1
|
Nguyen PT, Nguyen-Thi TU, Nguyen HT, Pham MN, Nguyen TT. Halophilic lactic acid bacteria - Play a vital role in the fermented food industry. Folia Microbiol (Praha) 2024; 69:305-321. [PMID: 38372951 DOI: 10.1007/s12223-024-01149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
Halophilic lactic acid bacteria have been widely found in various high-salt fermented foods. The distribution of these species in salt-fermented foods contributes significantly to the development of the product's flavor. Besides, these bacteria also have the ability to biosynthesize bioactive components which potentially apply to different areas. In this review, insights into the metabolic properties, salt stress responses, and potential applications of these bacteria have been have been elucidated. The purpose of this review highlights the important role of halophilic lactic acid bacteria in improving the quality and safety of salt-fermented products and explores the potential application of these bacteria.
Collapse
Affiliation(s)
- Phu-Tho Nguyen
- An Giang University, An Giang, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | | | - Huu-Thanh Nguyen
- An Giang University, An Giang, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | - Minh-Nhut Pham
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam
| | - Thi-Tho Nguyen
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
2
|
Kim MJ, Kim TJ, Kang YJ, Yoo JY, Kim JH. Construction of a Novel Shuttle Vector for Tetragenococcus species based on a Cryptic Plasmid from Tetragenococcus halophilus. J Microbiol Biotechnol 2023; 33:211-218. [PMID: 36575862 PMCID: PMC9998201 DOI: 10.4014/jmb.2209.09024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
A cryptic plasmid (pTH32) was characterized from Tetragenococcus halophilus 32, an isolate from jeotgal, Korean traditional fermented seafood. pTH32 is 3,198 bp in size with G+C content of 35.84%, and contains 4 open reading frames (ORFs). orf1 and orf2 are 456 bp and 273 bp in size, respectively, and their translation products showed 65.16% and 69.35% similarities with RepB family plasmid replication initiators, respectively, suggesting the rolling-circle replication (RCR) mode of pTH32. orf3 and orf4 encodes putative hypothetical protein of 186 and 76 amino acids, respectively. A novel Tetragenococcus-Escherichia coli shuttle vector, pMJ32E (7.3 kb, Emr), was constructed by ligation of pTH32 with pBluescript II KS(+) and an erythromycin resistance gene (ErmC). pMJ32E successfully replicated in Enterococcus faecalis 29212 and T. halophilus 31 but not in other LAB species. A pepA gene, encoding aminopeptidase A (PepA) from T. halophilus CY54, was successfully expressed in T. halophilus 31 using pMJ32E. The transformant (TF) showed higher PepA activity (49.8 U/mg protein) than T. halophilus 31 cell (control). When T. halophilus 31 TF was subculturd in MRS broth without antibiotic at 48 h intervals, 53.8% of cells retained pMJ32E after 96 h, and only 2.4% of cells retained pMJ32E after 14 days, supporting the RCR mode of pTH32. pMJ32E could be useful for the genetic engineering of Tetragenococcus and Enterococcus species.
Collapse
Affiliation(s)
- Min Jae Kim
- Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Tae Jin Kim
- Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yun Ji Kang
- Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ji Yeon Yoo
- Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jeong Hwan Kim
- Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea.,Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
3
|
Decadt H, Weckx S, De Vuyst L. The rotation of primary starter culture mixtures results in batch-to-batch variations during Gouda cheese production. Front Microbiol 2023; 14:1128394. [PMID: 36876114 PMCID: PMC9978159 DOI: 10.3389/fmicb.2023.1128394] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023] Open
Abstract
Industrial production of Gouda cheeses mostly relies on a rotated use of different mixed-strain lactic acid bacteria starter cultures to avoid phage infections. However, it is unknown how the application of these different starter culture mixtures affect the organoleptic properties of the final cheeses. Therefore, the present study assessed the impact of three different starter culture mixtures on the batch-to-batch variations among Gouda cheeses from 23 different batch productions in the same dairy company. Both the cores and rinds of all these cheeses were investigated after 36, 45, 75, and 100 weeks of ripening by metagenetics based on high-throughput full-length 16S rRNA gene sequencing accompanied with an amplicon sequence variant (ASV) approach as well as metabolite target analysis of non-volatile and volatile organic compounds. Up to 75 weeks of ripening, the acidifying Lactococcus cremoris and Lactococcus lactis were the most abundant bacterial species in the cheese cores. The relative abundance of Leuconostoc pseudomesenteroides was significantly different for each starter culture mixture. This impacted the concentrations of some key metabolites, such as acetoin produced from citrate, and the relative abundance of non-starter lactic acid bacteria (NSLAB). Cheeses with the least Leuc. pseudomesenteroides contained more NSLAB, such as Lacticaseibacillus paracasei that was taken over by Tetragenococcus halophilus and Loigolactobacillus rennini upon ripening time. Taken together, the results indicated a minor role of leuconostocs in aroma formation but a major impact on the growth of NSLAB. The relative abundance of T. halophilus (high) and Loil. rennini (low) increased with ripening time from rind to core. Two main ASV clusters of T. halophilus could be distinguished, which were differently correlated with some metabolites, both beneficial (regarding aroma formation) and undesirable ones (biogenic amines). A well-chosen T. halophilus strain could be a candidate adjunct culture for Gouda cheese production.
