1
|
Yin H, Chai R, Qiu H, Tao C, Huang L, Wang H, Wang P. Effects of Isaria cicadae on growth, gut microbiota, and metabolome of Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108719. [PMID: 37003497 DOI: 10.1016/j.fsi.2023.108719] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/05/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
The large yellow croaker (Larimichthys crocea) is the most productive mariculture fish in China, and its aquaculture scale is expanding along the southeastern coast of China, but that development is causing environmental damage by increasing the use of antibiotics and other chemicals. How to improve fish immunity through non-antibiotic substances is still a problem facing aquaculture industry. At present, the experiments have shown that Isaria cicadae spent substrate (IC) can improve the growth performance and immunity of Oreochromis niloticus. Therefore, I. cicadae may be a natural alternative to antibiotic for aquaculture. In order to study the effects of IC on growth performance, serum biochemical indices, intestinal microbiota, and intestinal metabolism of large yellow croakers, the fish were divided into three groups with three replicates in each group. Basal diet, basal diet with 2% and 6% IC supplementation (IC2 and IC6 groups), respectively. The results showed that weight gain rate (WG) and specific growth rate (SGR) of large yellow croaker significantly increased (P < 0.05) in IC6 group. The content of triglyceride (TG), low density lipoprotein cholesterol (LDL-C), total protein (TP) and albumin (ALB) increased significantly (P < 0.05), and total cholesterol (T-CHO) decreased significantly (P < 0.05) in IC2 group. Compared to IC0 group, the activity of malondialdehyde (MDA) , superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) increased significantly (P < 0.05) in IC2 group, the activity of total antioxidant capacity (T-AOC) and GSH-Px increased significantly (P < 0.05) in IC6 group, and the activity of lysozyme (LZM) increased significantly in IC2 and IC6 groups. The addition of IC in the diets significantly increased the diversity of the microbial community in the intestine of large yellow croaker (P < 0.05), significantly improved the relative abundance of Acidobacteriota (P < 0.05) at the phylum level, and reduced the relative abundance of Bacteroidota, Desulfobacterota, and Synergistota (P < 0.05). At the genus level, the relative abundance of Bacteroides, Cetobacterium and Mycoplasma, which are dominant bacteria in fish gut, significantly increased (P < 0.05). The relative abundance of Ruminofilibacter, Desulfomicrobium, DMER64, Syntrophomonas, Hydrogenophaga, and Aminobacterium reduced significantly (P < 0.05). Among them, Ruminofilibacter, DMER64, Syntrophomonas and Hydrogenophaga are bacteria that can participate in the hydrolysis and acidification of organic matter, while DMER64 is the hydrogen carrier. The intestinal metabolome analysis showed that IC could improve metabolic composition and function, which was related to host immunity and metabolism. In conclusion, I. cicadae can improve the growth performance, regulate the lipid metabolism and immune and antioxidant capacity of large yellow croakers by regulating intestinal microbiota and intestinal metabolism. This study provides a reference for the application of IC in aquaculture.
Collapse
Affiliation(s)
- Heng Yin
- Marine Academy of Science and Technology, Zhejiang Ocean University, Zhoushan, 31600, China
| | - Ruoyu Chai
- Zhejiang Key Laboratory of Marine Aquaculture Equipment and Engineering Technology, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Haoyu Qiu
- Marine Academy of Science and Technology, Zhejiang Ocean University, Zhoushan, 31600, China
| | - Chenzhi Tao
- Marine Academy of Science and Technology, Zhejiang Ocean University, Zhoushan, 31600, China
| | - Ling Huang
- Marine Academy of Science and Technology, Zhejiang Ocean University, Zhoushan, 31600, China
| | - Hanying Wang
- Zhejiang Key Laboratory of Marine Aquaculture Equipment and Engineering Technology, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Ping Wang
- Marine Academy of Science and Technology, Zhejiang Ocean University, Zhoushan, 31600, China.
