1
|
Vargas Ribera PR, Kim N, Venbrux M, Álvarez-Pérez S, Rediers H. Evaluation of sequence-based tools to gather more insight into the positioning of rhizogenic agrobacteria within the Agrobacterium tumefaciens species complex. PLoS One 2024; 19:e0302954. [PMID: 39561304 PMCID: PMC11575935 DOI: 10.1371/journal.pone.0302954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/21/2024] [Indexed: 11/21/2024] Open
Abstract
Rhizogenic Agrobacterium, the causative agent of hairy root disease (HRD), is known for its high phenotypic and genetic diversity. The taxonomy of rhizogenic agrobacteria has undergone several changes in the past and is still somewhat controversial. While the classification of Agrobacterium strains was initially mainly based on phenotypic properties and the symptoms they induced on plants, more and more genetic information has been used along the years to infer Agrobacterium taxonomy. This has led to the definition of the so-called Agrobacterium tumefaciens species complex (Atsc), which comprises several genomospecies. Interestingly, the rhizogenic Agrobacterium strains are found in several of these genomospecies. Nevertheless, even up until today Agrobacterium strains, and in particular rhizogenic agrobacteria, are prone to misclassification and considerable confusion in literature. In this study, we evaluated different phylogenetic analysis approaches for their use to improve Agrobacterium taxonomy and tried to gain more insight in the classification of strains into this complex genus, with a particular focus on rhizogenic agrobacteria. The genome sequence analysis of 580 assemblies, comprising Agrobacterium, Allorhizobium and Rhizobium strains demonstrated that phylogenies based on single marker genes, such as the commonly used 16S rRNA and recA gene, do not provide sufficient resolution for proper delineation of the different genomospecies within the Atsc. Our results revealed that (in silico) multi-locus sequences analysis (MLSA) in combination with average nucleotide identity (ANIb) at a 94.0% threshold delineates genomospecies accurately and efficiently. Additionally, this latter approach permitted the identification of two new candidate genomospecies.
Collapse
Affiliation(s)
- Pablo Roberto Vargas Ribera
- Sustainable Plant Protection, Centre de Cabrils, IRTA-Institute of Agrifood Research and Technology, Cabrils, Spain
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME & BIM), Department Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Nuri Kim
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME & BIM), Department Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), Leuven, Belgium
| | - Marc Venbrux
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME & BIM), Department Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), Leuven, Belgium
| | - Sergio Álvarez-Pérez
- Animal Health Department, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Hans Rediers
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME & BIM), Department Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), Leuven, Belgium
| |
Collapse
|
2
|
Samudio Oggero A, Valdez Borda M, Félix Pablos CM, Leguizamón G, Morínigo FM, González Caballero V, Farías A, Nakayama H, de los Santos Villalobos S. Draft genome sequence of Agrobacterium pusense strain CMT1: A promising growth-promoting bacterium isolated from nodules of soybean ( Glycine max L. Merrill) crops for the One Health approach in Paraguay. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100259. [PMID: 39076833 PMCID: PMC11284674 DOI: 10.1016/j.crmicr.2024.100259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
Strain CMT1 was isolated from nodules of non-inoculated Roundup Ready (RR) soybean plants (Glycine max L. Merrill), which were collected in fields in Itauguá, Paraguay. The genome of this strain had 338,984,909 bp; 59.2 % G + C content; 377648 bp N50; 5 L50; 55 contigs; 51 RNAs and 5,272 predicted coding DNA sequences (CDS) distributed in 327 subsystems. Based on overall genome-relatedness indices (OGRIs), this strain was taxonomically affiliated with Agrobacterium pusense. Based on genome mining, strain CMT1 is a promising plant growth-promoting bacterium that could be validated in agricultural fields for increasing soybean yield and quality, diminishing the economic, environmental, and health costs of non-sustainable food production.
Collapse
Affiliation(s)
- Antonio Samudio Oggero
- Universidad Nacional de Asunción. Centro Multidisciplinario de Investigaciones Tecnológicas. Campus Universitario, San Lorenzo, Central, Paraguay
| | - Magalí Valdez Borda
- Universidad Nacional de Asunción. Centro Multidisciplinario de Investigaciones Tecnológicas. Campus Universitario, San Lorenzo, Central, Paraguay
| | | | - Gladis Leguizamón
- Universidad Columbia del Paraguay. Carrera de Ingeniería Agronómica. Asunción, Central, Paraguay
| | - Fernando Mathías Morínigo
- Universidad Nacional de Asunción. Centro Multidisciplinario de Investigaciones Tecnológicas. Campus Universitario, San Lorenzo, Central, Paraguay
| | | | - Ariel Farías
- Universidad Nacional de Asunción. Centro Multidisciplinario de Investigaciones Tecnológicas. Campus Universitario, San Lorenzo, Central, Paraguay
| | - Héctor Nakayama
- Universidad Nacional de Asunción. Centro Multidisciplinario de Investigaciones Tecnológicas. Campus Universitario, San Lorenzo, Central, Paraguay
| | | |
Collapse
|
3
|
Loyola-Vargas VM, Méndez-Hernández HA, Quintana-Escobar AO. The History of Agrobacterium Rhizogenes: From Pathogen to a Multitasking Platform for Biotechnology. Methods Mol Biol 2024; 2827:51-69. [PMID: 38985262 DOI: 10.1007/978-1-0716-3954-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Agrobacterium's journey has been a roller coaster, from being a pathogen to becoming a powerful biotechnological tool. While A. tumefaciens has provided the scientific community with a versatile tool for plant transformation, Agrobacterium rhizogenes has given researchers a Swiss army knife for developing many applications. These applications range from a methodology to regenerate plants, often recalcitrant, to establish bioremediation protocols to a valuable system to produce secondary metabolites. This chapter reviews its discovery, biology, controversies over its nomenclature, and some of the multiple applications developed using A. rhizogenes as a platform.
Collapse
Affiliation(s)
- Víctor M Loyola-Vargas
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, Mérida, CP, Mexico.
| | - Hugo A Méndez-Hernández
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, Mérida, CP, Mexico
| | - Ana O Quintana-Escobar
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, Mérida, CP, Mexico
| |
Collapse
|
4
|
Brown PJB, Chang JH, Fuqua C. Agrobacterium tumefaciens: a Transformative Agent for Fundamental Insights into Host-Microbe Interactions, Genome Biology, Chemical Signaling, and Cell Biology. J Bacteriol 2023; 205:e0000523. [PMID: 36892285 PMCID: PMC10127608 DOI: 10.1128/jb.00005-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Agrobacterium tumefaciens incites the formation of readily visible macroscopic structures known as crown galls on plant tissues that it infects. Records from biologists as early as the 17th century noted these unusual plant growths and began examining the basis for their formation. These studies eventually led to isolation of the infectious agent, A. tumefaciens, and decades of study revealed the remarkable mechanisms by which A. tumefaciens causes crown gall through stable horizontal genetic transfer to plants. This fundamental discovery generated a barrage of applications in the genetic manipulation of plants that is still under way. As a consequence of the intense study of A. tumefaciens and its role in plant disease, this pathogen was developed as a model for the study of critical processes that are shared by many bacteria, including host perception during pathogenesis, DNA transfer and toxin secretion, bacterial cell-cell communication, plasmid biology, and more recently, asymmetric cell biology and composite genome coordination and evolution. As such, studies of A. tumefaciens have had an outsized impact on diverse areas within microbiology and plant biology that extend far beyond its remarkable agricultural applications. In this review, we attempt to highlight the colorful history of A. tumefaciens as a study system, as well as current areas that are actively demonstrating its value and utility as a model microorganism.
Collapse
Affiliation(s)
- Pamela J. B. Brown
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
5
|
Naranjo HD, Lebbe L, Cnockaert M, Lassalle F, Chin Too C, Willems A. Phylogenomics reveals insights into the functional evolution of the genus Agrobacterium and enables the description of Agrobacterium divergens sp. nov. Syst Appl Microbiol 2023; 46:126420. [PMID: 37031612 DOI: 10.1016/j.syapm.2023.126420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
The genus Agrobacterium was initially described as mainly phytopathogenic strains. Nowadays, the genus includes phytopathogenic and non-phytopathogenic bacteria that are distinctive among the Rhizobiaceae family. Recently we have isolated two closely related strains, LMG 31531T and LMG 31532, from soil and plant roots, respectively. Both strains differ from previously reported species based on the genomic and phenotypic data. A. arsenijevicii KFB 330T and A. fabacearum LMG 31642T showed the highest 16S rRNA similarity (98.9 %), followed by A. nepotum LMG 26435T (98.7 %). A clear genomic feature that distinguishes LMG 31531T and LMG 31532 from other Agrobacterium species is the absence of a linear chromid. Nevertheless, typical values of the core-proteome Average Amino Acid Identity (cpAAI > 85 %) and 16S rRNA gene sequence similarity (>96 %) when compared to other members of the genus confirm the position of these two strains as part of the Agrobacterium genus. They are therefore described as Agrobacterium divergens sp. nov. Besides, our comparative genomic study and survey for clade-specific markers resulted in the discovery of conserved proteins that provide insights into the functional evolution of this genus.
Collapse
|
6
|
Rajkumari J, Katiyar P, Dheeman S, Pandey P, Maheshwari DK. The changing paradigm of rhizobial taxonomy and its systematic growth upto postgenomic technologies. World J Microbiol Biotechnol 2022; 38:206. [PMID: 36008736 DOI: 10.1007/s11274-022-03370-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
Rhizobia are a diazotrophic group of bacteria that are usually isolated form the nodules in roots, stem of leguminous plants and are able to form nodules in the host plant owing to the presence of symbiotic genes. The rhizobial community is highly diverse, and therefore, the taxonomy and genera-wise classification of rhizobia has been constantly changing since the last three decades. This is mainly due to technical advancements, and shifts in definitions, resulting in a changing paradigm of rhizobia taxonomy. Initially, the taxonomic definitions at the species and sub species level were based on phylogenetic analysis of 16S rRNA sequence, followed by polyphasic approach to have phenotypic, biochemical, and genetic analysis including multilocus sequence analysis. Rhizobia mainly belonging to α- and β-proteobacteria, and recently new additions from γ-proteobacteria had been classified. Nowadays rhizobial taxonomy has been replaced by genome-based taxonomy that allows gaining more insights of genomic characteristics. These omics-technologies provide genome specific information that considers nodulation and symbiotic genes, along with molecular markers as taxonomic traits. Taxonomy based on complete genome sequence (genotaxonomy), average nucleotide identity, is now being considered as primary approach, resulting in an ongoing paradigm shift in rhizobial taxonomy. Also, pairwise whole-genome comparisons, phylogenomic analyses offer correlations between DNA and DNA re-association values that have delineated biologically important species. This review elaborates the present classification and taxonomy of rhizobia, vis-a-vis development of technical advancements, parameters and controversies associated with it, and describe the updated information on evolutionary lineages of rhizobia.
