1
|
Fukui Y, Abe M, Kobayashi M. Effects of Hyphomonas Strains on the Growth of Red Algae Pyropia Species by Attaching Specifically to Their Rhizoids. MICROBIAL ECOLOGY 2023; 86:2502-2514. [PMID: 37369788 DOI: 10.1007/s00248-023-02257-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
Bacteria and marine macroalgae form close associations, while various bacteria affect the morphogenesis and growth of macroalgae. Hyphomonas strains exhibit normal morphogenetic activity in protoplasts of the red alga Pyropia yezoensis (nori). However, the effects of the bacteria on the growth of Pyropia from protoplast cells to regenerated thalli remain unknown. Here, we assessed the growth of P. yezoensis and Pyropia tenera using combined cultures of three Hyphomonas strains (LNM10-16, SCM-2, and LNM-9) and three algal media (artificial seawater with vitamins, artificial seawater, and natural seawater) over 7 weeks. Third week after culture, the three Hyphomonas strains showed almost similar levels of normal growth activity for both Pyropia species. However, at 7 weeks, significant differences were observed among the three Hyphomonas strains in terms of length, length-to-width ratio, and normal morphology of Pyropia thalli. LNM10-16 significantly promoted the thalli length and length-to-width ratios of both Pyropia species in artificial seawater without vitamins and natural seawater, compared with the other two Hyphomonas strains. P. yezoensis cultured in artificial seawater with vitamins showed a much higher demand for LNM10-16 in development of the thalli length than P. tenera. These results may be explained by differences in the growth activities of Hyphomonas strains and the nutrient requirements of Pyropia species. Furthermore, the bacteria were more specifically attached to the rhizoid surfaces of both species. This study is the first to reveal that Hyphomonas strains affect the growth of Pyropia species by attaching to their rhizoids.
Collapse
Affiliation(s)
- Youhei Fukui
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Minamiise, Japan.
| | - Mahiko Abe
- National Fisheries University, Japan Fisheries Research and Education Agency, Shimonoseki, Japan
| | - Masahiro Kobayashi
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Yokohama, Japan
| |
Collapse
|
2
|
Vidal-Verdú À, Molina-Menor E, Satari L, Pascual J, Peretó J, Porcar M. Maritalea mediterranea sp. nov., isolated from marine plastic residues. Int J Syst Evol Microbiol 2023; 73. [PMID: 36748519 DOI: 10.1099/ijsem.0.005677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A novel Gram-reaction-negative, aerobic, motile, rod-shaped, grey bacterium, strain P4.10XT, was isolated from plastic debris sampled from shallow waters in the Mediterranean Sea (Valencia, Spain). P4.10XT was catalase- and oxidase-positive, and grew under mesophilic, neutrophilic and halophilic conditions. The 16S rRNA gene sequences revealed that P4.10XT was closely related to Maritalea myrionectae DSM 19524T and Maritalea mobilis E6T (98.25 and 98.03 % sequence similarity, respectively). The DNA G+C content of the genome sequence of P4.10XT was 53.66 %. The genomic indexes average nucleotide identity by blast (ANIb) and digital DNA-DNA hybridization (dDDH) confirmed its classification as representing a novel species of the genus Maritalea. The predominant fatty acids were summed feature 8 (C18 : 1ω7c/C18 : 1ω6c) and C18 : 1 ω7c 11-methyl. The results of this polyphasic study confirm that P4.10XT represents a novel species of the genus Maritalea, for which the name Maritalea mediterranea sp. nov. is proposed (type strain P4.10XT=CECT 30306T = DSM 112386T).