| |
Collapse
|
2
|
Kring DA, Bach W. Hydrogen Production from Alteration of Chicxulub Crater Impact Breccias: Potential Energy Source for a Subsurface Microbial Ecosystem. ASTROBIOLOGY 2021; 21:1547-1564. [PMID: 34678049 DOI: 10.1089/ast.2021.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A sulfate-reducing population of thermophiles grew in porous, permeable niches within glass-bearing impact breccias of the Chicxulub impact crater. The microbial community grew in an impact-generated hydrothermal system that vented on the seafloor several hundred meters beneath the sea surface. Potential electron donors for that metabolism are hydrocarbons, although a strong C-isotope signature of that source does not exist. Model calculations explored here suggest that alteration of glass within the impact breccias may have produced H2 in sufficient quantities for population growth as the hydrothermal system cooled through thermophilic temperatures, although it is sensitive to the oxidation state of iron in the melt rock prior to hydrothermal alteration and the secondary mineral assemblage. At high water-to-rock ratios and temperatures below 45°C, H2 yields are insufficient to maintain a population of hydrogenotrophic sulfate-reducing bacteria, but yields double with a higher proportion of ferrous iron between 45 and 65°C. The most reduced rocks (i.e., highest proportion of ferrous iron) that are allowed to form andradite, which is observed in core samples, produce copious amounts of H2 in the temperature window for thermophiles and hyperthermophiles. Mixtures of melt rock and carbonate, which is observed in breccia matrices, produce somewhat less H2, and the onset of massive H2 production is shifted to higher temperatures (i.e., lower W/R).
Collapse
Affiliation(s)
- David A Kring
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA
| | - Wolfgang Bach
- Geoscience Department and MARUM - Center for Marine Environmental Sciences, Universität Bremen, Bremen, Germany
| |
Collapse
|
3
|
Frolov EN, Gololobova AV, Klyukina AA, Bonch-Osmolovskaya EA, Pimenov NV, Chernyh NA, Merkel AY. Diversity and Activity of Sulfate-Reducing Prokaryotes in Kamchatka Hot Springs. Microorganisms 2021; 9:2072. [PMID: 34683394 PMCID: PMC8539903 DOI: 10.3390/microorganisms9102072] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022] Open
Abstract
Microbial communities of the Kamchatka Peninsula terrestrial hot springs were studied using radioisotopic and cultural approaches, as well as by the amplification and sequencing of dsrB and 16S rRNA genes fragments. Radioisotopic experiments with 35S-labeled sulfate showed that microbial communities of the Kamchatka hot springs are actively reducing sulfate. Both the cultivation experiments and the results of dsrB and 16S rRNA genes fragments analyses indicated the presence of microorganisms participating in the reductive part of the sulfur cycle. It was found that sulfate-reducing prokaryotes (SRP) belonging to Desulfobacterota, Nitrospirota and Firmicutes phyla inhabited neutral and slightly acidic hot springs, while bacteria of phylum Thermodesulofobiota preferred moderately acidic hot springs. In high-temperature acidic springs sulfate reduction was mediated by archaea of the phylum Crenarchaeota, chemoorganoheterotrophic representatives of genus Vulcanisaeta being the most probable candidates. The 16S rRNA taxonomic profiling showed that in most of the studied communities SRP was present only as a minor component. Only in one microbial community, the representatives of genus Vulcanisaeta comprised a significant group. Thus, in spite of comparatively low sulfate concentrations in terrestrial hot springs of the Kamchatka, phylogenetically and metabolically diverse groups of sulfate-reducing prokaryotes are operating there coupling carbon and sulfur cycles in these habitats.
Collapse
Affiliation(s)
- Evgenii N. Frolov
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312 Moscow, Russia; (A.V.G.); (A.A.K.); (E.A.B.-O.); (N.V.P.); (N.A.C.); (A.Y.M.)
| | - Alexandra V. Gololobova
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312 Moscow, Russia; (A.V.G.); (A.A.K.); (E.A.B.-O.); (N.V.P.); (N.A.C.); (A.Y.M.)
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119991 Moscow, Russia
| | - Alexandra A. Klyukina
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312 Moscow, Russia; (A.V.G.); (A.A.K.); (E.A.B.-O.); (N.V.P.); (N.A.C.); (A.Y.M.)
| | - Elizaveta A. Bonch-Osmolovskaya
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312 Moscow, Russia; (A.V.G.); (A.A.K.); (E.A.B.-O.); (N.V.P.); (N.A.C.); (A.Y.M.)