Collapse
Affiliation(s)
- Jina Rajkumari
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India
| | - Prashant Katiyar
- Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar, 249-404, India
| | - Shrivardhan Dheeman
- Department of Microbiology, Sardar Bhagwan Singh University, Dehra Dun, Uttarakhand, 248161, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India.
| | - Dinesh Kumar Maheshwari
- Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar, 249-404, India.
| |
Collapse
|
7
|
Kuzmanović N, Biondi E, Overmann J, Puławska J, Verbarg S, Smalla K, Lassalle F. Genomic analysis provides novel insights into diversification and taxonomy of Allorhizobium vitis (i.e. Agrobacterium vitis). BMC Genomics 2022; 23:462. [PMID: 35733110 PMCID: PMC9219206 DOI: 10.1186/s12864-022-08662-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/17/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Allorhizobium vitis (formerly named Agrobacterium vitis or Agrobacterium biovar 3) is the primary causative agent of crown gall disease of grapevine worldwide. We obtained and analyzed whole-genome sequences of diverse All. vitis strains to get insights into their diversification and taxonomy. RESULTS Pairwise genome comparisons and phylogenomic analysis of various All. vitis strains clearly indicated that All. vitis is not a single species, but represents a species complex composed of several genomic species. Thus, we emended the description of All. vitis, which now refers to a restricted group of strains within the All. vitis species complex (i.e. All. vitis sensu stricto) and proposed a description of a novel species, All. ampelinum sp. nov. The type strain of All. vitis sensu stricto remains the current type strain of All. vitis, K309T. The type strain of All. ampelinum sp. nov. is S4T. We also identified sets of gene clusters specific to the All. vitis species complex, All. vitis sensu stricto and All. ampelinum, respectively, for which we predicted the biological function and infer the role in ecological diversification of these clades, including some we could experimentally validate. All. vitis species complex-specific genes confer tolerance to different stresses, including exposure to aromatic compounds. Similarly, All. vitis sensu stricto-specific genes confer the ability to degrade 4-hydroxyphenylacetate and a putative compound related to gentisic acid. All. ampelinum-specific genes have putative functions related to polyamine metabolism and nickel assimilation. Congruently with the genome-based classification, All. vitis sensu stricto and All. ampelinum were clearly delineated by MALDI-TOF MS analysis. Moreover, our genome-based analysis indicated that Allorhizobium is clearly separated from other genera of the family Rhizobiaceae. CONCLUSIONS Comparative genomics and phylogenomic analysis provided novel insights into the diversification and taxonomy of Allorhizobium vitis species complex, supporting our redefinition of All. vitis sensu stricto and description of All. ampelinum. Our pan-genome analyses suggest that these species have differentiated ecologies, each relying on specialized nutrient consumption or toxic compound degradation to adapt to their respective niche.
Collapse
Affiliation(s)
- Nemanja Kuzmanović
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104, Braunschweig, Germany.
- Present address, Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Messeweg 11-12, 38104, Braunschweig, Germany.
| | - Enrico Biondi
- Department of Agricultural and Food Sciences (DISTAL), Plant Pathology, Alma Mater Studiorum-University of Bologna, Viale G. Fanin, 42, 40127, Bologna, Italy
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, 38124, Braunschweig, Germany
| | - Joanna Puławska
- The National Institute of Horticultural Research, ul. Konstytucji 3 Maja 1/3, 96-100, Skierniewice, Poland
| | - Susanne Verbarg
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, 38124, Braunschweig, Germany
| | - Kornelia Smalla
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104, Braunschweig, Germany
| | - Florent Lassalle
- Department of Infectious Disease Epidemiology, Imperial College London, St-Mary's Hospital Campus, Praed Street, London, W2 1NY, UK.
- Imperial College London, St-Mary's Hospital Campus, MRC Centre for Global Infectious Disease Analysis, Praed Street, London, W2 1NY, UK.
- Wellcome Sanger Institute, Pathogens and Microbes Programme, Wellcome Genome Campus, Saffron Walden, Hinxton, CB10 1RQ, UK.
| |
Collapse
|
8
|
Hernández-Alomia F, Ballesteros I, Castillejo P. Bioremediation potential of glyphosate-degrading microorganisms in eutrophicated Ecuadorian water bodies. Saudi J Biol Sci 2022; 29:1550-1558. [PMID: 35280549 PMCID: PMC8913404 DOI: 10.1016/j.sjbs.2021.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/20/2022] Open
Abstract
Phosphonate compounds are the basis of many xenobiotic pollutants, such as Glyphosate (N-(phosphonomethyl-glycine). Only procaryotic microorganisms and the lower eukaryotes are capable of phosphonate biodegradation through C–P lyase pathways. Thus, the aim of this study was to determine the presence of C–P lyase genes in Ecuadorian freshwater systems as a first step towards assessing the presence of putative glyphosate degraders. To that end, two Nested PCR assays were designed to target the gene that codifies for the subunit J (phnJ), which breaks the C-P bond that is critical for glyphosate mineralization. The assays designed in this study led to the detection of phnJ genes in 7 out of 8 tested water bodies. The amplified fragments presented 85–100% sequence similarity with phnJ genes that belong to glyphosate-degrading microorganisms. Nine sequences were not reported previously in the GenBank. The presence of phosphonate degraders was confirmed by isolating three strains able to grow using glyphosate as a unique carbon source. According to the 16S sequence, these strains belong to the Pantoea, Pseudomonas, and Klebsiella genera. Performing a Nested PCR amplification of phnJ genes isolated from eutrophicated water bodies, prior to isolation, may be a cost-effective strategy for the bioprospection of new species and/or genes that might have new properties for biotech industries, laying the groundwork for additional research.
Collapse
Affiliation(s)
- Fernanda Hernández-Alomia
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud (BIOMAS), Universidad de las Américas, Quito, Ecuador
| | - Isabel Ballesteros
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Pablo Castillejo
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud (BIOMAS), Universidad de las Américas, Quito, Ecuador
- Corresponding author.
| |
Collapse
|
9
|
Castellano-Hinojosa A, Correa-Galeote D, Ramírez-Bahena MH, Tortosa G, González-López J, Bedmar EJ, Peix Á. Agrobacterium leguminum sp. nov., isolated from nodules of Phaseolus vulgaris in Spain. Int J Syst Evol Microbiol 2021; 71. [PMID: 34870578 DOI: 10.1099/ijsem.0.005120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Two endophytic strains, coded MOVP5T and MOPV6, were isolated from nodules of Phaseolus vulgaris plants grown on agricultural soil in Southeastern Spain, and were characterized through a polyphasic taxonomy approach. Their 16S rRNA gene sequences showed 99.3 and 99.4 %, 98.9 and 99.6 %, and 99.0 and 98.7% similarity to 'A. deltaense' YIC 4121T, A. radiobacter LGM 140T, and A. pusense NRCPB10T, respectively. Multilocus sequence analysis based on sequences of recA and atpD genes suggested that these two strains could represent a new Agrobacterium species with less than 96.5 % similarity to their closest relatives. PCR amplification of the telA gene, involved in synthesis of protelomerase, confirmed the affiliation of strains MOPV5T and MOPV6 to the genus Agrobacterium. Whole genome average nucleotide identity and digital DNA-DNA hybridization average values were less than 95.1 and 66.7 %, respectively, with respect to its closest related species. Major fatty acids in strain MOPV5T were C18 : 1 ω7c/C18 : 1 ω6c in summed feature 8, C19 : 0 cyclo ω8c, C16 : 0 and C16 : 0 3-OH. Colonies were small to medium, pearl-white coloured on YMA at 28 °C and growth was observed at 10-42 °C, pH 5.0-10.0 and with 0.0-0.5 % (w/v) NaCl. The DNA G+C content was 59.9 mol%. These two strains differ from all other genomovars of Agrobacterium found so far, including those that have not yet given a Latin name. The combined genotypic, phenotypic and chemotaxonomic data support the classification of strain MOPV5T as representing a novel species of Agrobacterium, for which the name Agrobacterium leguminum sp. nov. is proposed. The type strain is MOPV5T (=CECT 30096T=LMG 31779T).
Collapse
Affiliation(s)
- Antonio Castellano-Hinojosa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, 18080-Granada, Spain.,Department of Microbiology, Faculty of Pharmacy, University of Granada. Campus Cartuja, 18071-Granada, Spain
| | - David Correa-Galeote
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, 18080-Granada, Spain
| | | | - Germán Tortosa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, 18080-Granada, Spain
| | - Jesús González-López
- Department of Microbiology, Faculty of Pharmacy, University of Granada. Campus Cartuja, 18071-Granada, Spain
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, 18080-Granada, Spain
| | - Álvaro Peix
- Instituto de Recursos Naturales y Agrobiología, IRNASA-CSIC, Salamanca, Spain
| |
Collapse
|
10
|
Matveeva T, Otten L. Opine biosynthesis in naturally transgenic plants: Genes and products. PHYTOCHEMISTRY 2021; 189:112813. [PMID: 34192603 DOI: 10.1016/j.phytochem.2021.112813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/03/2021] [Accepted: 05/07/2021] [Indexed: 06/13/2023]
Abstract
The plant pathogen Agrobacterium transfers DNA into plant cells by a specific transfer mechanism. Expression of this transferred DNA or T-DNA leads to crown gall tumors or abnormal, hairy roots and the synthesis of specific compounds, called opines. Opines are produced from common plant metabolites like sugars, amino acids and α-keto acids, which are combined into different low molecular weight structures by T-DNA-encoded opine synthase enzymes. Opines can be converted back by Agrobacterium into the original metabolites and used for agrobacterial growth. Recently it has been discovered that about 7% of Angiosperms carry T-DNA-like sequences. These result from ancient Agrobacterium transformation events, followed by spontaneous regeneration of transformed cells into natural genetically transformed organisms (nGMOs). Nearly all nGMOs identified up to date carry opine synthesis genes, several of these are intact and potentially encode opine synthesis. So far, only tobacco and cuscuta have been demonstrated to contain opines. Whereas opines from crown gall and hairy root tissues have been studied for over 60 years, those from the nGMOs remain to be explored.
Collapse
Affiliation(s)
- Tatiana Matveeva
- St. Petersburg State University, University Emb., 7/9, Saint Petersburg, Russia.
| | - Léon Otten
- Institute of Plant Molecular Biology, C.N.R.S, 67084, Strasbourg, France.
| |
Collapse
|
11
|
Abstract
Agrobacterium-mediated gene transfer leads to crown gall or hairy roots disease, due to expression of transferred T-DNA genes. Spontaneous plant regeneration from the transformed tissues can produce natural transformants carrying cellular T-DNA (cT-DNA) sequences of agrobacterial origin. In 2019, based on genomic sequencing data, cT-DNA horizontally transferred from Agrobacterium were found in two dozen species of angiosperms. This made it possible to evaluate the spread of this phenomenon, as well as make some generalizations regarding the diversity of horizontally transferred genes. The presented research is a continuation of work in this field. It resulted in the description of new naturally occurring transgenic species Aeschynomene evenia C. Wright, Eperua falcata Aubl., Eucalyptus cloeziana F.Muell., Boswellia sacra Flueck., Kewa caespitosa (Friedrich) Christenh., Pharnaceum exiguum Adamson, Silene noctiflora L., Nyssa sinensis Oliv., Vaccinium corymbosum L., Populus alba L. × Populus glandulosa Moench. The previously identified patterns regarding the frequency of the occurrence of natural transformants and the general properties of the cT-DNAs were confirmed in this study.