Collapse
Affiliation(s)
| | | | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
4
|
Zhou RY, Huang X, Liu Z, Chua JY, Liu SQ. Evaluating the effect of lactic acid bacterial fermentation on salted soy whey for development of a potential novel soy sauce-like condiment. Curr Res Food Sci 2022; 5:1826-1836. [PMID: 36276244 PMCID: PMC9579447 DOI: 10.1016/j.crfs.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
There were two main objectives of this study: (1) to understand the effect of salt concentration on the growth of four lactic acid bacteria (LAB) in soy whey and determine the non-volatile and volatile profiles generated after fermentation; (2) to evaluate the potential of using salted soy whey to develop a sauce-like condiment through LAB fermentation. The four LAB included non-halophilic Lactiplantibacillus plantarum ML Prime, Limosilactobacillus fermentum PCC, Oenococcus oeni Enoferm Beta and halophilic Tetragenococcus halophilus DSM20337. At 2% salt, all LAB grew remarkably from day 0 to day 1, except for T. halophilus, while at 6% salt, the growth of L. plantarum, L. fermentum and O. oeni was suppressed. Conversely, the higher salt concentration enhanced the growth of T. halophilus in soy whey as the cell count only increased from 6.36 to 6.60 log CFU/mL at 2% salt but it elevated from 6.61 to 7.55 log CFU/mL at 6% salt. Similarly, the higher salt content negatively affected the sugar and amino acids metabolism and organic acids production by non-halophilic LAB. L. plantarum and O. oeni generated significantly (p < 0.05) more lactic acid (3.83 g/L and 4.17 g/L, respectively) than L. fermentum and T. halophilus (2.02 g/L and 0 g/L, respectively) at 2% salt. In contrast, a higher amount of acetic acid was generated by L. fermentum (0.72 g/L at 2% salt) and T. halophilus (0.51 g/L at 6% salt). LAB could remove the green and beany off-flavours in soy whey by metabolizing C6 and C7 aldehydes. However, to develop a novel soy sauce-like condiment, yeast fermentation and Maillard reaction may be required to generate more characteristic soy sauce-associated aroma compounds. Soy whey with 2% and 6% NaCl supported the growth of lactic acid bacteria (LAB). At 6% NaCl, T. halophilus grew better while the growth of other LAB was impeded. T. halophilus and L. fermentum produced significant amounts of acetic acid. Through LAB fermentation, green and beany off-odour of soy whey could be removed. Yeast fermentation and heating are required to produce key aroma soy sauce compounds.
Collapse
Affiliation(s)
- Rebecca Yinglan Zhou
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, 117542, Singapore
| | - Xin Huang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, 117542, Singapore
| | - Zhihao Liu
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, 117542, Singapore
| | - Jian-Yong Chua
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, 117542, Singapore,Corresponding author. Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, 117542, Singapore.
| | - Shao-Quan Liu
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, 117542, Singapore,National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu, 215213, China,Corresponding author. Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, 117542, Singapore.
| |
Collapse
|
5
|
Rodríguez J, González-Guerra A, Vázquez L, Fernández-López R, Flórez AB, de la Cruz F, Mayo B. Isolation and phenotypic and genomic characterization of Tetragenococcus spp. from two Spanish traditional blue-veined cheeses made of raw milk. Int J Food Microbiol 2022; 371:109670. [DOI: 10.1016/j.ijfoodmicro.2022.109670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 11/27/2022]
|
6
|
Link T, Vogel RF, Ehrmann MA. The diversity among the species Tetragenococcus halophilus including new isolates from a lupine seed fermentation. BMC Microbiol 2021; 21:320. [PMID: 34798831 PMCID: PMC8605565 DOI: 10.1186/s12866-021-02381-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/03/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Tetragenococcus (T.) halophilus can be isolated from a variety of fermented foods, such as soy sauce, different soy pastes, salted fish sauce and from cheese brine or degraded sugar beet thick juice. This species contributes by the formation of short chain acids to the flavor of the product. Recently, T. halophilus has been identified as a dominant species in a seasoning sauce fermentation based on koji made with lupine seeds. RESULTS In this study we characterized six strains of T. halophilus isolated from lupine moromi fermentations in terms of their adaptation towards this fermentation environment, salt tolerance and production of biogenic amines. Phylogenic and genomic analysis revealed three distinctive lineages within the species T. halophilus with no relation to their isolation source, besides the lineage of T. halophilus subsp. flandriensis. All isolated strains from lupine moromi belong to one lineage in that any of the type strains are absent. The strains form lupine moromi could not convincingly be assigned to one of the current subspecies. Taken together with strain specific differences in the carbohydrate metabolism (arabinose, mannitol, melibiose, gluconate, galactonate) and amino acid degradation pathways such as arginine deiminase pathway (ADI) and the agmatine deiminase pathway (AgDI) the biodiversity in the species of T. halophilus is greater than expected. Among the new strains, some strains have a favorable combination of traits wanted in a starter culture. CONCLUSIONS Our study characterized T. halophilus strains that were isolated from lupine fermentation. The lupine moromi environment appears to select strains with specific traits as all of the strains are phylogenetically closely related, which potentially can be used as a starter culture for lupine moromi. We also found that the strains can be clearly distinguished phylogenetically and phenotypically from the type strains of both subspecies T. halophilus subsp. halophilus and T. halophilus subsp. flandriensis.