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119991 Moscow, Russia
| | - Nikolay V. Pimenov
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312 Moscow, Russia; (A.V.G.); (A.A.K.); (E.A.B.-O.); (N.V.P.); (N.A.C.); (A.Y.M.)
| | - Nikolay A. Chernyh
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312 Moscow, Russia; (A.V.G.); (A.A.K.); (E.A.B.-O.); (N.V.P.); (N.A.C.); (A.Y.M.)
| | - Alexander Y. Merkel
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312 Moscow, Russia; (A.V.G.); (A.A.K.); (E.A.B.-O.); (N.V.P.); (N.A.C.); (A.Y.M.)
| |
Collapse
|
4
|
Microbiota of the Therapeutic Euganean Thermal Muds with a Focus on the Main Cyanobacteria Species. Microorganisms 2020; 8:microorganisms8101590. [PMID: 33076380 PMCID: PMC7650686 DOI: 10.3390/microorganisms8101590] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/17/2022] Open
Abstract
The Euganean Thermal District has been known since Roman times for the therapeutic properties of peloids, obtained from natural clays that have undergone a traditional maturation process. This leads to the growth of a green microbial biofilm with Cyanobacteria and the target species Phormidium sp. ETS-05 as fundamental components for their ability to synthetize anti-inflammatory molecules. Currently, in-depth studies on the microbiota colonizing Euganean peloids, as in general on peloids utilized worldwide, are missing. This is the first characterization of the microbial community of Euganean thermal muds, also investigating the effects of environmental factors on its composition. We analysed 53 muds from 29 sites (Spas) using a polyphasic approach, finding a stable microbiota peculiar to the area. Differences among mud samples mainly depended on two parameters: water temperature and shading of mud maturation plants. In the range 37-47 °C and in the case of irradiance attenuation due to the presence of protective roofs, a statistically significant higher mud Chl a content was detected. Moreover, in these conditions, a characteristic microbial and Cyanobacteria population composition dominated by Phormidium sp. ETS-05 was observed. We also obtained the complete genome sequence of this target species using a mixed sequencing approach based on Illumina and Nanopore sequencing.
Collapse
|
5
|
Rubiano-Labrador C, Díaz-Cárdenas C, López G, Gómez J, Baena S. Colombian Andean thermal springs: reservoir of thermophilic anaerobic bacteria producing hydrolytic enzymes. Extremophiles 2019; 23:793-808. [PMID: 31555903 DOI: 10.1007/s00792-019-01132-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/13/2019] [Indexed: 11/25/2022]
Abstract
Anaerobic cultivable microbial communities in thermal springs producing hydrolytic enzymes were studied. Thermal water samples from seven thermal springs located in the Andean volcanic belt, in the eastern and central mountain ranges of the Colombian Andes were used as inocula for the growth and isolation of thermophilic microorganisms using substrates such as starch, gelatin, xylan, cellulose, Tween 80, olive oil, peptone and casamino acids. These springs differed in temperature (50-70 °C) and pH (6.5-7.5). The predominant ion in eastern mountain range thermal springs was sulphate, whereas that in central mountain range springs was bicarbonate. A total of 40 anaerobic thermophilic bacterial strains that belonged to the genera Thermoanaerobacter, Caloramator, Anoxybacillus, Caloranaerobacter, Desulfomicrobium, Geotoga, Hydrogenophilus, Desulfacinum and Thermoanaerobacterium were isolated. To investigate the metabolic potential of these isolates, selected strains were analysed for enzymatic activities to identify strains than can produce hydrolytic enzymes. We demonstrated that these thermal springs contained diverse microbial populations of anaerobic thermophilic comprising different metabolic groups of bacteria including strains belonging to the genera Thermoanaerobacter, Caloramator, Anoxybacillus, Caloranaerobacter, Desulfomicrobium, Geotoga, Hydrogenophilus, Desulfacinum and Thermoanaerobacterium with amylases, proteases, lipases, esterases, xylanases and pectinases; therefore, the strains represent a promising source of enzymes with biotechnological potential.
Collapse
Affiliation(s)
- Carolina Rubiano-Labrador
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, 56710, Bogotá DC, Colombia
- Facultad de Ciencias Básicas, Universidad Tecnológica de Bolívar, Cartagena de Indias D.T. y C., Colombia
| | - Carolina Díaz-Cárdenas
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, 56710, Bogotá DC, Colombia.