Collapse
|
12
|
Kang B, Maeshige T, Okamoto A, Kataoka Y, Yamamoto S, Rikiishi K, Tani A, Sawada H, Suzuki K. The Presence of the Hairy-Root-Disease-Inducing (Ri) Plasmid in Wheat Endophytic Rhizobia Explains a Pathogen Reservoir Function of Healthy Resistant Plants. Appl Environ Microbiol 2020; 86:e00671-20. [PMID: 32631868 PMCID: PMC7440801 DOI: 10.1128/aem.00671-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/23/2020] [Indexed: 11/20/2022] Open
Abstract
A large number of strains in the Rhizobium radiobacter species complex (biovar 1 Agrobacterium) have been known as causative pathogens for crown gall and hairy root diseases. Strains within this complex were also found as endophytes in many plant species with no symptoms. The aim of this study was to reveal the endophyte variation of this complex and how these endophytic strains differ from pathogenic strains. In this study, we devised a simple but effective screening method by exploiting the high resolution power of mass spectrometry. We screened endophyte isolates from young wheat and barley plants, which are resistant to the diseases, and identified seven isolates from wheat as members of the R. radiobacter species complex. Through further analyses, we assigned five strains to the genomovar (genomic group) G1 and two strains to G7 in R. radiobacter Notably, these two genomovar groups harbor many known pathogenic strains. In fact, the two G7 endophyte strains showed pathogenicity on tobacco, as well as the virulence prerequisites, including a 200-kbp Ri plasmid. All five G1 strains possessed a 500-kbp plasmid, which is present in well-known crown gall pathogens. These data strongly suggest that healthy wheat plants are reservoirs for pathogenic strains of R. radiobacterIMPORTANCE Crown gall and hairy root diseases exhibit very wide host-plant ranges that cover gymnosperm and dicot plants. The Rhizobium radiobacter species complex harbors causative agents of the two diseases. Recently, endophyte isolates from many plant species have been assigned to this species complex. We isolated seven endophyte strains belonging to the species complex from wheat plants and revealed their genomovar affiliations and plasmid profile. The significance of this study is the finding of the genomovar correlation between the endophytes and the known pathogens, the presence of a virulence ability in two of the seven endophyte strains, and the high ratio of the pathogenic strains in the endophyte strains. This study therefore provides convincing evidence that could unravel the mechanism that maintains pathogenic agents of this species and sporadically delivers them to susceptible plants.
Collapse
Affiliation(s)
- Byoungwoo Kang
- Basic Biology Program, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Taichi Maeshige
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Aya Okamoto
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Yui Kataoka
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Shinji Yamamoto
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Kazuhide Rikiishi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Akio Tani
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Hiroyuki Sawada
- Genetic Resources Center, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Katsunori Suzuki
- Basic Biology Program, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
13
|
Delamuta JRM, Scherer AJ, Ribeiro RA, Hungria M. Genetic diversity of Agrobacterium species isolated from nodules of common bean and soybean in Brazil, Mexico, Ecuador and Mozambique, and description of the new species Agrobacterium fabacearum sp. nov. Int J Syst Evol Microbiol 2020; 70:4233-4244. [PMID: 32568030 DOI: 10.1099/ijsem.0.004278] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Agrobacterium strains are associated with soil, plants and animals, and known mainly by their pathogenicity. We studied 14 strains isolated from nodules of healthy soybean and common bean plants in Brazil, Mexico, Ecuador and Mozambique. Sequence analysis of the 16S rRNA gene positioned the strains as Agrobacterium, but with low phylogenetic resolution. Multilocus sequence analysis (MLSA) of three partial housekeeping genes (glnII, gyrB and recA) positioned the strains in four distinct clades, with Agrobacterium pusense, Agrobacterium deltaense, Agrobacterium radiobacter and Agrobacterium sp. genomospecies G1. Analysis by BOX-PCR revealed high intraspecies diversity. Genomic analysis of representative strains of the three clades indicated that they carry the protelomerase telA gene, and MLSA analysis with six complete housekeeping genes (atpD, glnII, gyrB, recA, rpoB and thrC), as well as average nucleotide identity (less than 90 % with closest species) and digital DNA-DNA hybridization (less than 41 % with closest species) revealed that strain CNPSo 675T and Agrobacterium sp. genomospecies G1 compose a new species. Other phenotypic and genotypic characteristics were determined for the new clade. Although not able to re-nodulate the host, we hypothesize that several strains of Agrobacterium are endophytes in legume nodules, where they might contribute to plant growth. Our data support the description of the CNPSo 675T and Agrobacterium sp. genomospecies G1 strains as a new species, for which the name Agrobacterium fabacearum is proposed. The type strain is CNPSo 675T (=UMR 1457T=LMG 31642T) and is also deposited in other culture collections.
Collapse
Affiliation(s)
- Jakeline Renata Marçon Delamuta
- CNPq, SHIS QI 1 Conjunto B, Blocos A, B, C and D, Lago Sul, 71605-001, Brasília, Federal District, Brazil
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
| | - Anderson José Scherer
- Department of Microbiology, Universidade Estadual de Londrina, C.P. 10011, 86057-970 Londrina, Paraná, Brazil
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
| | - Renan Augusto Ribeiro
- CNPq, SHIS QI 1 Conjunto B, Blocos A, B, C and D, Lago Sul, 71605-001, Brasília, Federal District, Brazil
| | - Mariangela Hungria
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
- CNPq, SHIS QI 1 Conjunto B, Blocos A, B, C and D, Lago Sul, 71605-001, Brasília, Federal District, Brazil
- Department of Microbiology, Universidade Estadual de Londrina, C.P. 10011, 86057-970 Londrina, Paraná, Brazil
| |
Collapse
|
14
|
Weisberg AJ, Davis EW, Tabima J, Belcher MS, Miller M, Kuo CH, Loper JE, Grünwald NJ, Putnam ML, Chang JH. Unexpected conservation and global transmission of agrobacterial virulence plasmids. Science 2020; 368:368/6495/eaba5256. [PMID: 32499412 DOI: 10.1126/science.aba5256] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/28/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022]
Abstract
The accelerated evolution and spread of pathogens are threats to host species. Agrobacteria require an oncogenic Ti or Ri plasmid to transfer genes into plants and cause disease. We developed a strategy to characterize virulence plasmids and applied it to analyze hundreds of strains collected between 1927 and 2017, on six continents and from more than 50 host species. In consideration of prior evidence for prolific recombination, it was surprising that oncogenic plasmids are descended from a few conserved lineages. Characterization of a hierarchy of features that promote or constrain plasticity allowed inference of the evolutionary history across the plasmid lineages. We uncovered epidemiological patterns that highlight the importance of plasmid transmission in pathogen diversification as well as in long-term persistence and the global spread of disease.
Collapse
Affiliation(s)
- Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Edward W Davis
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.,Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97331, USA
| | - Javier Tabima
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Michael S Belcher
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Marilyn Miller
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Joyce E Loper
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.,Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97331, USA.,Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, OR 97331, USA
| | - Niklaus J Grünwald
- Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, OR 97331, USA
| | - Melodie L Putnam
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA. .,Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97331, USA.,Center for Genome Research and Biocomputing (CGRB), Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
15
|
Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM, Tindall BJ, Gronow S, Kyrpides NC, Woyke T, Göker M. Analysis of 1,000+ Type-Strain Genomes Substantially Improves Taxonomic Classification of Alphaproteobacteria. Front Microbiol 2020; 11:468. [PMID: 32373076 PMCID: PMC7179689 DOI: 10.3389/fmicb.2020.00468] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
The class Alphaproteobacteria is comprised of a diverse assemblage of Gram-negative bacteria that includes organisms of varying morphologies, physiologies and habitat preferences many of which are of clinical and ecological importance. Alphaproteobacteria classification has proved to be difficult, not least when taxonomic decisions rested heavily on a limited number of phenotypic features and interpretation of poorly resolved 16S rRNA gene trees. Despite progress in recent years regarding the classification of bacteria assigned to the class, there remains a need to further clarify taxonomic relationships. Here, draft genome sequences of a collection of genomes of more than 1000 Alphaproteobacteria and outgroup type strains were used to infer phylogenetic trees from genome-scale data using the principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families and genera, including taxa recognized as problematic long ago but also quite recent taxa, as well as a few species were shown to be in need of revision. According proposals are made for the recognition of new orders, families and genera, as well as the transfer of a variety of species to other genera and of a variety of genera to other families. In addition, emended descriptions are given for many species mainly involving information on DNA G+C content and (approximate) genome size, both of which are confirmed as valuable taxonomic markers. Similarly, analysis of the gene content was shown to provide valuable taxonomic insights in the class. Significant incongruities between 16S rRNA gene and whole genome trees were not found in the class. The incongruities that became obvious when comparing the results of the present study with existing classifications appeared to be caused mainly by insufficiently resolved 16S rRNA gene trees or incomplete taxon sampling. Another probable cause of misclassifications in the past is the partially low overall fit of phenotypic characters to the sequence-based tree. Even though a significant degree of phylogenetic conservation was detected in all characters investigated, the overall fit to the tree varied considerably.
Collapse
Affiliation(s)
- Anton Hördt
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marina García López
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Jan P. Meier-Kolthoff
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marcel Schleuning
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Lisa-Maria Weinhold
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Brian J. Tindall
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Sabine Gronow
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Markus Göker
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| |
Collapse
|
16
|
Flores-Félix JD, Menéndez E, Peix A, García-Fraile P, Velázquez E. History and current taxonomic status of genus Agrobacterium. Syst Appl Microbiol 2020; 43:126046. [DOI: 10.1016/j.syapm.2019.126046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 10/25/2022]
|
17
|
Casanova C, Lo Priore E, Egli A, Seth-Smith HMB, Räber L, Ott D, Pflüger V, Droz S, Marschall J, Sommerstein R. Agrobacterium spp. nosocomial outbreak assessment using rapid MALDI-TOF MS based typing, confirmed by whole genome sequencing. Antimicrob Resist Infect Control 2019; 8:171. [PMID: 31700617 PMCID: PMC6829841 DOI: 10.1186/s13756-019-0619-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/01/2019] [Indexed: 11/10/2022] Open
Abstract
Background A number of episodes of nosocomial Agrobacterium spp. bacteremia (two cases per year) were observed at Bern University Hospital, Switzerland, from 2015 to 2017. This triggered an outbreak investigation. Methods Cases of Agrobacterium spp. bacteremias that occurred between August 2011 and February 2017 were investigated employing line lists, environmental sampling, rapid protein- (MALDI-TOF MS), and genome-based typing (pulsed field gel electrophoresis and whole genome sequencing) of the clinical isolates. Results We describe a total of eight bacteremia episodes due to A. radiobacter (n = 2), Agrobacterium genomovar G3 (n = 5) and A. pusense (n = 1). Two tight clusters were observed by WGS typing, representing the two A. radiobacter isolates (cluster I, isolated in 2015) and four of the Agrobacterium genomovar G3 isolates (cluster II, isolated in 2016 and 2017), suggesting two different point sources. The epidemiological investigations revealed two computer tomography (CT) rooms as common patient locations, which correlated with the two outbreak clusters. MALDI-TOF MS permitted faster evaluation of strain relatedness than DNA-based methods. High resolution WGS-based typing confirmed the MALDI-TOF MS clustering. Conclusions We report clinical and epidemiological characteristics of two outbreak clusters with Agrobacterium. spp. bacteremia likely acquired during CT contrast medium injection and highlight the use of MALDI-TOF MS as a rapid tool to assess relatedness of rare gram-negative pathogens in an outbreak investigation.
