JH, Weon HY, Suzuki KI, Kwon SW. Homoserinimonas aerilata gen. nov., sp. nov., a novel member of the family Microbacteriaceae isolated from an air sample in Korea. J Microbiol 2012; 50:673-9. [DOI: 10.1007/s12275-012-2096-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 04/23/2012] [Indexed: 11/24/2022]
|
20
|
Schumann P, Zhang DC, Redzic M, Margesin R. Alpinimonas psychrophila gen. nov., sp. nov., an actinobacterium of the family Microbacteriaceae isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol 2012; 62:2724-2730. [PMID: 22228665 DOI: 10.1099/ijs.0.036160-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-type positive, Gram-reaction variable, non-motile, psychrophilic actinobacterium, designated Cr8-25(T), was isolated from alpine glacier cryoconite and was able to grow well over a temperature range of 1-15 °C. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Cr8-25(T) belonged to the family Microbacteriaceae and showed highest 16S rRNA gene sequence similarity with Klugiella xanthotipulae 44C3(T) (97.0%). However, strain Cr8-25(T) could be differentiated from the type strain of K. xanthotipulae on the level of genomospecies by a DNA-DNA relatedness value of only 37.2%. Strain Cr8-25(T) contained a cell-wall peptidoglycan that was cross-linked according to the B-type, which is based on 2,4-diaminobutyric acid. The cell wall contained the sugars galactose, fucose and rhamnose. The predominant cellular fatty acids of strain Cr8-25(T) were C(15:0) anteiso (64.6%) and iso-C(16:0) (22.5%) and the major menaquinones were MK-11 and MK-10. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and unknown glycolipids. The G+C content of the genomic DNA was 58.8 mol%. On the basis of the phenotypic characteristics, phylogenetic and chemotaxonomic analyses and DNA-DNA relatedness data, strain Cr8-25(T) represents a novel species of a new genus in the family Microbacteriaceae, for which the name Alpinimonas psychrophila gen. nov., sp. nov. is proposed. The type strain is Cr8-25(T) (=DSM 23737(T)=LMG 26215(T)).
Collapse
Affiliation(s)
- Peter Schumann
- DSMZ-Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbH, Inhoffenstrasse 7B, D-38124 Braunschweig, Germany
| | - De-Chao Zhang
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Mersiha Redzic
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Rosa Margesin
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| |
Collapse
|
21
|
Peeters K, Hodgson DA, Convey P, Willems A. Culturable diversity of heterotrophic bacteria in Forlidas Pond (Pensacola Mountains) and Lundström Lake (Shackleton Range), Antarctica. MICROBIAL ECOLOGY 2011; 62:399-413. [PMID: 21424822 DOI: 10.1007/s00248-011-9842-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 02/28/2011] [Indexed: 05/16/2023]
Abstract
Cultivation techniques were used to study the heterotrophic bacterial diversity in two microbial mat samples originating from the littoral zone of two continental Antarctic lakes (Forlidas Pond and Lundström Lake) in the Dufek Massif (within the Pensacola Mountains group of the Transantarctic Mountains) and Shackleton Range, respectively. Nearly 800 isolates were picked after incubation on several growth media at different temperatures. They were grouped using a whole-genome fingerprinting technique, repetitive element palindromic PCR and partial 16S rRNA gene sequencing. Phylogenetic analysis of the complete 16S rRNA gene sequences of 82 representatives showed that the isolates belonged to four major phylogenetic groups: Actinobacteria, Bacteroidetes, Proteobacteria and Firmicutes. A relatively large difference between the samples was apparent. Forlidas Pond is a completely frozen water body underlain by hypersaline brine, with summer thaw forming a slightly saline littoral moat. This was reflected in the bacterial diversity with a dominance of isolates belonging to Firmicutes, whereas isolates from the freshwater Lundström Lake revealed a dominance of Actinobacteria. A total of 42 different genera were recovered, including first records from Antarctica for Albidiferax, Bosea, Curvibacter, Luteimonas, Ornithinibacillus, Pseudoxanthomonas, Sphingopyxis and Spirosoma. Additionally, a considerable number of potential new species and new genera were recovered distributed over different phylogenetic groups. For several species where previously only the type strain was available in cultivation, we report additional strains. Comparison with public databases showed that overall, 72% of the phylotypes are cosmopolitan whereas 23% are currently only known from Antarctica. However, for the Bacteroidetes, the majority of the phylotypes recovered are at present known only from Antarctica and many of these represent previously unknown species.
Collapse
Affiliation(s)
- Karolien Peeters
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Fac. Science, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | | | | | | |
Collapse
|
22
|
Amnibacterium kyonggiense gen. nov., sp. nov., a new member of the family Microbacteriaceae. Int J Syst Evol Microbiol 2011; 61:155-159. [DOI: 10.1099/ijs.0.018788-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-positive, non-motile bacterium, designated KSL51201-037T, was isolated from Anyang stream, Republic of Korea, and was characterized using a polyphasic taxonomic approach. Comparative 16S rRNA gene sequence analysis showed that strain KSL51201-037T belonged to the family Microbacteriaceae of the class Actinobacteria and exhibited 96.9 % gene sequence similarity to Labedella gwakjiensis KSW2-17T, 96.0 % to Leifsonia ginsengi wged11T and 95.9 % to Microterricola viridarii KV-677T. The G+C content of the genomic DNA was 72.7 mol%. Strain KSL51201-037T had l-2,4-diaminobutyric acid as the diagnostic cell-wall diamino acid, MK-11 and MK-12 as the major menaquinones, anteiso-C15 : 0 (47.8 %) and iso-C16 : 0 (24.0 %) as the major fatty acids and phosphatidylglycerol and three unknown phospholipids as the major polar lipids. On the basis of phenotypic and genotypic properties and phylogenetic distinctiveness, it is suggested that strain KSL51201-037T represents a novel species of a new genus in the family Microbacteriaceae for which the name Amnibacterium kyonggiense gen. nov., sp. nov. is proposed. The type strain of the type species is KSL51201-037T (=KEMC 51201-037T=JCM 16463T).
Collapse
|
23
|
|
24
|
A guide to successful bioprospecting: informed by actinobacterial systematics. Antonie van Leeuwenhoek 2010; 98:119-42. [PMID: 20582471 DOI: 10.1007/s10482-010-9460-2] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 05/14/2010] [Indexed: 11/26/2022]
Abstract
New structurally diverse natural products are discovered when novel screening procedures are introduced or when high quality biological materials from new sources are examined in existing screens, hence it is important to foster these two aspects of novelty in drug discovery programmes. Amongst prokaryotes, actinomycetes, notably streptomycetes, remain a rich source of new natural products though it has become increasingly difficult to find such metabolites from common actinomycetes as screening 'old friends' leads to the costly rediscovery of known compounds. The bioprospecting strategy which is the subject of this review is based upon the premise that new secondary metabolites can be found by screening relatively small numbers of dereplicated, novel actinomycetes isolated from marine sediments. The success of the strategy is exemplified by the discovery of a range of novel bioactive compounds, notably atrop-abyssomicin C and proximicins A, B and C from Verrucosispora strains isolated from sediment samples taken from the Sea of Japan and the Raune Fjord, respectively, and the dermacozines derived from Dermacoccus strains isolated from the Challenger Deep of the Mariana Trench in the Pacific Ocean. The importance of current advances in prokaryotic systematics in work of this nature is stressed and a plea made that resources be sought to train, support and employ the next generation of actinobacterial systematists.
Collapse
|