| | - Gina López
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, 56710, Bogotá DC, Colombia
| | - Javier Gómez
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, 56710, Bogotá DC, Colombia
| | - Sandra Baena
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, 56710, Bogotá DC, Colombia
| |
Collapse
|
6
|
Environmental filtering determines family-level structure of sulfate-reducing microbial communities in subsurface marine sediments. ISME JOURNAL 2019; 13:1920-1932. [PMID: 30894690 DOI: 10.1038/s41396-019-0387-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/22/2019] [Accepted: 02/28/2019] [Indexed: 01/09/2023]
Abstract
Recent work has shown that subsurface microbial communities assemble by selective survival of surface community members during sediment burial, but it remains unclear to what extent the compositions of the subsurface communities are a product of their founding population at the sediment surface or of the changing geochemical conditions during burial. Here we investigate this question for communities of sulfate-reducing microorganisms (SRMs). We collected marine sediment samples from the upper 3-5 m at four geochemically contrasting sites in the Skagerrak and Baltic Sea and measured SRM abundance (quantitative PCR of dsrB), metabolic activity (radiotracer rate measurements), and community composition (Illumina sequencing of dsrB amplicons). These data showed that SRM abundance, richness, and phylogenetic clustering as determined by the nearest taxon index peaked below the bioturbation zone and above the depth of sulfate depletion. Minimum cell-specific rates of sulfate reduction did not vary substantially between sites. SRM communities at different sites were best distinguished based on their composition of amplicon sequence variants (ASVs), while communities in different geochemical zones were best distinguished based on their composition of SRM families. This demonstrates environmental filtering of SRM communities in sediment while a site-specific fingerprint of the founding community is retained.
Collapse
|
7
|
Benavides A, Isaza JP, Niño-García JP, Alzate JF, Cabarcas F. CLAME: a new alignment-based binning algorithm allows the genomic description of a novel Xanthomonadaceae from the Colombian Andes. BMC Genomics 2018; 19:858. [PMID: 30537931 PMCID: PMC6288851 DOI: 10.1186/s12864-018-5191-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Hot spring bacteria have unique biological adaptations to survive the extreme conditions of these environments; these bacteria produce thermostable enzymes that can be used in biotechnological and industrial applications. However, sequencing these bacteria is complex, since it is not possible to culture them. As an alternative, genome shotgun sequencing of whole microbial communities can be used. The problem is that the classification of sequences within a metagenomic dataset is very challenging particularly when they include unknown microorganisms since they lack genomic reference. We failed to recover a bacterium genome from a hot spring metagenome using the available software tools, so we develop a new tool that allowed us to recover most of this genome. Results We present a proteobacteria draft genome reconstructed from a Colombian’s Andes hot spring metagenome. The genome seems to be from a new lineage within the family Rhodanobacteraceae of the class Gammaproteobacteria, closely related to the genus Dokdonella. We were able to generate this genome thanks to CLAME. CLAME, from Spanish “CLAsificador MEtagenomico”, is a tool to group reads in bins. We show that most reads from each bin belong to a single chromosome. CLAME is very effective recovering most of the reads belonging to the predominant species within a metagenome. Conclusions We developed a tool that can be used to extract genomes (or parts of them) from a complex metagenome. Electronic supplementary material The online version of this article (10.1186/s12864-018-5191-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andres Benavides
- Grupo SISTEMIC, Ingeniería Electrónica, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No, 52-21, Medellín, Colombia.