Collapse
Affiliation(s)
- Carlo Casanova
- 1Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001 Bern, Switzerland
| | - Elia Lo Priore
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Freiburgstrasse, 3001 Bern, Switzerland
| | - Adrian Egli
- 3Division of Clinical Microbiology, University Hospital Basel, Basel, Switzerland.,4Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Helena M B Seth-Smith
- 3Division of Clinical Microbiology, University Hospital Basel, Basel, Switzerland.,4Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Lorenz Räber
- Department of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Daniel Ott
- Department of Radiology, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Sara Droz
- 1Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001 Bern, Switzerland
| | - Jonas Marschall
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Freiburgstrasse, 3001 Bern, Switzerland
| | - Rami Sommerstein
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Freiburgstrasse, 3001 Bern, Switzerland
| |
Collapse
|
18
|
Ullrich CI, Aloni R, Saeed MEM, Ullrich W, Efferth T. Comparison between tumors in plants and human beings: Mechanisms of tumor development and therapy with secondary plant metabolites. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:153081. [PMID: 31568956 DOI: 10.1016/j.phymed.2019.153081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Human tumors are still a major threat to human health and plant tumors negatively affect agricultural yields. Both areas of research are developing largely independent of each other. Treatment of both plant and human tumors remains unsatisfactory and novel therapy options are urgently needed. HYPOTHESIS The concept of this paper is to compare cellular and molecular mechanisms of tumor development in plants and human beings and to explore possibilities to develop novel treatment strategies based on bioactive secondary plant metabolites. The interdisciplinary discourse may unravel commonalities and differences in the biology of plant and human tumors as basis for rational drug development. RESULTS Plant tumors and galls develop upon infection by bacteria (e.g. Agrobacterium tumefaciens and A. vitis, which harbor oncogenic T-DNA) and by insects (e.g. gall wasps, aphids). Plant tumors are benign, i.e. they usually do not ultimately kill their host, but they can lead to considerable economic damage due to reduced crop yields of cultivated plants. Human tumors develop by biological carcinogenesis (i.e. viruses and other infectious agents), chemical carcinogenesis (anthropogenic and non-anthropogenic environmental toxic xenobiotics) and physical carcinogenesis (radioactivity, UV-radiation). The majority of human tumors are malignant with lethal outcome. Although treatments for both plant and human tumors are available (antibiotics and apathogenic bacterial strains for plant tumors, cytostatic drugs for human tumors), treatment successes are non-satisfactory, because of drug resistance and the severe adverse side effects. In human beings, attacks by microbes are repelled by cellular immunity (i.e. innate and acquired immune systems). Plants instead display chemical defense mechanisms, whereby constitutively expressed phytoanticipin compounds compare to the innate human immune system, the acquired human immune system compares to phytoalexins, which are induced by appropriate biotic or abiotic stressors. Some chemical weapons of this armory of secondary metabolites are also active against plant galls. There is a mutual co-evolution between plant defense and animals/human beings, which was sometimes referred to as animal plant warfare. As a consequence, hepatic phase I-III metabolization and excretion developed in animals and human beings to detoxify harmful phytochemicals. On the other hand, plants invented "pro-drugs" during evolution, which are activated and toxified in animals by this hepatic biotransformation system. Recent efforts focus on phytochemicals that specifically target tumor-related mechanisms and proteins, e.g. angiogenic or metastatic inhibitors, stimulators of the immune system to improve anti-tumor immunity, specific cell death or cancer stem cell inhibitors, inhibitors of DNA damage and epigenomic deregulation, specific inhibitors of driver genes of carcinogenesis (e.g. oncogenes), inhibitors of multidrug resistance (i.e. ABC transporter efflux inhibitors), secondary metabolites against plant tumors. CONCLUSION The exploitation of bioactive secondary metabolites to treat plant or human tumors bears a tremendous therapeutic potential. Although there are fundamental differences between human and plant tumors, either isolated phytochemicals and their (semi)synthetic derivatives or chemically defined and standardized plant extracts may offer new therapy options to decrease human tumor incidence and mortality as well as to increase agricultural yields by fighting crown galls.
Collapse
Affiliation(s)
- Cornelia I Ullrich
- Department of Biology, Darmstadt University of Technology, Schnittspahnstr. 3-5, Darmstadt 64287, Germany
| | - Roni Aloni
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mohamed E M Saeed
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz 55128, Germany
| | - Wolfram Ullrich
- Department of Biology, Darmstadt University of Technology, Schnittspahnstr. 3-5, Darmstadt 64287, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz 55128, Germany.
| |
Collapse
|
19
|
Mafakheri H, Taghavi SM, Puławska J, de Lajudie P, Lassalle F, Osdaghi E. Two Novel Genomospecies in the Agrobacterium tumefaciens Species Complex Associated with Rose Crown Gall. PHYTOPATHOLOGY 2019; 109:1859-1868. [PMID: 31298994 DOI: 10.1094/phyto-05-19-0178-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, we explored the pathogenicity and phylogenetic position of Agrobacterium spp. strains isolated from crown gall tissues on annual, perennial, and ornamental plants in Iran. Of the 43 strains studied, 10 strains were identified as Allorhizobium vitis (formerly Agrobacterium vitis) using the species-specific primer pair PGF/PGR. Thirty-three remaining strains were studied using multilocus sequence analysis of four housekeeping genes (i.e., atpD, gyrB, recA, and rpoB), from which seven strains were identified as A. larrymoorei and one strain was identified as A. rubi (Rer); the remaining 25 strains were scattered within the A. tumefaciens species complex. Two strains were identified as genomospecies 1 (G1), seven strains were identified as A. radiobacter (G4), seven strains were identified as A. deltaense (G7), two strains were identified as A. nepotum (G14), and one strain was identified as "A. viscosum" (G15). The strains Rnr, Rnw, and Rew as well as the two strains OT33 and R13 all isolated from rose and the strain Ap1 isolated from apple were clustered in three atypical clades within the A. tumefaciens species complex. All but eight strains (i.e., Nec10, Ph38, Ph49, fic9, Fic72, R13, OT33, and Ap1) were pathogenic on tomato and sunflower seedlings in greenhouse conditions, whereas all but three strains (i.e., fic9, Fic72, and OT33) showed tumorigenicity on carrot root discs. The phylogenetic analysis and nucleotide diversity statistics suggested the existence of two novel genomospecies within the A. tumefaciens species complex, which we named "G19" and "G20." Hence, we propose the strains Rew, Rnw, and Rnr as the members of "G19" and the strains R13 and OT33 as the members of G20, whereas the phylogenetic status of the atypical strain Ap1 remains undetermined.
Collapse
Affiliation(s)
- Hamzeh Mafakheri
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - S Mohsen Taghavi
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Joanna Puławska
- Research Institute of Horticulture, 96-100 Skierniewice, Poland
| | - Philippe de Lajudie
- IRD (Institut de recherche pour le développement), Campus de Baillarguet TA A-82/J, Laboratoire des Symbioses Tropicales et Méditerranéennes, 34398 Montpellier Cédex 5, France
| | - Florent Lassalle
- Department of Infectious Disease Epidemiology, St. Mary's Hospital Campus, Imperial College London, London W2 1NY, United Kingdom
| | - Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| |
Collapse
|
20
|
Lacroix B, Citovsky V. Pathways of DNA Transfer to Plants from Agrobacterium tumefaciens and Related Bacterial Species. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:231-251. [PMID: 31226020 PMCID: PMC6717549 DOI: 10.1146/annurev-phyto-082718-100101] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Genetic transformation of host plants by Agrobacterium tumefaciens and related species represents a unique model for natural horizontal gene transfer. Almost five decades of studying the molecular interactions between Agrobacterium and its host cells have yielded countless fundamental insights into bacterial and plant biology, even though several steps of the DNA transfer process remain poorly understood. Agrobacterium spp. may utilize different pathways for transferring DNA, which likely reflects the very wide host range of Agrobacterium. Furthermore, closely related bacterial species, such as rhizobia, are able to transfer DNA to host plant cells when they are provided with Agrobacterium DNA transfer machinery and T-DNA. Homologs of Agrobacterium virulence genes are found in many bacterial genomes, but only one non-Agrobacterium bacterial strain, Rhizobium etli CFN42, harbors a complete set of virulence genes and can mediate plant genetic transformation when carrying a T-DNA-containing plasmid.
Collapse
Affiliation(s)
- Benoît Lacroix
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York 11794-5215, USA;
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York 11794-5215, USA;
| |
Collapse
|
21
|
Gan HM, Lee MVL, Savka MA. Improved genome of Agrobacterium radiobacter type strain provides new taxonomic insight into Agrobacterium genomospecies 4. PeerJ 2019; 7:e6366. [PMID: 30775173 PMCID: PMC6369824 DOI: 10.7717/peerj.6366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022] Open
Abstract
The reported Agrobacterium radiobacter DSM 30174T genome is highly fragmented, hindering robust comparative genomics and genome-based taxonomic analysis. We re-sequenced the Agrobacterium radiobacter type strain, generating a dramatically improved genome with high contiguity. In addition, we sequenced the genome of Agrobacterium tumefaciens B6T, enabling for the first time, a proper comparative genomics of these contentious Agrobacterium species. We provide concrete evidence that the previously reported Agrobacterium radiobacter type strain genome (Accession Number: ASXY01) is contaminated which explains its abnormally large genome size and fragmented assembly. We propose that Agrobacterium tumefaciens be reclassified as Agrobacterium radiobacter subsp. tumefaciens and that Agrobacterium radiobacter retains it species status with the proposed name of Agrobacterium radiobacter subsp. radiobacter. This proposal is based, first on the high pairwise genome-scale average nucleotide identity supporting the amalgamation of both Agrobacterium radiobacter and Agrobacterium tumefaciens into a single species. Second, maximum likelihood tree construction based on the concatenated alignment of shared genes (core genes) among related strains indicates that Agrobacterium radiobacter NCPPB3001 is sufficiently divergent from Agrobacterium tumefaciens to propose two independent sub-clades. Third, Agrobacterium tumefaciens demonstrates the genomic potential to synthesize the L configuration of fucose in its lipid polysaccharide, fostering its ability to colonize plant cells more effectively than Agrobacterium radiobacter.
Collapse
Affiliation(s)
- Han Ming Gan
- Deakin Genomics Centre, Deakin University, Geelong, VIC, Australia.,Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.,School of Science, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia
| | - Melvin V L Lee
- School of Science, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia
| | - Michael A Savka
- College of Science, The Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
22
|
Nelson M, Guhlin J, Epstein B, Tiffin P, Sadowsky MJ. The complete replicons of 16 Ensifer meliloti strains offer insights into intra- and inter-replicon gene transfer, transposon-associated loci, and repeat elements. Microb Genom 2018; 4. [PMID: 29671722 PMCID: PMC5994717 DOI: 10.1099/mgen.0.000174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ensifer meliloti (formerly Rhizobium meliloti and Sinorhizobium meliloti) is a model bacterium for understanding legume–rhizobial symbioses. The tripartite genome of E. meliloti consists of a chromosome, pSymA and pSymB, and in some instances strain-specific accessory plasmids. The majority of previous sequencing studies have relied on the use of assemblies generated from short read sequencing, which leads to gaps and assembly errors. Here we used PacBio-based, long-read assemblies and were able to assemble, de novo, complete circular replicons. In this study, we sequenced, de novo-assembled and analysed 10 E. meliloti strains. Sequence comparisons were also done with data from six previously published genomes. We identified genome differences between the replicons, including mol% G+C and gene content, nucleotide repeats, and transposon-associated loci. Additionally, genomic rearrangements both within and between replicons were identified, providing insight into evolutionary processes at the structural level. There were few cases of inter-replicon gene transfer of core genes between the main replicons. Accessory plasmids were more similar to pSymA than to either pSymB or the chromosome, with respect to gene content, transposon content and G+C content. In our population, the accessory plasmids appeared to share an open genome with pSymA, which contains many nodulation- and nitrogen fixation-related genes. This may explain previous observations that horizontal gene transfer has a greater effect on the content of pSymA than pSymB, or the chromosome, and why some rhizobia show unstable nodulation phenotypes on legume hosts.