Collapse
Affiliation(s)
- Àngela Vidal-Verdú
- Institute for Integrative Systems Biology I2SysBio (Universitat de València-CSIC), Calle del Catedràtic Agustin Escardino Benlloch 9, 46980 Paterna, Spain
| | - Esther Molina-Menor
- Institute for Integrative Systems Biology I2SysBio (Universitat de València-CSIC), Calle del Catedràtic Agustin Escardino Benlloch 9, 46980 Paterna, Spain
| | - Leila Satari
- Institute for Integrative Systems Biology I2SysBio (Universitat de València-CSIC), Calle del Catedràtic Agustin Escardino Benlloch 9, 46980 Paterna, Spain
| | - Javier Pascual
- Darwin Bioprospecting Excellence SL. Parc Científic Universitat de València, Calle del Catedràtic Agustin Escardino Benlloch 9, 46980 Paterna, Spain
| | - Juli Peretó
- Institute for Integrative Systems Biology I2SysBio (Universitat de València-CSIC), Calle del Catedràtic Agustin Escardino Benlloch 9, 46980 Paterna, Spain.,Darwin Bioprospecting Excellence SL. Parc Científic Universitat de València, Calle del Catedràtic Agustin Escardino Benlloch 9, 46980 Paterna, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat de València, Calle del Dr. Moliner 50, 46100 Burjassot, Spain
| | - Manuel Porcar
- Institute for Integrative Systems Biology I2SysBio (Universitat de València-CSIC), Calle del Catedràtic Agustin Escardino Benlloch 9, 46980 Paterna, Spain.,Darwin Bioprospecting Excellence SL. Parc Científic Universitat de València, Calle del Catedràtic Agustin Escardino Benlloch 9, 46980 Paterna, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat de València, Calle del Dr. Moliner 50, 46100 Burjassot, Spain
| |
Collapse
|
3
|
Taya K, Takeuchi S, Takahashi M, Hayashi KI, Mikami K. Auxin Regulates Apical Stem Cell Regeneration and Tip Growth in the Marine Red Alga Neopyropia yezoensis. Cells 2022; 11:cells11172652. [PMID: 36078060 PMCID: PMC9454478 DOI: 10.3390/cells11172652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The red alga Neopyropia yezoensis undergoes polarized elongation and asymmetrical cell division of the apical stem cell during tip growth in filamentous generations of its life cycle: the conchocelis and conchosporangium. Side branches are also produced via tip growth, a process involving the regeneration and asymmetrical division of the apical stem cell. Here, we demonstrate that auxin plays a crucial role in these processes by using the auxin antagonist 2-(1H-Indol-3-yl)-4-oxo-4-phenyl-butyric acid (PEO-IAA), which specifically blocks the activity of the auxin receptor TRANSPORT INHIBITOR RESPONSE1 (TIR1) in land plants. PEO-IAA repressed both the regeneration and polarized tip growth of the apical stem cell in single-celled conchocelis; this phenomenon was reversed by treatment with the auxin indole-3-acetic acid (IAA). In addition, tip growth of the conchosporangium was accelerated by IAA treatment but repressed by PEO-IAA treatment. These findings indicate that auxin regulates polarized tip cell growth and that an auxin receptor-like protein is present in N. yezoensis. The sensitivity to different 5-alkoxy-IAA analogs differs considerably between N. yezoensis and Arabidopsis thaliana. N. yezoensis lacks a gene encoding TIR1, indicating that its auxin receptor-like protein differs from the auxin receptor of terrestrial plants. These findings shed light on auxin-induced mechanisms and the regulation of tip growth in plants.
Collapse
Affiliation(s)
- Kensuke Taya
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Shunzei Takeuchi
- School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Megumu Takahashi
- Faculty of Bio-Industry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493, Japan
| | - Ken-ichiro Hayashi
- Department of Bioscience, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
| | - Koji Mikami
- School of Food Industrial Sciences, Miyagi University, 2-2-1 Hatatate, Taihaku-ku, Sendai 982-0215, Japan
- Correspondence: ; Tel.: +81-22-245-1411
| |
Collapse
|
4
|
Nedashkovskaya OI, Otstavnykh NY, Kim SG, Kukhlevskiy AD, Zhukova NV, Isaeva MP. Algicella marina gen. nov., sp. nov., a novel marine bacterium isolated from a Pacific red alga. Arch Microbiol 2022; 204:487. [PMID: 35835927 DOI: 10.1007/s00203-022-03091-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/20/2022] [Indexed: 11/02/2022]
Abstract
A novel Gram-staining negative, strictly aerobic, rod-shaped, and non-motile bacterium, designated strain 9Alg 56T, was isolated from the red alga Tichocarpus crinitus. The phylogenetic analysis based on 16S rRNA gene sequences placed the novel strain within the family Rhodobacteraceae, the order Rhodobacterales, the class Alphaproteobacteria, the phylum Pseudomonadota. The nearest neighbors of the new strain were Pontivivens insulae KCTC 42458T, Oceanibium sediminis KCTC 62076T, Halovulum dunhuangense YYQ-30T and Monaibacterium marinum C7T with 16S rRNA gene sequence similarity of 94.7, 94.4%, 93.1 and 92.7%, respectively. The AAI/ANI/dDDH values between 9Alg 56T and the five species of the closest genera (Pontivivens, Oceanibium, Halovulum, Monaibacterium, and 'Oceanomicrobium') were 58.63-63.91%/ 75.91-77.37%/ 19.3-20.4%. The prevalent fatty acids of strain 9Alg 56T were C18:1 ω7c, C18:0 and C14:0 3-OH. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, phosphatidic acid, phosphatidylcholine, and two unidentified lipids. The DNA G+C content of strain 9Alg 56T was 61.5 mol%. A combination of the genotypic and phenotypic data showed that the algal isolate represents a novel genus and species, for which the name Algicella marina gen. nov., sp. nov. is proposed. The type strain is 9Alg 56T (= KCTC 72005T = KMM 6775T).