Collapse
Affiliation(s)
- Tobias Link
- Lehrstuhl für Mikrobiologie, Technische Universität München, 85354, Freising, Germany
| | - Rudi F Vogel
- Lehrstuhl für Mikrobiologie, Technische Universität München, 85354, Freising, Germany
| | - Matthias A Ehrmann
- Lehrstuhl für Mikrobiologie, Technische Universität München, 85354, Freising, Germany.
| |
Collapse
|
7
|
Matsutani M, Wakinaka T, Watanabe J, Tokuoka M, Ohnishi A. Comparative Genomics of Closely Related Tetragenococcus halophilus Strains Elucidate the Diversity and Microevolution of CRISPR Elements. Front Microbiol 2021; 12:687985. [PMID: 34220781 PMCID: PMC8249745 DOI: 10.3389/fmicb.2021.687985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/25/2021] [Indexed: 12/26/2022] Open
Abstract
Tetragenococcus halophilus – a halophilic lactic acid bacterium – is frequently used as a starter culture for manufacturing fermented foods. Tetragenococcus is sometimes infected with bacteriophages during fermentation for soy sauce production; however, bacteriophage infection in starter bacteria is one of the major causes of fermentation failure. Here, we obtained whole-genome sequences of the four T. halophilus strains YA5, YA163, YG2, and WJ7 and compared them with 18 previously reported genomes. We elucidated five types of clustered regularly interspaced short palindromic repeat (CRISPR) loci in seven genomes using comparative genomics with a particular focus on CRISPR elements. CRISPR1 was conserved in the four closely related strains 11, YA5, YA163, and YG2, and the spacer sequences were partially retained in each strain, suggesting that partial deletions and accumulation of spacer sequences had occurred independently after divergence of each strain. The host range for typical bacteriophages is narrow and strain-specific thus these accumulation/deletion events may be responsible for differences in resistance to bacteriophages between bacterial strains. Three CRISPR elements, CRISPR1 in strains 11, YA5, YA163, and YG2, CRISPR2 in strain WJ7, and CRISPR2 in strain MJ4, were inserted in almost the same genomic regions, indicating that several independent insertions had occurred in this region. As these elements belong to class 1 type I-C CRISPR group, the results suggested that this site is a hotspot for class 1, type I-C CRISPR loci insertion. Thus, T. halophilus genomes may have acquired strain-specific bacteriophage-resistance through repeated insertion of CRISPR loci and accumulation/deletion events of their spacer sequences.
Collapse
Affiliation(s)
| | | | - Jun Watanabe
- Manufacturing Division, Yamasa Corporation, Choshi, Japan
| | - Masafumi Tokuoka
- Department of Fermentation Science, Faculty of Applied Bio-Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Akihiro Ohnishi
- Department of Fermentation Science, Faculty of Applied Bio-Science, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
8
|
Yao Y, Zhou X, Hadiatullah H, Zhang J, Zhao G. Determination of microbial diversities and aroma characteristics of Beitang shrimp paste. Food Chem 2020; 344:128695. [PMID: 33246688 DOI: 10.1016/j.foodchem.2020.128695] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/05/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022]
Abstract
Beitang shrimp paste (BSP) is fermented by different parts of shrimp, such as the head (H), meat (M), or the whole shrimp (S and W). Microbial communities of BSP were dominated by Firmicutes and Proteobacteria at the phyla level and Tetragenococcus at the genus level. However, the microbial diversity of M was the lowest than the others. Non-dominant bacterial communities were presented by a mutual symbiotic model in BSP fermentation. Tetragenococcus, Halanaerobium, Streptococcus, and Brevundimonas were positively correlated with the biosynthesis of amino acids, fatty acids, and metabolic cofactors; Marinilactibacillus and Pseudomonas might be the main contributors to inorganic sulfides, nitrogen oxides, and long-chain alkanes in BSP; Psychrobacter was closely related to the ester characteristics of methyl palmitoleate and methyl hexadecanoate in H. Halanaerobium and Streptococcus promoted the production of pyrazines in S. Tetragenococcus was positively correlated with acetic acid, decanoic acid, and palmitic acid that improved the sour aroma of M. The relationship between bacteria and aroma formation under different raw materials was expected to improve the quality of BSP.