| | - Juan Pablo Isaza
- Centro Nacional de Secuenciación Genómica-CNSG, Sede de Investigación Universitaria-SIU, Universidad de Antioquia UdeA, Calle 70 No, 52-21, Medellín, Colombia.,Grupo de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No, 52-21, Medellín, Colombia
| | - Juan Pablo Niño-García
- Escuela de Microbiología, Universidad de Antioquia UdeA, Calle 70 No, 52-21, Medellín, Colombia
| | - Juan Fernando Alzate
- Centro Nacional de Secuenciación Genómica-CNSG, Sede de Investigación Universitaria-SIU, Universidad de Antioquia UdeA, Calle 70 No, 52-21, Medellín, Colombia.,Grupo de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No, 52-21, Medellín, Colombia
| | - Felipe Cabarcas
- Grupo SISTEMIC, Ingeniería Electrónica, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No, 52-21, Medellín, Colombia.,Centro Nacional de Secuenciación Genómica-CNSG, Sede de Investigación Universitaria-SIU, Universidad de Antioquia UdeA, Calle 70 No, 52-21, Medellín, Colombia
| |
Collapse
|
8
|
Nishihara A, Haruta S, McGlynn SE, Thiel V, Matsuura K. Nitrogen Fixation in Thermophilic Chemosynthetic Microbial Communities Depending on Hydrogen, Sulfate, and Carbon Dioxide. Microbes Environ 2018; 33:10-18. [PMID: 29367473 PMCID: PMC5877335 DOI: 10.1264/jsme2.me17134] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/28/2017] [Indexed: 12/20/2022] Open
Abstract
The activity of nitrogen fixation measured by acetylene reduction was examined in chemosynthetic microbial mats at 72-75°C in slightly-alkaline sulfidic hot springs in Nakabusa, Japan. Nitrogenase activity markedly varied from sampling to sampling. Nitrogenase activity did not correlate with methane production, but was detected in samples showing methane production levels less than the maximum amount, indicating a possible redox dependency of nitrogenase activity. Nitrogenase activity was not affected by 2-bromo-ethane sulfonate, an inhibitor of methanogenesis. However, it was inhibited by the addition of molybdate, an inhibitor of sulfate reduction and sulfur disproportionation, suggesting the involvement of sulfate-reducing or sulfur-disproportionating organisms. Nitrogenase activity was affected by different O2 concentrations in the gas phase, again supporting the hypothesis of a redox potential dependency, and was decreased by the dispersion of mats with a homogenizer. The loss of activity that occurred from dispersion was partially recovered by the addition of H2, sulfate, and carbon dioxide. These results suggested that the observed activity of nitrogen fixation was related to chemoautotrophic sulfate reducers, and fixation may be active in a limited range of ambient redox potential. Since thermophilic chemosynthetic communities may resemble ancient microbial communities before the appearance of photosynthesis, the present results may be useful when considering the ancient nitrogen cycle on earth.
Collapse
Affiliation(s)
- Arisa Nishihara
- Department of Biological Sciences, Tokyo Metropolitan UniversityMinami-Osawa, Hachioji, Tokyo 192–0397Japan
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan UniversityMinami-Osawa, Hachioji, Tokyo 192–0397Japan
| | - Shawn E. McGlynn
- Department of Biological Sciences, Tokyo Metropolitan UniversityMinami-Osawa, Hachioji, Tokyo 192–0397Japan
- Earth-Life Science Institute, Tokyo Institute of TechnologyOokayama, Meguro-ku, Tokyo 152–8551Japan
- Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource ScienceWako-shi 351–0198Japan
- Blue Marble Space Institute of ScienceSeattle, WA 98145–1561USA
| | - Vera Thiel
- Department of Biological Sciences, Tokyo Metropolitan UniversityMinami-Osawa, Hachioji, Tokyo 192–0397Japan
| | - Katsumi Matsuura
- Department of Biological Sciences, Tokyo Metropolitan UniversityMinami-Osawa, Hachioji, Tokyo 192–0397Japan
| |
Collapse
|
9
|
López G, Díaz-Cárdenas C, David Alzate J, Gonzalez LN, Shapiro N, Woyke T, Kyrpides NC, Restrepo S, Baena S. Description of Alicyclobacillus montanus sp. nov., a mixotrophic bacterium isolated from acidic hot springs. Int J Syst Evol Microbiol 2018; 68:1608-1615. [PMID: 29557767 DOI: 10.1099/ijsem.0.002718] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three morphologically similar thermo-acidophilic strains, USBA-GBX-501, USBA-GBX-502 and USBA-GBX-503T, were isolated from acidic thermal springs at the National Natural Park Los Nevados (Colombia). All isolates were spore-forming, Gram-stain-positive and motile, growing aerobically at 25-55 °C (optimum ~45 °C) and at pH 1.5-4.5 (optimum pH ~3.0). Phylogenetic analysis of the 16S rRNA gene sequences of these isolates showed an almost identical sequence (99.0 % similarity) and they formed a robust cluster with the closest relative Alicyclobacillus tolerans DSM 16297T with a sequence similarity of 99.0 %. Average similarity to other species of the genus Alicyclobacillus was 93.0 % and average similarity to species of the genus Effusibacillus was 90 %. In addition, the level of DNA-DNA hybridization between strain USBA-GBX-503T and Alicyclobacillus tolerans DSM 16297T was 31.7 %. The genomic DNA G+C content of strain USBA-GBX-503T was 44.6 mol%. The only menaquinone was MK-7 (100.0 %). No ω-alicyclic fatty acids were detected in strain USBA-GBX-503T, and the major cellular fatty acids were C18 : 1ω7c, anteiso-C17 : 0 and iso-C17 : 0. Based on phenotypic and chemotaxonomic characteristics, phylogenetic analysis and DNA-DNA relatedness values, along with low levels of identity at the whole genome level (ANIb and ANIm values of <67.0 and <91.0 %, respectively), it can be concluded that strain USBA-GBX-503T represents a novel species of the genus Alicyclobacillus, for which the name Alicyclobacillus montanus sp. nov. is proposed. The type strain is USBA-GBX-503T (=CMPUJ UGB U503T=CBMAI1927T).