Collapse
Affiliation(s)
- Olga I Nedashkovskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far-Eastern Branch, Russian Academy of Sciences, Prospekt 100 Let Vladivostoku 159, Vladivostok, Russia, 690022.
| | - Nadezhda Y Otstavnykh
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far-Eastern Branch, Russian Academy of Sciences, Prospekt 100 Let Vladivostoku 159, Vladivostok, Russia, 690022
| | - Song-Gun Kim
- Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Andrey D Kukhlevskiy
- A.V. Zhirmunsky National Scientific Center of Marine Biology of the Far-Eastern Branch, Russian Academy of Sciences, Pal'chevskogo St. 17, Vladivostok, Russia, 690032.,Far-Eastern Federal University, Sukhanova St. 8, Vladivostok, Russia, 690950
| | - Natalia V Zhukova
- A.V. Zhirmunsky National Scientific Center of Marine Biology of the Far-Eastern Branch, Russian Academy of Sciences, Pal'chevskogo St. 17, Vladivostok, Russia, 690032
| | - Marina P Isaeva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far-Eastern Branch, Russian Academy of Sciences, Prospekt 100 Let Vladivostoku 159, Vladivostok, Russia, 690022.
| |
Collapse
|
5
|
Multiple bacterial partners in symbiosis with the nudibranch mollusk Rostanga alisae. Sci Rep 2022; 12:169. [PMID: 34997021 PMCID: PMC8742107 DOI: 10.1038/s41598-021-03973-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/13/2021] [Indexed: 01/23/2023] Open
Abstract
The discovery of symbiotic associations extends our understanding of the biological diversity in the aquatic environment and their impact on the host’s ecology. Of particular interest are nudibranchs that unprotected by a shell and feed mainly on sponges. The symbiotic association of the nudibranch Rostanga alisae with bacteria was supported by ample evidence, including an analysis of cloned bacterial 16S rRNA genes and a fluorescent in situ hybridization analysis, and microscopic observations. A total of 74 clones belonging to the phyla α-, β-, γ-Proteobacteria, Actinobacteria, and Cyanobacteria were identified. FISH confirmed that bacteriocytes were packed with Bradyrhizobium, Maritalea, Labrenzia, Bulkholderia, Achromobacter, and Stenotrophomonas mainly in the foot and notum epidermis, and also an abundance of Synechococcus cyanobacteria in the intestinal epithelium. An ultrastructural analysis showed several bacterial morphotypes of bacteria in epidermal cells, intestine epithelium, and in mucus layer covering the mollusk body. The high proportion of typical bacterial fatty acids in R. alisae indicated that symbiotic bacteria make a substantial contribution to its nutrition. Thus, the nudibranch harbors a high diversity of specific endo- and extracellular bacteria, which previously unknown as symbionts of marine invertebrates that provide the mollusk with essential nutrients. They can provide chemical defense against predators.
Collapse
|
6
|
Lian J, Schimmel P, Sanchez‐Garcia S, Wijffels RH, Smidt H, Sipkema D. Different co-occurring bacteria enhance or decrease the growth of the microalga Nannochloropsis sp. CCAP211/78. Microb Biotechnol 2021; 14:1159-1170. [PMID: 33683803 PMCID: PMC8085966 DOI: 10.1111/1751-7915.13784] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 11/29/2022] Open
Abstract
Marine photosynthetic microalgae are ubiquitously associated with bacteria in nature. However, the influence of these bacteria on algal cultures in bioreactors is still largely unknown. In this study, eighteen different bacterial strains were isolated from cultures of Nannochloropsis sp. CCAP211/78 in two outdoor pilot-scale tubular photobioreactors. The majority of isolates was affiliated with the classes Alphaproteobacteria and Flavobacteriia. To assess the impact of the eighteen strains on the growth of Nannochloropsis sp. CCAP211/78, 24-well plates coupled with custom-made LED boxes were used to simultaneously compare replicate axenic microalgal cultures with addition of individual bacterial isolates. Co-culturing of Nannochloropsis sp. CCAP211/78 with these strains demonstrated distinct responses, which shows that the technique we developed is an efficient method for screening the influence of harmful/beneficial bacteria. Two of the tested strains, namely a strain of Maritalea porphyrae (DMSP31) and a Labrenzia aggregata strain (YP26), significantly enhanced microalgal growth with a 14% and 12% increase of the chlorophyll concentration, respectively, whereas flavobacterial strain YP206 greatly inhibited the growth of the microalga with 28% reduction of the chlorophyll concentration. Our study suggests that algal production systems represent a 'natural' source to isolate and study microorganisms that can either benefit or harm algal cultures.