Collapse
Affiliation(s)
- Matthew Nelson
- 1Biotechnology Institute and Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN 55108, USA
| | - Joseph Guhlin
- 2Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Brendan Epstein
- 2Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Peter Tiffin
- 2Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Michael J Sadowsky
- 1Biotechnology Institute and Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
23
|
Barton IS, Fuqua C, Platt TG. Ecological and evolutionary dynamics of a model facultative pathogen: Agrobacterium and crown gall disease of plants. Environ Microbiol 2018; 20:16-29. [PMID: 29105274 PMCID: PMC5764771 DOI: 10.1111/1462-2920.13976] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/20/2017] [Accepted: 10/25/2017] [Indexed: 01/09/2023]
Abstract
Many important pathogens maintain significant populations in highly disparate disease and non-disease environments. The consequences of this environmental heterogeneity in shaping the ecological and evolutionary dynamics of these facultative pathogens are incompletely understood. Agrobacterium tumefaciens, the causative agent for crown gall disease of plants has proven a productive model for many aspects of interactions between pathogens and their hosts and with other microbes. In this review, we highlight how this past work provides valuable context for the use of this system to examine how heterogeneity and transitions between disease and non-disease environments influence the ecology and evolution of facultative pathogens. We focus on several features common among facultative pathogens, such as the physiological remodelling required to colonize hosts from environmental reservoirs and the consequences of competition with host and non-host associated microbiota. In addition, we discuss how the life history of facultative pathogens likely often results in ecological tradeoffs associated with performance in disease and non-disease environments. These pathogens may therefore have different competitive dynamics in disease and non-disease environments and are subject to shifting selective pressures that can result in pathoadaptation or the within-host spread of avirulent phenotypes.
Collapse
Affiliation(s)
- Ian S. Barton
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Thomas G. Platt
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
24
|
Wu CF, Smith DA, Lai EM, Chang JH. The Agrobacterium Type VI Secretion System: A Contractile Nanomachine for Interbacterial Competition. Curr Top Microbiol Immunol 2018; 418:215-231. [PMID: 29992360 DOI: 10.1007/82_2018_99] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The bacterial type VI secretion system (T6SS) is a contractile nanomachine dedicated to delivering molecules out of bacterial cells. T6SS-encoding loci are in the genome sequences of many Gram-negative bacteria, and T6SS has been implicated in a plethora of roles. In the majority of cases, the T6SSs deliver effector proteins in a contact-dependent manner to antagonize other bacteria. Current models suggest that the effectors are deployed to influence social interactions in microbial communities. In this chapter, we describe the structure, function, and regulation of the T6SS and its effectors. We provide focus on the T6SS of Agrobacterium tumefaciens, the causative agent of crown gall disease, and relate the role of the T6SS to the ecology of A. tumefaciens.
Collapse
Affiliation(s)
- Chih-Feng Wu
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Delaney A Smith
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA.
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
25
|
Abstract
This chapter presents a historical overview of the development and changes in scientific approaches to classifying members of the Agrobacterium genus. We also describe the changes in the inference of evolutionary relationships among Agrobacterium biovars and Agrobacterium strains from using the 16S rRNA marker to recA genes and to the use of multilocus sequence analysis (MLSA). Further, the impacts of the genomic era enabling low cost and rapid whole genome sequencing on Agrobacterium phylogeny are reviewed with a focus on the use of new and sophisticated bioinformatics approaches to refine phylogenetic inferences. An updated genome-based phylogeny of ninety-seven Agrobacterium tumefaciens complex isolates representing ten known genomic species is presented, providing additional support to the monophyly of the Agrobacterium clade. Additional taxon sampling within Agrobacterium genomovar G3 indicates potential exceptions to interpretation of the concept of bacterial genomics species as ecological species because the genomovar G3 genomic cluster, which initially includes clinical strains, now also includes plant-associated and cave isolates.
Collapse
Affiliation(s)
- Han Ming Gan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.
| | - Michael A Savka
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA.
| |
Collapse
|
26
|
Trattnig N, Farcet JB, Gritsch P, Christler A, Pantophlet R, Kosma P. Synthesis of a Pentasaccharide Fragment Related to the Inner Core Region of Rhizobial and Agrobacterial Lipopolysaccharides. J Org Chem 2017; 82:12346-12358. [PMID: 29028168 PMCID: PMC5715290 DOI: 10.1021/acs.joc.7b02172] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
The
pentasaccharide fragment α-d-Man-(1 →
5)-[α-d-Kdo-(2 → 4)-]α-d-Kdo-(2
→ 6)-β-d-GlcNAc-(1 → 6)-α-d-GlcNAc equipped with a 3-aminopropyl spacer moiety was prepared
by a sequential assembly of monosaccharide building blocks. The glucosamine
disaccharide—as a backbone surrogate of the bacterial lipid
A region—was synthesized using an 1,3-oxazoline donor, which
was followed by coupling with an isopropylidene-protected Kdo-fluoride
donor to afford a protected tetrasaccharide intermediate. Eventually,
an orthogonally protected manno-configured trichloroacetimidate
donor was used to achieve the sterically demanding glycosylation of
the 5-OH group of Kdo in good yield. The resulting pentasaccharide
is suitably protected for further chain elongation at positions 3,
4, and 6 of the terminal mannose. Global deprotection afforded the
target pentasaccharide to be used for the conversion into neoglycoconjugates
and “clickable” ligands.
Collapse
Affiliation(s)
- Nino Trattnig
- Department of Chemistry, University of Natural Resources and Life Sciences , A-1190 Vienna, Austria
| | - Jean-Baptiste Farcet
- Department of Chemistry, University of Natural Resources and Life Sciences , A-1190 Vienna, Austria
| | - Philipp Gritsch
- Department of Chemistry, University of Natural Resources and Life Sciences , A-1190 Vienna, Austria
| | - Anna Christler
- Department of Chemistry, University of Natural Resources and Life Sciences , A-1190 Vienna, Austria
| | - Ralph Pantophlet
- Faculty of Health Sciences and Department of Molecular Biology and Biochemistry, Simon Fraser University , Burnaby, British Columbia V5A1S6, Canada
| | - Paul Kosma
- Department of Chemistry, University of Natural Resources and Life Sciences , A-1190 Vienna, Austria
| |
Collapse
|
27
|
Ravanfar SA, Orbovic V, Moradpour M, Abdul Aziz M, Karan R, Wallace S, Parajuli S. Improvement of tissue culture, genetic transformation, and applications of biotechnology to Brassica. Biotechnol Genet Eng Rev 2017; 33:1-25. [PMID: 28460558 DOI: 10.1080/02648725.2017.1309821] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Development of in vitro plant regeneration method from Brassica explants via organogenesis and somatic embryogenesis is influenced by many factors such as culture environment, culture medium composition, explant sources, and genotypes which are reviewed in this study. An efficient in vitro regeneration system to allow genetic transformation of Brassica is a crucial tool for improving its economical value. Methods to optimize transformation protocols for the efficient introduction of desirable traits, and a comparative analysis of these methods are also reviewed. Hence, binary vectors, selectable marker genes, minimum inhibitory concentration of selection agents, reporter marker genes, preculture media, Agrobacterium concentration and regeneration ability of putative transformants for improvement of Agrobacterium-mediated transformation of Brassica are discussed.
Collapse
Affiliation(s)
- Seyed Ali Ravanfar
- a Department of Agronomy , Institute of Food and Agricultural Sciences, University of Florida , Gainesville , FL 32611-0300 , USA.,b Citrus Research and Education Center-University of Florida/IFAS , Lake Alfred , FL 33850 , USA.,d Laboratory of Plantation Crops , Institute of Tropical Agriculture, Universiti Putra Malaysia , 43400 Serdang , Selangor Darul Ehsan , Malaysia
| | - Vladimir Orbovic
- b Citrus Research and Education Center-University of Florida/IFAS , Lake Alfred , FL 33850 , USA
| | - Mahdi Moradpour
- d Laboratory of Plantation Crops , Institute of Tropical Agriculture, Universiti Putra Malaysia , 43400 Serdang , Selangor Darul Ehsan , Malaysia
| | - Maheran Abdul Aziz
- d Laboratory of Plantation Crops , Institute of Tropical Agriculture, Universiti Putra Malaysia , 43400 Serdang , Selangor Darul Ehsan , Malaysia
| | - Ratna Karan
- a Department of Agronomy , Institute of Food and Agricultural Sciences, University of Florida , Gainesville , FL 32611-0300 , USA
| | - Simon Wallace
- c Department of Biology , University of Iowa , Iowa City , IA 52242-1324 , USA
| | - Saroj Parajuli
- e Gulf Coast Research and Education Center, University of Florida , Wimauma , FL 33598 , USA
| |
Collapse
|
28
|
Yan J, Li Y, Han XZ, Chen WF, Zou WX, Xie Z, Li M. Agrobacterium deltaense sp. nov., an endophytic bacteria isolated from nodule of Sesbania cannabina. Arch Microbiol 2017; 199:1003-1009. [DOI: 10.1007/s00203-017-1367-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/05/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
|
29
|
Identification and characterization of endophytic bacteria isolated from in vitro cultures of peach and pear rootstocks. 3 Biotech 2016; 6:120. [PMID: 28330195 PMCID: PMC4909027 DOI: 10.1007/s13205-016-0442-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/25/2016] [Indexed: 11/16/2022] Open
Abstract
Endophytes are microorganisms which live symbiotically with almost all varieties of plant and in turn helping the plant in a number of ways. Instead of satisfactory surface sterilization approaches, repeatedly occurring bacterial growth on in vitro rootstock cultures of peach and pear was identified and isolated as endophytic bacteria in our present study. Five different isolates from peach rootstocks were molecularly identified by 16S rRNA gene sequencing as Brevundimonas diminuta, Leifsonia shinshuensis, Sphingomonas parapaucimobilis Brevundimonas vesicularis, Agrobacterium tumefaciens while two endophytic isolates of pear were identified as Pseudoxanthomonas mexicana, and Stenotrophomonas rhizophilia. Identified endophytes were also screened for their potential of plant growth promotion according to indoleacetic acid (IAA) production, nitrogen fixation, solubilization of phosphate and production of siderophore. All seven endophytic isolates have shown positive results for IAA, nitrogen fixation and phosphate solubilization tests. However, two out of seven isolates showed positive results for siderophore production. On the basis of these growth promoting competences, isolated endophytes can be presumed to have significant influence on the growth of host plants. Future studies required to determine the antimicrobial susceptibility profile and potential application of these isolates in biological control, microbial biofertilizers and degradative enzyme production.
Collapse
|
30
|
Davis II EW, Weisberg AJ, Tabima JF, Grunwald NJ, Chang JH. Gall-ID: tools for genotyping gall-causing phytopathogenic bacteria. PeerJ 2016; 4:e2222. [PMID: 27547538 PMCID: PMC4958008 DOI: 10.7717/peerj.2222] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/15/2016] [Indexed: 11/20/2022] Open
Abstract
Understanding the population structure and genetic diversity of plant pathogens, as well as the effect of agricultural practices on pathogen evolution, is important for disease management. Developments in molecular methods have contributed to increase the resolution for accurate pathogen identification, but those based on analysis of DNA sequences can be less straightforward to use. To address this, we developed Gall-ID, a web-based platform that uses DNA sequence information from 16S rDNA, multilocus sequence analysis and whole genome sequences to group disease-associated bacteria to their taxonomic units. Gall-ID was developed with a particular focus on gall-forming bacteria belonging to Agrobacterium, Pseudomonas savastanoi, Pantoea agglomerans, and Rhodococcus. Members of these groups of bacteria cause growth deformation of plants, and some are capable of infecting many species of field, orchard, and nursery crops. Gall-ID also enables the use of high-throughput sequencing reads to search for evidence for homologs of characterized virulence genes, and provides downloadable software pipelines for automating multilocus sequence analysis, analyzing genome sequences for average nucleotide identity, and constructing core genome phylogenies. Lastly, additional databases were included in Gall-ID to help determine the identity of other plant pathogenic bacteria that may be in microbial communities associated with galls or causative agents in other diseased tissues of plants. The URL for Gall-ID is http://gall-id.cgrb.oregonstate.edu/.