Collapse
Affiliation(s)
- Yunping Yao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinyun Zhou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Hadiatullah Hadiatullah
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, Tianjin 300072, China
| | - Jian Zhang
- Tianjin Tianfeng Zetian Biotechnology Co., Ltd, Tianjin 300457, China
| | - Guozhong Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
9
|
Shan L, Li Y, Zheng S, Wei Y, Shang Y. Analysis of the bacterial floral structure and diversity of Xuanwei ham by
16S rDNA
sequencing. J Food Saf 2020. [DOI: 10.1111/jfs.12800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Luying Shan
- Yunnan Institute of Food SafetyKunming University of Science and Technology Yunnan China
| | - Yinjiao Li
- Yunnan Institute of Food SafetyKunming University of Science and Technology Yunnan China
| | - Shi Zheng
- Yunnan Institute of Food SafetyKunming University of Science and Technology Yunnan China
| | - Yuanmiao Wei
- Yunnan Institute of Food SafetyKunming University of Science and Technology Yunnan China
| | - Ying Shang
- Yunnan Institute of Food SafetyKunming University of Science and Technology Yunnan China
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
| |
Collapse
|
10
|
Deliu M, Fontanella S, Haider S, Sperrin M, Geifman N, Murray C, Simpson A, Custovic A. Longitudinal trajectories of severe wheeze exacerbations from infancy to school age and their association with early-life risk factors and late asthma outcomes. Clin Exp Allergy 2020; 50:315-324. [PMID: 31876035 PMCID: PMC7065181 DOI: 10.1111/cea.13553] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Exacerbation-prone asthma subtype has been reported in studies using data-driven methodologies. However, patterns of severe exacerbations have not been studied. OBJECTIVE To investigate longitudinal trajectories of severe wheeze exacerbations from infancy to school age. METHODS We applied longitudinal k-means clustering to derive exacerbation trajectories among 887 participants from a population-based birth cohort with severe wheeze exacerbations confirmed in healthcare records. We examined early-life risk factors of the derived trajectories, and their asthma-related outcomes and lung function in adolescence. RESULTS 498/887 children (56%) had physician-confirmed wheeze by age 8 years, of whom 160 had at least one severe exacerbation. A two-cluster model provided the optimal solution for severe exacerbation trajectories among these 160 children: "Infrequent exacerbations (IE)" (n = 150, 93.7%) and "Early-onset frequent exacerbations (FE)" (n = 10, 6.3%). Shorter duration of breastfeeding was the strongest early-life risk factor for FE (weeks, median [IQR]: FE, 0 [0-1.75] vs. IE, 6 [0-20], P < .001). Specific airway resistance (sRaw ) was significantly higher in FE compared with IE trajectory throughout childhood. We then compared children in the two exacerbation trajectories with those who have never wheezed (NW, n = 389) or have wheezed but had no severe exacerbations (WNE, n = 338). At age 8 years, FEV1 /FVC was significantly lower and FeNO significantly higher among FE children compared with all other groups. By adolescence (age 16), subjects in FE trajectory were significantly more likely to have current asthma (67% FE vs. 30% IE vs. 13% WNE, P < .001) and use inhaled corticosteroids (77% FE vs. 15% IE vs. 18% WNE, P < .001). Lung function was significantly diminished in the FE trajectory (FEV1 /FVC, mean [95%CI]: 89.9% [89.3-90.5] vs. 88.1% [87.3-88.8] vs. 85.1% [83.4-86.7] vs. 74.7% [61.5-87.8], NW, WNE, IE, FE respectively, P < .001). CONCLUSION We have identified two distinct trajectories of severe exacerbations during childhood with different early-life risk factors and asthma-related outcomes in adolescence.