Collapse
Affiliation(s)
- G López
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Pontificia Universidad Javeriana, POB 56710, Bogotá DC, Colombia.,Colombian Center for Genomics and Bioinformatics of Extreme Environments - GeBiX, Bogotá, DC, Colombia
| | - C Díaz-Cárdenas
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Pontificia Universidad Javeriana, POB 56710, Bogotá DC, Colombia
| | - J David Alzate
- Biological Sciences Department, Universidad de los Andes, Cra 1 No. 18A-12, Bogotá DC, Colombia
| | - L N Gonzalez
- Biological Sciences Department, Universidad de los Andes, Cra 1 No. 18A-12, Bogotá DC, Colombia
| | - N Shapiro
- Genome Biology Program, Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - T Woyke
- Genome Biology Program, Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - N C Kyrpides
- Genome Biology Program, Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - S Restrepo
- Biological Sciences Department, Universidad de los Andes, Cra 1 No. 18A-12, Bogotá DC, Colombia
| | - S Baena
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Pontificia Universidad Javeriana, POB 56710, Bogotá DC, Colombia.,Colombian Center for Genomics and Bioinformatics of Extreme Environments - GeBiX, Bogotá, DC, Colombia
| |
Collapse
|
10
|
Prachakittikul P, Wantawin C, Noophan PL, Boonapatcharoen N. ANAMMOX-like performances for nitrogen removal from ammonium-sulfate-rich wastewater in an anaerobic sequencing batch reactor. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2015; 51:220-228. [PMID: 26634619 DOI: 10.1080/10934529.2015.1094336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ammonium removal by the ANaerobic AMonium OXidation (ANAMMOX) process was observed through the Sulfate-Reducing Ammonium Oxidation (SRAO) process. The same concentration of ammonium (100 mg N L(-1)) was applied to two anaerobic sequencing batch reactors (AnSBRs) that were inoculated with the same activated sludge from the Vermicelli wastewater treatment process, while nitrite was fed in ANAMMOX and sulfate in SRAO reactors. In SRAO-AnSBR, in substrates that were fed with a ratio of NH4(+)/SO4(2-) at 1:0.4 ± 0.03, a hydraulic retention time (HRT) of 48 h and without sludge draining, the Ammonium Removal Rate (ARR) was 0.02 ± 0.01 kg N m(-3).d(-1). Adding specific ANAMMOX substrates to SRAO-AnSBR sludge in batch tests results in specific ammonium and nitrite removal rates of 0.198 and 0.139 g N g(-1) VSS.d, respectively, indicating that the ANAMMOX activity contributes to the removal of ammonium in the SRAO process using the nitrite that is produced from SRAO. Nevertheless, the inability of ANAMMOX to utilize sulfate to oxidize ammonium was also investigated in batch tests by augmenting enriched ANAMMOX culture in SRAO-AnSBR sludge and without nitrite supply. The time course of sulfate in a 24-hour cycle of SRAO-AnSBR showed an increase in sulfate after 6 h. For enriched SRAO culture, the uptake molar ratio of NH4(+)/SO4(2-) at 8 hours in a batch test was 1:0.82 lower than the value of 1:0.20 ± 0.09 as obtained in an SRAO-AnSBR effluent, while the stoichiometric ratio of 1:0.5 that includes the ANAMMOX reaction was in this range. After a longer operation of more than 2 years without sludge draining, the accumulation of sulfate and the reduction of ammonium removal were observed, probably due to the gradual increase in the sulfur denitrification rate and the competitive use of nitrite with ANAMMOX. The 16S rRNA gene PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) and PCR cloning analyses resulted in the detection of the ANAMMOX bacterium (Candidatus Brocadia sinica JPN1) Desulfacinum subterraneum belonging to the genus Desulfacinum and bacteria that are involved in sulfur metabolism (Pseudomonas aeruginosa strain SBTPe-001 and Paracoccus denitrificans strain IAM12479) in SRAO-AnSBR.