Collapse
Affiliation(s)
- Edward W. Davis II
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, United States
| | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Javier F. Tabima
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Niklaus J. Grunwald
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, United States
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States
- Horticultural Crops Research Laboratory, USDA-ARS, Corvallis, OR, United States
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, United States
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
31
|
Wu D, Li A, Ma F, Yang J, Xie Y. Genetic control and regulatory mechanisms of succinoglycan and curdlan biosynthesis in genus Agrobacterium. Appl Microbiol Biotechnol 2016; 100:6183-6192. [DOI: 10.1007/s00253-016-7650-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/18/2016] [Accepted: 05/21/2016] [Indexed: 12/15/2022]
|
32
|
Behrendt U, Kämpfer P, Glaeser SP, Augustin J, Ulrich A. Characterization of the N2O-producing soil bacterium Rhizobium azooxidifex sp. nov. Int J Syst Evol Microbiol 2016; 66:2354-2361. [PMID: 27030972 DOI: 10.1099/ijsem.0.001036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the context of studying the bacterial community involved in nitrogen transformation processes in arable soils exposed to different extents of erosion and sedimentation in a long-term experiment (CarboZALF), a strain was isolated that reduced nitrate to nitrous oxide without formation of molecular nitrogen. The presence of the functional gene nirK, encoding the respiratory copper-containing nitrite reductase, and the absence of the nitrous oxide reductase gene nosZ indicated a truncated denitrification pathway and that this bacterium may contribute significantly to the formation of the important greenhouse gas N2O. Phylogenetic analysis based on the 16S rRNA gene sequence and the housekeeping genes recA and atpD demonstrated that the investigated soil isolate belongs to the genus Rhizobium. The closest phylogenetic neighbours were the type strains of Rhizobium. subbaraonis and Rhizobium. halophytocola. The close relationship with R. subbaraonis was reflected by similarity analysis of the recA and atpD genes and their amino acid positions. DNA-DNA hybridization studies revealed genetic differences at the species level, which were substantiated by analysis of the whole-cell fatty acid profile and several distinct physiological characteristics. Based on these results, it was concluded that the soil isolate represents a novel species of the genus Rhizobium, for which the name Rhizobium azooxidifex sp. nov. (type strain Po 20/26T=DSM 100211T=LMG 28788T) is proposed.
Collapse
Affiliation(s)
- Undine Behrendt
- Leibniz Centre for Agricultural Landscape Research (ZALF), Institute for Landscape Biogeochemistry, Eberswalder Str. 84, D-15374 Müncheberg, Germany
| | - Peter Kämpfer
- Department of Applied Microbiology, Justus-Liebig University Giessen, IFZ-Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Stefanie P Glaeser
- Department of Applied Microbiology, Justus-Liebig University Giessen, IFZ-Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Jürgen Augustin
- Leibniz Centre for Agricultural Landscape Research (ZALF), Institute for Landscape Biogeochemistry, Eberswalder Str. 84, D-15374 Müncheberg, Germany
| | - Andreas Ulrich
- Leibniz Centre for Agricultural Landscape Research (ZALF), Institute for Landscape Biogeochemistry, Eberswalder Str. 84, D-15374 Müncheberg, Germany
| |
Collapse
|
33
|
Kuzmanović N, Puławska J, Prokić A, Ivanović M, Zlatković N, Jones JB, Obradović A. Agrobacterium arsenijevicii sp. nov., isolated from crown gall tumors on raspberry and cherry plum. Syst Appl Microbiol 2015; 38:373-8. [DOI: 10.1016/j.syapm.2015.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 05/27/2015] [Accepted: 06/04/2015] [Indexed: 11/28/2022]
|
34
|
Chihaoui SA, Trabelsi D, Jdey A, Mhadhbi H, Mhamdi R. Inoculation of Phaseolus vulgaris with the nodule-endophyte Agrobacterium sp. 10C2 affects richness and structure of rhizosphere bacterial communities and enhances nodulation and growth. Arch Microbiol 2015; 197:805-13. [PMID: 25967041 DOI: 10.1007/s00203-015-1118-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 04/28/2015] [Accepted: 05/05/2015] [Indexed: 11/25/2022]
Abstract
Agrobacterium sp. 10C2 is a nonpathogenic and non-symbiotic nodule-endophyte strain isolated from root nodules of Phaseolus vulgaris. The effect of this strain on nodulation, plant growth and rhizosphere bacterial communities of P. vulgaris is investigated under seminatural conditions. Inoculation with strain 10C2 induced an increase in nodule number (+54 %) and plant biomass (+16 %). Grains also showed a significant increase in phosphorus (+53 %), polyphenols (+217 %), flavonoids (+62 %) and total antioxidant capacity (+82 %). The effect of strain 10C2 on bacterial communities was monitored using terminal restriction fragment length polymorphism of PCR-amplified 16S rRNA genes. When the initial soil was inoculated with strain 10C2 and left 15 days, the Agrobacterium strain did not affect TRF richness but changed structure. When common bean was sown in these soils and cultivated during 75 days, both TRF richness and structure were affected by strain 10C2. TRF richness increased in the rhizosphere soil, while it decreased in the bulk soil (root free). The taxonomic assignation of TRFs induced by strain 10C2 in the bean rhizosphere revealed the presence of four phyla (Firmicutes, Actinobacteria, Bacteroidetes and Proteobacteria) with a relative preponderance of Firmicutes, represented mainly by Bacillus species. Some of these taxa (i.e., Bacillus licheniformis, Bacillus pumilus, Bacillus senegalensis, Bacillus subtilis, Bacillus firmus and Paenibacillus koreensis) are particularly known for their plant growth-promoting potentialities. These results suggest that the beneficial effects of strain 10C2 observed on plant growth and grain quality are explained at least in part by the indirect effect through the promotion of beneficial microorganisms.
Collapse
Affiliation(s)
- Saif-Allah Chihaoui
- Laboratory of Legumes, Centre of Biotechnology of Borj-Cédria, BP 901, 2050, Hammam-Lif, Tunisia
| | | | | | | | | |
Collapse
|
35
|
Mousavi SA, Willems A, Nesme X, de Lajudie P, Lindström K. Revised phylogeny of Rhizobiaceae: Proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol 2015; 38:84-90. [DOI: 10.1016/j.syapm.2014.12.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/07/2014] [Accepted: 12/12/2014] [Indexed: 01/26/2023]
|
36
|
Lin SY, Hung MH, Hameed A, Liu YC, Hsu YH, Wen CZ, Arun AB, Busse HJ, Glaeser SP, Kämpfer P, Young CC. Rhizobium capsici sp. nov., isolated from root tumor of a green bell pepper (Capsicum annuum var. grossum) plant. Antonie van Leeuwenhoek 2015; 107:773-84. [PMID: 25555455 DOI: 10.1007/s10482-014-0371-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/23/2014] [Indexed: 10/24/2022]
Abstract
A novel, Gram-staining-negative, rod-shaped, aerobic and motile bacterium, designated strain CC-SKC2(T), was isolated from the root tumor of a green bell pepper (Capsicum annuum var. grossum) plant in Taiwan. Cells were positive for oxidase and catalase activities and exhibited growth at 25-37 °C, pH 4.0-9.0 and tolerated NaCl concentrations up to 4.0 % (w/v). Strain CC-SKC2(T) is able to trigger nodulation in soybean (Glycine max Merr.), but not in Capsicum annuum var. grossum, red bean (Vigna angularis), sesbania (Sesbania roxburghii Merr.) or alfalfa (Medicago varia Martin.). The novel strain shared highest 16S rRNA gene sequence similarity to Rhizobium rhizoryzae KCTC 23652(T) and Rhizobium straminoryzae CC-LY845(T) (both 97.5 %) followed by Rhizobium lemnae L6-16(T) (97.3 %), Rhizobium pseudoryzae KCTC 23294(T) (97.1 %), and Rhizobium paknamense NBRC 109338(T) (97.0 %), whereas other Rhizobium species shared <96.7 % similarity. The DNA-DNA relatedness values of strain CC-SKC2(T) with R. rhizoryzae KCTC 23652(T), R. pseudoryzae KCTC 23294(T) and R. paknamense NBRC 109338(T) were 11.4, 17.2 and 17.0 %, respectively (reciprocal values were 11.1, 28.3 and 24.0 %, respectively). Phylogenetic analysis based on 16S rRNA, atpD and recA genes revealed a distinct taxonomic position attained by strain CC-SKC2(T) with respect to other Rhizobium species. The major fatty acids in strain CC-SKC2(T) were C16:0, C19:0 cyclo ω8c, C14:0 3-OH and/or C16:1 iso I and C18:1 ω7c and/or C18:1 ω6c. The polyamine pattern showed predominance of spermidine and moderate amounts of sym-homospermidine. The predominant quinone system was ubiquinone (Q-10) and the DNA G+C content was 60.5 mol%. On the basis of polyphasic taxonomic evidence presented here, strain CC-SKC2(T) is proposed to represent a novel species within the genus Rhizobium, for which the name Rhizobium capsici sp. nov. is proposed. The type strain is CC-SKC2(T) (=BCRC 80699(T) = JCM 19535(T)).
Collapse
Affiliation(s)
- Shih-Yao Lin
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung, 402, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Tindall BJ. Agrobacterium radiobacter (Beijerinck and van Delden 1902) Conn 1942 has priority over Agrobacterium tumefaciens (Smith and Townsend 1907) Conn 1942 when the two are treated as members of the same species based on the principle of priority and Rule 23a, Note 1 as applied to the corresponding specific epithets. Opinion 94. Judicial Commission of the International Committee on Systematics of Prokaryotes. Int J Syst Evol Microbiol 2014; 64:3590-3592. [PMID: 25288664 DOI: 10.1099/ijs.0.069203-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Judicial Commission affirms that, according to the Rules of the International Code of Nomenclature of Bacteria (including changes made to the wording), the combination Agrobacterium radiobacter (Beijerinck and van Delden 1902) Conn 1942 has priority over the combination Agrobacterium tumefaciens (Smith and Townsend 1907) Conn 1942 when the two are treated as members of the same species based on the principle of priority as applied to the corresponding specific epithets. The type species of the genus is Agrobacterium tumefaciens (Smith and Townsend 1907) Conn 1942, even if treated as a later heterotypic synonym of Agrobacterium radiobacter (Beijerinck and van Delden 1902) Conn 1942. Agrobacterium tumefaciens (Smith and Townsend 1907) Conn 1942 is typified by the strain defined on the Approved Lists of Bacterial Names and by strains known to be derived from the nomenclatural type.