Collapse
Affiliation(s)
- Matea Deliu
- Division of Informatics, Imaging, and Data Science, Faculty of Medicine, Biology, and Health, University of Manchester, Manchester, UK
| | - Sara Fontanella
- National Heart and Lung Institute, Imperial College of Science, Technology, and Medicine, London, UK
| | - Sadia Haider
- National Heart and Lung Institute, Imperial College of Science, Technology, and Medicine, London, UK
| | - Matthew Sperrin
- Division of Informatics, Imaging, and Data Science, Faculty of Medicine, Biology, and Health, University of Manchester, Manchester, UK
| | - Nophar Geifman
- Division of Informatics, Imaging, and Data Science, Faculty of Medicine, Biology, and Health, University of Manchester, Manchester, UK
| | - Clare Murray
- Division of Infection, Immunity, and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Angela Simpson
- Division of Infection, Immunity, and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College of Science, Technology, and Medicine, London, UK
| |
Collapse
|
11
|
Chun BH, Han DM, Kim KH, Jeong SE, Park D, Jeon CO. Genomic and metabolic features of Tetragenococcus halophilus as revealed by pan-genome and transcriptome analyses. Food Microbiol 2019; 83:36-47. [PMID: 31202417 DOI: 10.1016/j.fm.2019.04.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/14/2019] [Accepted: 04/20/2019] [Indexed: 01/10/2023]
Abstract
The genomic and metabolic diversity and features of Tetragenococcus halophilus, a moderately halophilic lactic acid bacterium, were investigated by pan-genome, transcriptome, and metabolite analyses. Phylogenetic analyses based on the 16S rRNA gene and genome sequences of 15 T. halophilus strains revealed their phylogenetic distinctness from other Tetragenococcus species. Pan-genome analysis of the T. halophilus strains showed that their carbohydrate metabolic capabilities were diverse and strain dependent. Aside from one histidine decarboxylase gene in one strain, no decarboxylase gene associated with biogenic amine production was identified from the genomes. However, T. halophilus DSM 20339T produced tyramine without a biogenic amine-producing decarboxylase gene, suggesting the presence of an unidentified tyramine-producing gene. Our reconstruction of the metabolic pathways of these strains showed that T. halophilus harbors a facultative lactic acid fermentation pathway to produce l-lactate, ethanol, acetate, and CO2 from various carbohydrates. The transcriptomic analysis of strain DSM 20339T suggested that T. halophilus may produce more acetate via the heterolactic pathway (including d-ribose metabolism) at high salt conditions. Although genes associated with the metabolism of glycine betaine, proline, glutamate, glutamine, choline, and citrulline were identified from the T. halophilus genomes, the transcriptome and metabolite analyses suggested that glycine betaine was the main compatible solute responding to high salt concentration and that citrulline may play an important role in the coping mechanism against high salinity-induced osmotic stresses. Our results will provide a better understanding of the genome and metabolic features of T. halophilus, which has implications for the food fermentation industry.
Collapse
Affiliation(s)
- Byung Hee Chun
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dong Min Han
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Kyung Hyun Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sang Eun Jeong
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dongbin Park
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
12
|
Kim KH, Lee SH, Chun BH, Jeong SE, Jeon CO. Tetragenococcus halophilus MJ4 as a starter culture for repressing biogenic amine (cadaverine) formation during saeu-jeot (salted shrimp) fermentation. Food Microbiol 2019; 82:465-473. [PMID: 31027807 DOI: 10.1016/j.fm.2019.02.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/20/2019] [Accepted: 02/23/2019] [Indexed: 11/29/2022]
Abstract
Biogenic amines (BAs) are frequently present in traditionally fermented salted foods. In this study, a Tetragenococcus halophilus strain (MJ4) with no BA-producing ability was isolated from a fish (anchovy) sauce. Strain MJ4 did not produce BAs from supplied precursors and no BA-producing genes were identified in its genome. Bacterial community analysis showed that in non-inoculated saeu-jeot (shrimp sauce) fermentation, Tetragenococcus predominated after 82 days, while in strain MJ4-inoculated saeu-jeot, Tetragenococcus predominated during the entire fermentation. Strain MJ4 repressed the growth of T. muriaticus, a known BA producer, during fermentation, but metabolite analysis demonstrated that metabolite profiles, including amino acids, were similar regardless of MJ4 inoculation. The metabolite analysis also showed that strain MJ4 clearly repressed the formation of cadaverine during fermentation. This study suggests that the use of strain MJ4 as a starter culture in salted fish fermentation may be a good strategy for the reduction of BA formation.
Collapse
Affiliation(s)
- Kyung Hyun Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Se Hee Lee
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju 61755, South Korea
| | - Byung Hee Chun
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Sang Eun Jeong
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
13
|
Martínez-Onandi N, Sánchez C, Nuñez M, Picon A. Microbiota of Iberian dry-cured ham as influenced by chemical composition, high pressure processing and prolonged refrigerated storage. Food Microbiol 2019; 80:62-69. [PMID: 30704597 DOI: 10.1016/j.fm.2019.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/20/2018] [Accepted: 01/06/2019] [Indexed: 11/24/2022]
Abstract
The effect of high pressure processing (HPP) on the microbiota of ripened Iberian ham of different water activity, salt concentration and intramuscular fat content was investigated before and after a 5-month refrigeration period. At the beginning of the refrigeration period, the only significant effects of chemical composition were those of water activity on psychrotrophs and Micrococcaceae in untreated hams, and of the salt-in-lean ratio on lactic acid bacteria in HPP-treated hams. At the end of the refrigeration period, the only significant effect was that of intramuscular fat content on moulds and yeasts in HPP-treated samples. All microbial groups were significantly affected by HPP, with reductions ranging from 1.7 to 2.0 log cycles after treatment. A significant recovery of all microbial groups took place in HPP-treated hams during the refrigeration period, with increases ranging from 0.5 to 1.1 log cycles. In spite of this recovery, microbial levels in HPP-treated hams remained significantly lower than in untreated hams. Staphylococcus accounted for 93.4% of Iberian ham bacterial isolates, with S. equorum as the most abundant species. Representatives of the Tetragenococcus, Carnobacterium and Streptomyces genera, not previously reported in dry-cured ham, were also isolated. Most of the yeast isolates (75.0%) were identified as Debaryomyces hansenii.