Collapse
Affiliation(s)
- Pensiri Prachakittikul
- a Department of Environmental Engineering , Faculty of Engineering, King Mongkut's University of Technology-Thonburi , Bangkok , Thailand
| | - Chalermraj Wantawin
- a Department of Environmental Engineering , Faculty of Engineering, King Mongkut's University of Technology-Thonburi , Bangkok , Thailand
- b Center of Excellence on Hazardous Substance Management (HSM), King Mongkut's University of Technology-Thonburi , Bangkok , Thailand
| | - Pongsak Lek Noophan
- c Department of Environmental Engineering , Kasetsart University , Bangkok , Thailand
| | - Nimaradee Boonapatcharoen
- d Excellent Center of Waste Utilization and Management, King Mongkut's University of Technology Thonburi Bang Khun Thian , Bangkok , Thailand
| |
Collapse
|
11
|
Delgado-Serrano L, López G, Bohorquez LC, Bustos JR, Rubiano C, Osorio-Forero C, Junca H, Baena S, Zambrano MM. Neotropical Andes hot springs harbor diverse and distinct planktonic microbial communities. FEMS Microbiol Ecol 2014; 89:56-66. [DOI: 10.1111/1574-6941.12333] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/07/2014] [Accepted: 03/21/2014] [Indexed: 11/30/2022] Open
Affiliation(s)
- Luisa Delgado-Serrano
- Molecular Genetics & Microbial Ecology; Corporación CorpoGen; Bogotá DC Colombia
- Colombian Center for Genomics and Bioinformatics of Extreme Environments - GeBiX; Bogotá DC Colombia
| | - Gina López
- Colombian Center for Genomics and Bioinformatics of Extreme Environments - GeBiX; Bogotá DC Colombia
- Unidad de Saneamiento y Biotecnología Ambiental; Departamento de Biología; Pontificia Universidad Javeriana; Bogotá DC Colombia
| | - Laura C. Bohorquez
- Molecular Genetics & Microbial Ecology; Corporación CorpoGen; Bogotá DC Colombia
- Colombian Center for Genomics and Bioinformatics of Extreme Environments - GeBiX; Bogotá DC Colombia
| | - José R. Bustos
- Molecular Genetics & Microbial Ecology; Corporación CorpoGen; Bogotá DC Colombia
- Colombian Center for Genomics and Bioinformatics of Extreme Environments - GeBiX; Bogotá DC Colombia
| | - Carolina Rubiano
- Colombian Center for Genomics and Bioinformatics of Extreme Environments - GeBiX; Bogotá DC Colombia
- Unidad de Saneamiento y Biotecnología Ambiental; Departamento de Biología; Pontificia Universidad Javeriana; Bogotá DC Colombia
| | - César Osorio-Forero
- Molecular Genetics & Microbial Ecology; Corporación CorpoGen; Bogotá DC Colombia
- Colombian Center for Genomics and Bioinformatics of Extreme Environments - GeBiX; Bogotá DC Colombia
| | - Howard Junca
- Molecular Genetics & Microbial Ecology; Corporación CorpoGen; Bogotá DC Colombia
- Colombian Center for Genomics and Bioinformatics of Extreme Environments - GeBiX; Bogotá DC Colombia
| | - Sandra Baena
- Colombian Center for Genomics and Bioinformatics of Extreme Environments - GeBiX; Bogotá DC Colombia
- Unidad de Saneamiento y Biotecnología Ambiental; Departamento de Biología; Pontificia Universidad Javeriana; Bogotá DC Colombia
| | - María M. Zambrano
- Molecular Genetics & Microbial Ecology; Corporación CorpoGen; Bogotá DC Colombia
- Colombian Center for Genomics and Bioinformatics of Extreme Environments - GeBiX; Bogotá DC Colombia
| |
Collapse
|
12
|
Grégoire P, Fardeau ML, Guasco S, Lagière J, Cambar J, Michotey V, Bonin P, Ollivier B. Desulfosoma profundi sp. nov., a thermophilic sulfate-reducing bacterium isolated from a deep terrestrial geothermal spring in France. Antonie van Leeuwenhoek 2011; 101:595-602. [DOI: 10.1007/s10482-011-9675-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 11/08/2011] [Indexed: 11/29/2022]
|