Collapse
Affiliation(s)
- B J Tindall
- Leibniz Institute-DSMZ Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH., Inhoffenstrasse 7b, 38124 Braunschweig, Germany
| |
Collapse
|
38
|
Rhizobium pusense is the main human pathogen in the genus Agrobacterium/Rhizobium. Clin Microbiol Infect 2014; 21:472.e1-5. [PMID: 25669878 DOI: 10.1016/j.cmi.2014.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/28/2014] [Accepted: 12/07/2014] [Indexed: 11/21/2022]
Abstract
Rhizobium pusense was recently described after isolation from the rhizosphere of chickpea. Multilocus sequence-based analysis of clinical isolates identified as Agrobacterium (Rhizobium) radiobacter demonstrated that R. pusense is the main human pathogen within Agrobacterium (Rhizobium) spp. Clinical microbiology of Agrobacterium (Rhizobium) should be considered in the light of recent taxonomic changes.
Collapse
|
39
|
Phylogenetic multilocus sequence analysis of native rhizobia nodulating faba bean (Vicia faba L.) in Egypt. Syst Appl Microbiol 2014; 37:560-9. [DOI: 10.1016/j.syapm.2014.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/01/2014] [Accepted: 10/03/2014] [Indexed: 11/22/2022]
|
40
|
Platt TG, Morton ER, Barton IS, Bever JD, Fuqua C. Ecological dynamics and complex interactions of Agrobacterium megaplasmids. FRONTIERS IN PLANT SCIENCE 2014; 5:635. [PMID: 25452760 PMCID: PMC4231840 DOI: 10.3389/fpls.2014.00635] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 10/27/2014] [Indexed: 05/15/2023]
Abstract
As with many pathogenic bacteria, agrobacterial plant pathogens carry most of their virulence functions on a horizontally transmissible genetic element. The tumor-inducing (Ti) plasmid encodes the majority of virulence functions for the crown gall agent Agrobacterium tumefaciens. This includes the vir genes which drive genetic transformation of host cells and the catabolic genes needed to utilize the opines produced by infected plants. The Ti plasmid also encodes, an opine-dependent quorum sensing system that tightly regulates Ti plasmid copy number and its conjugal transfer to other agrobacteria. Many natural agrobacteria are avirulent, lacking the Ti plasmid. The burden of harboring the Ti plasmid depends on the environmental context. Away from diseased hosts, plasmid costs are low but the benefit of the plasmid is also absent. Consequently, plasmidless genotypes are favored. On infected plants the costs of the Ti plasmid can be very high, but balanced by the opine benefits, locally favoring plasmid bearing cells. Cheating derivatives which do not incur virulence costs but can benefit from opines are favored on infected plants and in most other environments, and these are frequently isolated from nature. Many agrobacteria also harbor an At plasmid which can stably coexist with a Ti plasmid. At plasmid genes are less well characterized but in general facilitate metabolic activities in the rhizosphere and bulk soil, such as the ability to breakdown plant exudates. Examination of A. tumefaciens C58, revealed that harboring its At plasmid is much more costly than harboring it's Ti plasmid, but conversely the At plasmid is extremely difficult to cure. The interactions between these co-resident plasmids are complex, and depend on environmental context. However, the presence of a Ti plasmid appears to mitigate At plasmid costs, consistent with the high frequency with which they are found together.
Collapse
Affiliation(s)
| | | | | | | | - Clay Fuqua
- Department of Biology, Indiana UniversityBloomington, IN, USA
| |
Collapse
|
41
|
Stanfield RL, De Castro C, Marzaioli AM, Wilson IA, Pantophlet R. Crystal structure of the HIV neutralizing antibody 2G12 in complex with a bacterial oligosaccharide analog of mammalian oligomannose. Glycobiology 2014; 25:412-9. [PMID: 25380763 DOI: 10.1093/glycob/cwu123] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) is a major public health threat that continues to infect millions of people worldwide each year. A prophylactic vaccine remains the most cost-effective way of globally reducing and eliminating the spread of the virus. The HIV envelope spike, which is the target of many vaccine design efforts, is densely mantled with carbohydrate and several potent broadly neutralizing antibodies to HIV-1 recognize carbohydrate on the envelope spike as a major part of their epitope. However, immunizing with recombinant forms of the envelope glycoprotein does not typically elicit anti-carbohydrate antibodies. Thus, studies of alternative antigens that may serve as a starting point for carbohydrate-based immunogens are of interest. Here, we present the crystal structure of one such anti-carbohydrate HIV neutralizing antibody (2G12) in complex with the carbohydrate backbone of the lipooligosaccharide from Rhizobium radiobacter strain Rv3, which exhibits a chemical structure that naturally mimics the core high-mannose carbohydrate epitope of 2G12 on HIV-1 gp120. The structure described here provides molecular evidence of the structural homology between the Rv3 oligosaccharide and highly abundant carbohydrates on the surface of HIV-1 and raises the potential for the design of novel glycoconjugates that may find utility in efforts to develop immunogens for eliciting carbohydrate-specific neutralizing antibodies to HIV.
Collapse
Affiliation(s)
- Robyn L Stanfield
- Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Cristina De Castro
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant'Angelo, 80126 Napoli, Italy
| | - Alberto M Marzaioli
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant'Angelo, 80126 Napoli, Italy
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Ralph Pantophlet
- Faculty of Health Sciences and Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
42
|
Rhizobium straminoryzae sp. nov., isolated from the surface of rice straw. Int J Syst Evol Microbiol 2014; 64:2962-2968. [DOI: 10.1099/ijs.0.062117-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An aerobic, Gram-stain-negative, rod-shaped bacterium, designated strain CC-LY845T, was isolated from the surface of rice straw in Taiwan. Cells were non-motile, and no flagellum was detected. Comparison of 16S rRNA gene sequences indicated that the strain was phylogenetically related to species of the genus
Rhizobium
, with closest similarity to
Rhizobium pseudoryzae
KCTC 23294T (97.6 %),
R. rhizoryzae
KCTC 23652T (97.0 %) and
R. oryzae
LMG 24253T (96.7 %); other species showed lower levels of similarity (<96.6 %). The DNA–DNA relatedness of strain CC-LY845T and
R. pseudoryzae
KCTC 23294T was 34.8±3.1 % (reciprocal value 39.2±2.2 %). Phylogenetic analysis based on the housekeeping atpD and recA genes showed that the novel strain could be distinguished from
R. pseudoryzae
KCTC 23294T (92.7 and 91.5 %, respectively) and other species of the genus
Rhizobium
. The temperature range for growth was 25–42 °C, the pH range was 5.0–9.0 and NaCl concentrations up to 4.0 % (w/v) were tolerated. Strain CC-LY845T did not form nodules on four different legumes, and the nodD and nifH genes were not detected by PCR. The major fatty acids were C16 : 0 and summed feature 8 (C18 : 1ω7c/C18 : 1ω6c). The polyamine pattern of strain CC-LY845T showed spermidine and putrescine as major polyamines. The predominant quinone system was ubiquinone 10 (Q-10). The DNA G+C content was 68.3±2.4 mol%. Base on its phylogenetic, phenotypic and chemotaxonomic features, strain CC-LY845T is proposed to represent a novel species within the genus
Rhizobium
, for which the name Rhizobium straminoryzae sp. nov. is proposed. The type strain is strain CC-LY845T ( = BCRC 80698T = JCM 19536T).
Collapse
|
43
|
H. Youseif S, H. Abd El- F, A. Khalifa M, A. Saleh S. Symbiotic Effectiveness of Rhizobium (Agrobacterium) Compared to Ensifer (Sinorhizobium) and Bradyrhizobium Genera for Soybean Inoculation under Field Conditions. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/jm.2014.151.162] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Mousavi SA, Österman J, Wahlberg N, Nesme X, Lavire C, Vial L, Paulin L, de Lajudie P, Lindström K. Phylogeny of the Rhizobium-Allorhizobium-Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst Appl Microbiol 2014; 37:208-15. [PMID: 24581678 DOI: 10.1016/j.syapm.2013.12.007] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 12/14/2013] [Accepted: 12/16/2013] [Indexed: 10/25/2022]
Abstract
The genera Agrobacterium, Allorhizobium, and Rhizobium belong to the family Rhizobiaceae. However, the placement of a phytopathogenic group of bacteria, the genus Agrobacterium, among the nitrogen-fixing bacteria and the unclear position of Rhizobium galegae have caused controversy in previous taxonomic studies. To resolve uncertainties in the taxonomy and nomenclature within this family, the phylogenetic relationships of generic members of Rhizobiaceae were studied, but with particular emphasis on the taxa included in Agrobacterium and the "R. galegae complex" (R. galegae and related taxa), using multilocus sequence analysis (MLSA) of six protein-coding housekeeping genes among 114 rhizobial and agrobacterial taxa. The results showed that R. galegae, R. vignae, R. huautlense, and R. alkalisoli formed a separate clade that clearly represented a new genus, for which the name Neorhizobium is proposed. Agrobacterium was shown to represent a separate cluster of mainly pathogenic taxa of the family Rhizobiaceae. A. vitis grouped with Allorhizobium, distinct from Agrobacterium, and should be reclassified as Allorhizobium vitis, whereas Rhizobium rhizogenes was considered to be the proper name for former Agrobacterium rhizogenes. This phylogenetic study further indicated that the taxonomic status of several taxa could be resolved by the creation of more novel genera.
Collapse
Affiliation(s)
- Seyed Abdollah Mousavi
- University of Helsinki, Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, Biocentre 1, Viikinkaari 9, P.O. Box 56, Helsinki FIN-00014, Finland.
| | - Janina Österman
- University of Helsinki, Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, Biocentre 1, Viikinkaari 9, P.O. Box 56, Helsinki FIN-00014, Finland
| | - Niklas Wahlberg
- University of Turku, Laboratory of Genetics, Department of Biology, 20014 Turku, Finland
| | - Xavier Nesme
- University of Lyon, Université Lyon1, Ecologie Microbienne, UMR CNRS 5557/USC INRA 1364, 16 rue R. Dubois, F-69622 Villeurbanne Cedex, France
| | - Céline Lavire
- University of Lyon, Université Lyon1, Ecologie Microbienne, UMR CNRS 5557/USC INRA 1364, 16 rue R. Dubois, F-69622 Villeurbanne Cedex, France
| | - Ludovic Vial
- University of Lyon, Université Lyon1, Ecologie Microbienne, UMR CNRS 5557/USC INRA 1364, 16 rue R. Dubois, F-69622 Villeurbanne Cedex, France
| | - Lars Paulin
- University of Helsinki, Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, Viikinkaari 4, P.O. Box 56, Helsinki FIN-00014, Finland
| | - Philippe de Lajudie
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, Campus de Baillarguet TA A-82/J, 34398 Montpellier Cédex 5, France
| | - Kristina Lindström
- University of Helsinki, Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, Biocentre 1, Viikinkaari 9, P.O. Box 56, Helsinki FIN-00014, Finland; University of Helsinki, Department of Environmental Sciences, Viikinkaari 2a, P.O. Box 65, Helsinki FIN-00014, Finland
| |
Collapse
|
45
|
Ramírez-Bahena MH, Vial L, Lassalle F, Diel B, Chapulliot D, Daubin V, Nesme X, Muller D. Single acquisition of protelomerase gave rise to speciation of a large and diverse clade within the Agrobacterium/Rhizobium supercluster characterized by the presence of a linear chromid. Mol Phylogenet Evol 2014; 73:202-7. [PMID: 24440816 DOI: 10.1016/j.ympev.2014.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 12/21/2022]
Abstract
Linear chromosomes are atypical in bacteria and likely a secondary trait derived from ancestral circular molecules. Within the Rhizobiaceae family, whose genome contains at least two chromosomes, a particularity of Agrobacterium fabrum (formerly A. tumefaciens) secondary chromosome (chromid) is to be linear and hairpin-ended thanks to the TelA protelomerase. Linear topology and telA distributions within this bacterial family was screened by pulse field gel electrophoresis and PCR. In A. rubi, A. larrymoorei, Rhizobium skierniewicense, A. viscosum, Agrobacterium sp. NCPPB 1650, and every genomospecies of the biovar 1/A. tumefaciens species complex (including R. pusense, A. radiobacter, A. fabrum, R. nepotum plus seven other unnamed genomospecies), linear chromid topologies were retrieved concomitantly with telA presence, whereas the remote species A. vitis, Allorhizobium undicola, Rhizobium rhizogenes and Ensifer meliloti harbored a circular chromid as well as no telA gene. Moreover, the telA phylogeny is congruent with that of recA used as a marker gene of the Agrobacterium phylogeny. Collectively, these findings strongly suggest that single acquisition of telA by an ancestor was the founding event of a large and diverse clade characterized by the presence of a linear chromid. This clade, characterized by unusual genome architecture, appears to be a relevant candidate to serve as a basis for a possible redefinition of the controversial Agrobacterium genus. In this respect, investigating telA in sequenced genomes allows to both ascertain the place of concerned strains into Agrobacterium spp. and their actual assignation to species/genomospecies in this genus.