Collapse
Affiliation(s)
- Nerea Martínez-Onandi
- Departamento de Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, 28040, Madrid, Spain
| | - Carmen Sánchez
- Departamento de Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, 28040, Madrid, Spain
| | - Manuel Nuñez
- Departamento de Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, 28040, Madrid, Spain
| | - Antonia Picon
- Departamento de Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, 28040, Madrid, Spain.
| |
Collapse
|
14
|
Devanthi PVP, Linforth R, El Kadri H, Gkatzionis K. Water-in-oil-in-water double emulsion for the delivery of starter cultures in reduced-salt moromi fermentation of soy sauce. Food Chem 2018; 257:243-251. [PMID: 29622206 DOI: 10.1016/j.foodchem.2018.03.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/25/2018] [Accepted: 03/06/2018] [Indexed: 10/17/2022]
Abstract
This study investigated the application of water-oil-water (W1/O/W2) double emulsions (DE) for yeast encapsulation and sequential inoculation of Zygosaccharomyces rouxii and Tetragenococcus halophilus in moromi stage of soy sauce fermentation with reduced NaCl and/or substitution with KCl. Z. rouxii and T. halophilus were incorporated in the internal W1 and external W2 phase of DE, respectively. NaCl reduction and substitution promoted T. halophilus growth to 8.88 log CFU/mL, accompanied with faster sugar depletion and enhanced lactic acid production. Reducing NaCl without substitution increased the final pH (5.49) and decreased alcohols, acids, esters, furan and phenol content. However, the application of DE resulted in moromi with similar microbiological and physicochemical characteristics to that of high-salt. Principal component analysis of GC-MS data demonstrated that the reduced-salt moromi had identical aroma profile to that obtained in the standard one, indicating the feasibility of producing low-salt soy sauce without compromising its quality.
Collapse
Affiliation(s)
| | - Robert Linforth
- Division of Food Sciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom
| | - Hani El Kadri
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Konstantinos Gkatzionis
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
15
|
Effects of co-inoculation and sequential inoculation of Tetragenococcus halophilus and Zygosaccharomyces rouxii on soy sauce fermentation. Food Chem 2017; 240:1-8. [PMID: 28946215 DOI: 10.1016/j.foodchem.2017.07.094] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/28/2017] [Accepted: 07/18/2017] [Indexed: 11/24/2022]
Abstract
The use of Tetragenococcus halophilus and Zygosaccharomyces rouxii as starter cultures is essential for desirable volatiles production during moromi stage of soy sauce fermentation. In this study, the effect of simultaneous and sequential inoculation of cultures in moromi fermentation models, with respect to viability, physicochemical changes, and volatiles formation (using SPME-GC/MS) was investigated. Interestingly, an antagonism was observed as T. halophilus only proliferated (3 log increase) in the presence of Z. rouxii, while Z. rouxii growth was suppressed by 4 log in concurrence with pH increase to 7.31. Final content of reducing sugars, ethanol, acetic acid, and amino nitrogen did not differ significantly (p<0.05) between co-inoculation and sequential inoculation. However, Z. rouxii promoted alcohols formation and produced a more complex aroma profile under suppression. According to Principal Component Analysis (PCA), the inoculation sequence (co-inoculation and sequential) has impacts on volatile compound profiles during moromi fermentation.
Collapse
|
16
|
Draft Genome Sequence of Tetragenococcus halophilus Strain FBL3, a Probiotic Bacterium Isolated from Galchijeot, a Salted Fermented Food, in the Republic of Korea. GENOME ANNOUNCEMENTS 2017; 5:5/18/e00304-17. [PMID: 28473395 PMCID: PMC5477199 DOI: 10.1128/genomea.00304-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tetragenococcus halophilus strain FBL3 is a lactic acid bacterium isolated from galchijeot, a fermented food made from the salted guts of the hairtail fish, in the Republic of Korea. The draft genome of T. halophilus strain FBL3 comprised 87 contigs (≥1 kb) with a total size of 2,420,904 bp and a G+C content of 38.5%.