Collapse
Affiliation(s)
- Jie Lian
- Laboratory of MicrobiologyWageningen University & ResearchStippeneng 4Wageningen6708 WEThe Netherlands
| | - Patrick Schimmel
- Laboratory of MicrobiologyWageningen University & ResearchStippeneng 4Wageningen6708 WEThe Netherlands
| | - Selene Sanchez‐Garcia
- Laboratory of MicrobiologyWageningen University & ResearchStippeneng 4Wageningen6708 WEThe Netherlands
| | - Rene H. Wijffels
- Bioprocess Engineering Group, AlgaePARCWageningen University & ResearchPO Box 16Wageningen6700 AAThe Netherlands
- Faculty of Biosciences and AquacultureNord UniversityBodøN‐8049Norway
| | - Hauke Smidt
- Laboratory of MicrobiologyWageningen University & ResearchStippeneng 4Wageningen6708 WEThe Netherlands
| | - Detmer Sipkema
- Laboratory of MicrobiologyWageningen University & ResearchStippeneng 4Wageningen6708 WEThe Netherlands
| |
Collapse
|
7
|
Shirsalimian MS, Akhavan Sepahy A, Amoozegar MA, Kalantar SM, Dabbagh R. Isolation of Two Radiation Resistant and Desiccation Tolerant Bacteria, Modestobacter sp. A2 and Maritalea sp. B9, from Gandom Beryan Hill in the Lut Desert of Iran. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718030104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Li L, Osman G, Salam N, Mohamed OA, Jiao J, Ma J, Asem MD, Xiao M, Li WJ. Limoniibacter endophyticus gen. nov., sp. nov., an alphaproteobacterium isolated from the roots of Limonium otolepis. Arch Microbiol 2018; 200:663-670. [PMID: 29356837 DOI: 10.1007/s00203-017-1472-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/20/2017] [Accepted: 12/29/2017] [Indexed: 11/26/2022]
Abstract
A Gram-negative bacterium, designated as strain YIM 690229T, was isolated from the roots of Limonium otolepis. The strain was able to grow at 10-40 °C (optimum, 28-37 °C), pH 6.0-8.0 (optimum, 7.0) and in the presence of up to 7% NaCl (w/v) (optimum, up to 2.5%). Comparative 16S rRNA gene sequence analysis revealed that strain YIM 690229T shared less than 93.9% sequence similarities with members within the order Rhizobiales, and was remotely related to members of the family Hyphomicrobiaceae. Strain YIM 690229T was characterized by the presence of Q-10 as the predominant respiratory lipoquinone. The major fatty acids (> 10%) detected were C18:1 ω7c, C16:0, anteiso-C15:0 and summed feature 4 (iso-C17:1 I and/or anteiso-C17:1 B). The polar lipids consisted of diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylmethylethanoamine and two unidentified lipids. The genomic DNA G + C content was 57.2 mol%. Data from this polyphasic taxonomy study suggested that strain YIM 690229T should be classified as a new species of a new genus within the family Hyphomicrobiaceae for which the name Limoniibacter endophyticus gen. nov., sp. nov., is proposed. The type species of the genus Limoniibacter gen. nov. is Limoniibacter endophyticus. The type strain of the species Limoniibacter endophyticus sp. nov. is YIM 690229T (= KCTC 42097T = JCM 30141T = CCTCC AB 2014130T = CGMCC 1.12906T).
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, 830011, People's Republic of China
| | - Ghenijan Osman
- Xinjiang Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Ürümqi, 830091, People's Republic of China
| | - Nimaichand Salam
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Osama Abdalla Mohamed
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, 830011, People's Republic of China
- Environmental Science Department, Institute for Post Graduate of Environment Study, Arish University, North Sinai, 45511, Egypt
| | - Jianyu Jiao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jinbiao Ma
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, 830011, People's Republic of China
| | - Mipeshwaree Devi Asem
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Min Xiao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| | - Wen-Jun Li
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, 830011, People's Republic of China.