Collapse
Affiliation(s)
- Martha H Ramírez-Bahena
- Université de Lyon, 69361 Lyon, France; Université Lyon 1, 69622 Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, 69622 Villeurbanne, France; INRA, USC 1364, Ecologie Microbienne, 69622 Villeurbanne, France
| | - Ludovic Vial
- Université de Lyon, 69361 Lyon, France; Université Lyon 1, 69622 Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, 69622 Villeurbanne, France
| | - Florent Lassalle
- Université de Lyon, 69361 Lyon, France; Université Lyon 1, 69622 Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, 69622 Villeurbanne, France; INRA, USC 1364, Ecologie Microbienne, 69622 Villeurbanne, France; CNRS, UMR5558, Biométrie et Biologie Evolutive, 69622 Villeurbanne, France; Ecole Normale Supérieure de Lyon, 69342 Lyon, France
| | - Benjamin Diel
- Université de Lyon, 69361 Lyon, France; Université Lyon 1, 69622 Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, 69622 Villeurbanne, France
| | - David Chapulliot
- Université de Lyon, 69361 Lyon, France; Université Lyon 1, 69622 Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, 69622 Villeurbanne, France; INRA, USC 1364, Ecologie Microbienne, 69622 Villeurbanne, France
| | - Vincent Daubin
- Université de Lyon, 69361 Lyon, France; Université Lyon 1, 69622 Villeurbanne, France; CNRS, UMR5558, Biométrie et Biologie Evolutive, 69622 Villeurbanne, France
| | - Xavier Nesme
- Université de Lyon, 69361 Lyon, France; Université Lyon 1, 69622 Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, 69622 Villeurbanne, France; INRA, USC 1364, Ecologie Microbienne, 69622 Villeurbanne, France.
| | - Daniel Muller
- Université de Lyon, 69361 Lyon, France; Université Lyon 1, 69622 Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, 69622 Villeurbanne, France
| |
Collapse
|
46
|
Huang S, Long M, Fu G, Lin S, Qin L, Hu C, Cen Z, Lu J, Li Q. Characterization of a new pathovar of Agrobacterium vitis causing banana leaf blight in China. J Basic Microbiol 2013; 55:129-34. [PMID: 23828501 DOI: 10.1002/jobm.201300113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 05/29/2013] [Indexed: 11/07/2022]
Abstract
A new banana leaf blight was found in Nanning city, China, during a 7-year survey (2003-2009) of the bacterial diseases on banana plants. Eight bacterial strains were isolated from affected banana leaves, and identified as an intraspecific taxon of Agrobacterium vitis based on their 16S rDNA sequence similarities with those of 37 randomly selected bacterial strains registered in GenBank database. The representative strain Ag-1 was virulent on banana leaves and shared similar growth and biochemical reactions with the reference strain IAM14140 of A. vitis. The strains causing banana leaf blight were denominated as A. vitis pv. musae. The traditional A. vitis strains virulent to grapevines were proposed to be revised as A. vitis pv. vitis. This is the first record of a new type of A. vitis causing banana leaf blight in China.
Collapse
Affiliation(s)
- Siliang Huang
- School of Life Science and Technology, Nanyang Normal University, Nanyang, Henan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Degefu T, Wolde-meskel E, Frostegård Å. Phylogenetic diversity of Rhizobium strains nodulating diverse legume species growing in Ethiopia. Syst Appl Microbiol 2013; 36:272-80. [PMID: 23643092 DOI: 10.1016/j.syapm.2013.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/16/2013] [Accepted: 03/25/2013] [Indexed: 11/17/2022]
Abstract
The taxonomic diversity of thirty-seven Rhizobium strains, isolated from nodules of leguminous trees and herbs growing in Ethiopia, was studied using multilocus sequence analyses (MLSA) of six core and two symbiosis-related genes. Phylogenetic analysis based on the 16S rRNA gene grouped them into five clusters related to nine Rhizobium reference species (99-100% sequence similarity). In addition, two test strains occupied their own independent branches on the phylogenetic tree (AC86a2 along with R. tibeticum; 99.1% similarity and AC100b along with R. multihospitium; 99.5% similarity). One strain from Milletia ferruginea was closely related (>99%) to the genus Shinella, further corroborating earlier findings that nitrogen-fixing bacteria are distributed among phylogenetically unrelated taxa. Sequence analyses of five housekeeping genes also separated the strains into five well-supported clusters, three of which grouped with previously studied Ethiopian common bean rhizobia. Three of the five clusters could potentially be described into new species. Based on the nifH genes, most of the test strains from crop legumes were closely related to several strains of Ethiopian common bean rhizobia and other symbionts of bean plants (R. etli and R. gallicum sv. phaseoli). The grouping of the test strains based on the symbiosis-related genes was not in agreement with the housekeeping genes, signifying differences in their evolutionary history. Our earlier studies revealing a large diversity of Mesorhizobium and Ensifer microsymbionts isolated from Ethiopian legumes, together with the results from the present analysis of Rhizobium strains, suggest that this region might be a potential hotspot for rhizobial biodiversity.
Collapse
Affiliation(s)
- Tulu Degefu
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway.
| | | | | |
Collapse
|
48
|
Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:807-38. [PMID: 23373698 DOI: 10.1146/annurev-arplant-050312-120106] [Citation(s) in RCA: 1514] [Impact Index Per Article: 126.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants host distinct bacterial communities on and inside various plant organs, of which those associated with roots and the leaf surface are best characterized. The phylogenetic composition of these communities is defined by relatively few bacterial phyla, including Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. A synthesis of available data suggests a two-step selection process by which the bacterial microbiota of roots is differentiated from the surrounding soil biome. Rhizodeposition appears to fuel an initial substrate-driven community shift in the rhizosphere, which converges with host genotype-dependent fine-tuning of microbiota profiles in the selection of root endophyte assemblages. Substrate-driven selection also underlies the establishment of phyllosphere communities but takes place solely at the immediate leaf surface. Both the leaf and root microbiota contain bacteria that provide indirect pathogen protection, but root microbiota members appear to serve additional host functions through the acquisition of nutrients from soil for plant growth. Thus, the plant microbiota emerges as a fundamental trait that includes mutualism enabled through diverse biochemical mechanisms, as revealed by studies on plant growth-promoting and plant health-promoting bacteria.
Collapse
Affiliation(s)
- Davide Bulgarelli
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | | | | | | | | |
Collapse
|
49
|
Patel U, Sinha S. Rhizobia species: A Boon for "Plant Genetic Engineering". Indian J Microbiol 2012; 51:521-7. [PMID: 23024417 DOI: 10.1007/s12088-011-0149-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 10/05/2009] [Indexed: 10/18/2022] Open
Abstract
Since past three decades new discoveries in plant genetic engineering have shown remarkable potentials for crop improvement. Agrobacterium Ti plasmid based DNA transfer is no longer the only efficient way of introducing agronomically important genes into plants. Recent studies have explored a novel plant genetic engineering tool, Rhizobia sp., as an alternative to Agrobacterium, thereby expanding the choice of bacterial species in agricultural plant biotechnology. Rhizobia sp. serve as an open license source with no major restrictions in plant biotechnology and help broaden the spectrum for plant biotechnologists with respect to the use of gene transfer vehicles in plants. New efficient transgenic plants can be produced by transferring genes of interest using binary vector carrying Rhizobia sp. Studies focusing on the interactions of Rhizobia sp. with their hosts, for stable and transient transformation and expression of genes, could help in the development of an adequate gene transfer vehicle. Along with being biologically beneficial, it may also bring a new means for fast economic development of transgenic plants, thus giving rise to a new era in plant biotechnology, viz. "Rhizobia mediated transformation technology."
Collapse
Affiliation(s)
- Urmi Patel
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, 382481 Gujarat India
| | | |
Collapse
|
50
|
Bajaj M, Schmidt S, Winter J. Formation of Se (0) nanoparticles by Duganella sp. and Agrobacterium sp. isolated from Se-laden soil of North-East Punjab, India. Microb Cell Fact 2012; 11:64. [PMID: 22607265 PMCID: PMC3391978 DOI: 10.1186/1475-2859-11-64] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 05/20/2012] [Indexed: 11/12/2022] Open
Abstract
Background Selenium (Se) is an essential trace element, but is toxic at high concentrations. Depending upon the geological background, the land use or on anthropogenic pollution, different amounts of Se may be present in soil. Its toxicity is related to the oxyanions selenate and selenite as they are water soluble and bioavailable. Microorganisms play an important role in Se transformations in soil and its cycling in the environment by transforming water-soluble oxyanions into water insoluble, non-toxic elemental Se (0). For this study, soil samples were collected from selenium-contaminated agricultural soils of Punjab/India to enrich and isolate microbes that interacted with the Se cycle. Results A mixed microbial culture enriched from the arable soil of Punjab could reduce 230 mg/l of water soluble selenite to spherical Se (0) nanoparticles during aerobic growth as confirmed by SEM-EDX. Four pure cultures (C 1, C 4, C 6, C 7) of Gram negative, oxidase and catalase positive, aerobic bacteria were isolated from this mixed microbial consortium and identified by 16 S rDNA gene sequence alignment as two strains of Duganella sp. (C 1, C 4) and two strains of Agrobacterium sp.(C 6, C 7). SEM/TEM-EDX analyses of the culture broth of the four strains revealed excretion of uniformly round sharply contoured Se (0) nanoparticles by all cultures. Their size ranged from 140–200 nm in cultures of strains C 1 and C 4, and from 185–190 nm in cultures of strains C 6 and C 7. Both Duganella sp. revealed better selenite reduction efficiencies than the two Agrobacterium sp. Conclusions This is the first study reporting the capability of newly isolated, aerobically growing Duganella sp. and Agrobacterium sp. from soils of Punjab/India to form spherical, regularly formed Se (0) nanoparticles from water soluble selenite. Among others, the four strains may significantly contribute to the biogeochemical cycling of Se in soil. Bioconversion of toxic selenite to non-toxic Se (0) nanoparticles under aerobic conditions in general may be useful for detoxification of agricultural soil, since elemental Se may not be taken up by the roots of plants and thus allow non-dangerous fodder and food production on Se-containing soil.
Collapse
Affiliation(s)
- Mini Bajaj
- Institute of Biology for Engineers and Biotechnology of Wastewater, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | | | | |
Collapse
|