Collapse
|
17
|
Kobayashi T, Taguchi C, Kida K, Matsuda H, Terahara T, Imada C, Moe NKT, Thwe SM. Diversity of the bacterial community in Myanmar traditional salted fish yegyo ngapi. World J Microbiol Biotechnol 2016; 32:166. [DOI: 10.1007/s11274-016-2127-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 08/11/2016] [Indexed: 11/28/2022]
|
18
|
Kobayashi T, Wang X, Shigeta N, Taguchi C, Ishii K, Shozen KI, Harada Y, Imada C, Terahara T, Shinagawa A. Distribution of histamine-producing lactic acid bacteria in canned salted anchovies and their histamine production behavior. ANN MICROBIOL 2016. [DOI: 10.1007/s13213-016-1213-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
19
|
Satomi M. Effect of Histamine-producing Bacteria on Fermented Fishery Products. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2016. [DOI: 10.3136/fstr.22.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Masataka Satomi
- Food Hygiene and Management Research Group, Research Center for Biochemistry and Food Technology, National Research Institute of Fisheries Science, Fisheries Research Agency
| |
Collapse
|
20
|
Bacterial dynamics during yearlong spontaneous fermentation for production of ngari, a dry fermented fish product of Northeast India. Int J Food Microbiol 2015; 199:62-71. [DOI: 10.1016/j.ijfoodmicro.2015.01.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 12/17/2014] [Accepted: 01/04/2015] [Indexed: 12/16/2022]
|
21
|
Lievens B, Hallsworth JE, Pozo MI, Belgacem ZB, Stevenson A, Willems KA, Jacquemyn H. Microbiology of sugar-rich environments: diversity, ecology and system constraints. Environ Microbiol 2014; 17:278-98. [PMID: 25041632 DOI: 10.1111/1462-2920.12570] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/04/2014] [Accepted: 07/12/2014] [Indexed: 12/18/2022]
Abstract
Microbial habitats that contain an excess of carbohydrate in the form of sugar are widespread in the microbial biosphere. Depending on the type of sugar, prevailing water activity and other substances present, sugar-rich environments can be highly dynamic or relatively stable, osmotically stressful, and/or destabilizing for macromolecular systems, and can thereby strongly impact the microbial ecology. Here, we review the microbiology of different high-sugar habitats, including their microbial diversity and physicochemical parameters, which act to impact microbial community assembly and constrain the ecosystem. Saturated sugar beet juice and floral nectar are used as case studies to explore the differences between the microbial ecologies of low and higher water-activity habitats respectively. Nectar is a paradigm of an open, dynamic and biodiverse habitat populated by many microbial taxa, often yeasts and bacteria such as, amongst many others, Metschnikowia spp. and Acinetobacter spp., respectively. By contrast, thick juice is a relatively stable, species-poor habitat and is typically dominated by a single, xerotolerant bacterium (Tetragenococcus halophilus). A number of high-sugar habitats contain chaotropic solutes (e.g. ethyl acetate, phenols, ethanol, fructose and glycerol) and hydrophobic stressors (e.g. ethyl octanoate, hexane, octanol and isoamyl acetate), all of which can induce chaotropicity-mediated stresses that inhibit or prevent multiplication of microbes. Additionally, temperature, pH, nutrition, microbial dispersion and habitat history can determine or constrain the microbiology of high-sugar milieux. Findings are discussed in relation to a number of unanswered scientific questions.
Collapse
Affiliation(s)
- Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, B-2860, Sint-Katelijne-Waver, Belgium
| | | | | | | | | | | | | |
Collapse
|
22
|
Todoroki K, Ishii Y, Miyauchi C, Kitagawa S, Min JZ, Inoue K, Yamanaka T, Suzuki K, Yoshikawa Y, Ohashi N, Toyo'oka T. Simple and sensitive analysis of histamine and tyramine in Japanese soy sauces and their intermediates using the stable isotope dilution HILIC-MS/MS method. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:6206-6211. [PMID: 24901408 DOI: 10.1021/jf500767p] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We established a simple, sensitive, and reproducible method to analyze the histamine and tyramine levels in Japanese soy sauce and its mash (called moromi) using hydrophilic interaction liquid chromatography with tandem mass spectrometry (HILIC-MS/MS). Histamine and tyramine quantification was performed using their stable isotopes for electrospray ionization-tandem mass spectrometry in the selected reaction monitoring mode. The sample pretreatment process was a simple, one-step liquid-liquid extraction. HILIC separation was performed with a gradient elution of aqueous ammonium formate and acetonitrile. Because of validation tests, the linearity, the accuracies, and precisions were sufficient. The limit of detection and the limit of quantification were 0.09 and 0.29 ppm for histamine and 0.13 and 0.42 ppm for tyramine, respectively. We successfully applied this method to histamine and tyramine determination in four kinds of commercial Japanese soy sauces and also in moromi samples during soy sauce production.