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
9
|
Fukui Y, Abe M, Kobayashi M, Yano Y, Satomi M. Isolation of hyphomonas strains that induce normal morphogenesis in protoplasts of the marine red alga Pyropia yezoensis. MICROBIAL ECOLOGY 2014; 68:556-566. [PMID: 24840921 DOI: 10.1007/s00248-014-0423-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 04/15/2014] [Indexed: 06/03/2023]
Abstract
Marine macroalgae cannot develop normal morphology under axenic conditions although normal morphogenesis can be sustained when certain bacteria are present. In this study, bacteria that induced normal morphogenesis in the red alga Pyropia yezoensis (Nori) were identified. The bacteria were isolated from algal media, thalli, tissue debris, and purified protoplasts during protoplast isolation from P. yezoensis laboratory cultures. 16S rRNA gene sequence analysis showed these bacterial isolates belonged to α-Proteobacteria (12 groups), γ-Proteobacteria (3 groups), and Flavobacteria (2 groups). Axenic protoplasts of P. yezoensis generated by removing epiphytic bacteria were co-cultured along with the bacterial isolates. Most axenic protoplasts showed irregular morphogenetic and anaplastic cells; cells with normal morphology were scarce. However, inoculation with 11 strains of Hyphomonas (α-Proteobacteria) led to significantly higher normal morphogenetic rates (4.5-7.3 %, P < 0.01 or 0.05) compared to axenic protoplasts (0.06 %). These Hyphomonas strains were recovered from all experiments; thus, certain Hyphomonas strains can induce normal morphogenesis in P. yezoensis protoplasts. Direct inoculation of the Hyphomonas strain exhibited higher morphogenetic activity than inoculation of its extracellular and intracellular products. This is the first study demonstrating the influence of specific bacteria on protoplast morphology in marine macroalgae.
Collapse
Affiliation(s)
- Youhei Fukui
- National Research Institute of Fisheries Science, Fisheries Research Agency, 2-12-4, Fukuura, Kanazawa-ku, Yokohama, 236-8648, Japan,
| | | | | | | | | |
Collapse
|
10
|
Fukui Y, Abe M, Kobayashi M, Saito H, Oikawa H, Yano Y, Satomi M. Algimonas porphyrae gen. nov., sp. nov., a member of the family Hyphomonadaceae, isolated from the red alga Porphyra yezoensis. Int J Syst Evol Microbiol 2012; 63:314-320. [PMID: 22427444 DOI: 10.1099/ijs.0.040485-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three Gram-negative, stalked, motile bacteria, designated 0C-2-2(T), 0C-17 and LNM-3, were isolated from the red alga Porphyra yezoensis. 16S rRNA gene sequence analysis revealed that the three novel strains belonged to the family Hyphomonadaceae, and were closely related to Litorimonas taeanensis G5(T) (96.5 % 16S rRNA gene sequence similarity) and Hellea balneolensis 26III/A02/215(T) (94.3 %). The DNA G+C contents of the novel isolates (58.5-60.2 mol%) were clearly distinguished from those of L. taeanensis G5(T) (47.1 mol%) and H. balneolensis DSM 19091(T) (47.9 mol%). The G+C content of L. taeanensis G5(T) obtained in this study was quite different from a previous report (63.6 mol%). DNA-DNA hybridization experiments showed that the novel strains constituted a single species. Eleven phenotypic features of the three isolates differed from those of both related genera. The predominant respiratory quinone was ubiquinone-10 and the major fatty acid was C(18 : 1)ω7c. On the basis of this polyphasic taxonomic analysis, the novel strains represent a novel genus and species, for which the name Algimonas porphyrae gen. nov., sp. nov. is proposed. The type strain of Algimonas porphyrae is 0C-2-2(T) (= LMG 26424(T) = NBRC 108216(T)).
Collapse
Affiliation(s)
- Youhei Fukui
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama 236-8648, Japan
| | - Mahiko Abe
- National Fisheries University, Shimonoseki 759-6595, Japan
| | - Masahiro Kobayashi
- Seikai National Fisheries Research Institute, Fisheries Research Agency, Nagasaki 851-2213, Japan
| | - Hiroaki Saito
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama 236-8648, Japan
| | - Hiroshi Oikawa
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, Hiroshima 739-0452, Japan
| | - Yutaka Yano
- Hokkaido National Fisheries Research Institute, Fisheries Research Agency, Sapporo 062-0922, Japan
| | - Masataka Satomi
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama 236-8648, Japan
| |
Collapse
|