Collapse
Affiliation(s)
- Kenichiro Todoroki
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka , 52-1 Yada, Suruga, Shizuoka 422-8526, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kim MS, Park EJ. Bacterial Communities of Traditional Salted and Fermented Seafoods from Jeju Island of Korea Using 16S rRNA Gene Clone Library Analysis. J Food Sci 2014; 79:M927-34. [DOI: 10.1111/1750-3841.12431] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 02/04/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Min-Soo Kim
- Dept. of Life and Nanopharmaceutical Sciences and Dept. of Biology; Kyung Hee Univ; 1 Hoegi-dong, Dongdaemun-gu Seoul 130-701 Republic of Korea
| | - Eun-Jin Park
- Dept. of Food Bioengineering; Jeju Natl. Univ; Jeju 690-756 Republic of Korea
| |
Collapse
|
24
|
Uchida M, Miyoshi T, Yoshida G, Niwa K, Mori M, Wakabayashi H. Isolation and characterization of halophilic lactic acid bacteria acting as a starter culture for sauce fermentation of the red alga Nori (Porphyra yezoensis). J Appl Microbiol 2014; 116:1506-20. [PMID: 24494732 DOI: 10.1111/jam.12466] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 11/28/2022]
Abstract
AIMS A screening test was conducted for environmental samples to isolate halophilic lactic acid bacteria (HLAB) that can act as a starter in a Nori (Porphyra yezoensis)-sauce culture. METHOD AND RESULTS After 9 months of incubation of enrichment cultures added with 25 kinds of environmental samples, growth of HLAB-like microorganisms was observed in six cultures salted at a 15% w/w level, including culture samples originally from mesopelagic water taken from 321 m-depth and from mountain snow taken at 2450 m-height. Ten strains were isolated and characterized as Tetragenococcus halophilus based on sequence analysis of the 16S rRNA gene. The isolates were inoculated into a newly prepared Nori-sauce culture and were confirmed to be able to act as a starter culture while three reference strains of T. halophilus obtained from a culture collection could not grow in the same culture. CONCLUSIONS Halophilic lactic acid bacteria strains that can make growth in a highly salted Nori-sauce culture were isolated from environmental samples for the first time. All the isolates were identified as T. halophilus. SIGNIFICANCE AND IMPACT OF THE STUDY The isolated strains are expected to be utilized as a starter culture for manufacturing fermented seaweed-sauce, which will be the first fermented food products obtained from algae.
Collapse
Affiliation(s)
- M Uchida
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, Maruishi, Hatsukaichi, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Identification and histamine formation of Tetragenococcus isolated from Thai fermented food products. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0529-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
26
|
Fukui Y, Abe M, Kobayashi M, Saito H, Oikawa H, Yano Y, Satomi M. Algimonas porphyrae gen. nov., sp. nov., a member of the family Hyphomonadaceae, isolated from the red alga Porphyra yezoensis. Int J Syst Evol Microbiol 2012; 63:314-320. [PMID: 22427444 DOI: 10.1099/ijs.0.040485-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three Gram-negative, stalked, motile bacteria, designated 0C-2-2(T), 0C-17 and LNM-3, were isolated from the red alga Porphyra yezoensis. 16S rRNA gene sequence analysis revealed that the three novel strains belonged to the family Hyphomonadaceae, and were closely related to Litorimonas taeanensis G5(T) (96.5 % 16S rRNA gene sequence similarity) and Hellea balneolensis 26III/A02/215(T) (94.3 %). The DNA G+C contents of the novel isolates (58.5-60.2 mol%) were clearly distinguished from those of L. taeanensis G5(T) (47.1 mol%) and H. balneolensis DSM 19091(T) (47.9 mol%). The G+C content of L. taeanensis G5(T) obtained in this study was quite different from a previous report (63.6 mol%). DNA-DNA hybridization experiments showed that the novel strains constituted a single species. Eleven phenotypic features of the three isolates differed from those of both related genera. The predominant respiratory quinone was ubiquinone-10 and the major fatty acid was C(18 : 1)ω7c. On the basis of this polyphasic taxonomic analysis, the novel strains represent a novel genus and species, for which the name Algimonas porphyrae gen. nov., sp. nov. is proposed. The type strain of Algimonas porphyrae is 0C-2-2(T) (= LMG 26424(T) = NBRC 108216(T)).
Collapse
Affiliation(s)
- Youhei Fukui
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama 236-8648, Japan
| | - Mahiko Abe
- National Fisheries University, Shimonoseki 759-6595, Japan
| | - Masahiro Kobayashi
- Seikai National Fisheries Research Institute, Fisheries Research Agency, Nagasaki 851-2213, Japan
| | - Hiroaki Saito
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama 236-8648, Japan
| | - Hiroshi Oikawa
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, Hiroshima 739-0452, Japan
| | - Yutaka Yano
- Hokkaido National Fisheries Research Institute, Fisheries Research Agency, Sapporo 062-0922, Japan
| | - Masataka Satomi
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama 236-8648, Japan
| |
Collapse
|