1
|
Ben Abdallah M, Chamkha M, Karray F, Sayadi S. Microbial diversity in polyextreme salt flats and their potential applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11371-11405. [PMID: 38180652 DOI: 10.1007/s11356-023-31644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024]
Abstract
Recent geological, hydrochemical, and mineralogical studies performed on hypersaline salt flats have given insights into similar geo-morphologic features on Mars. These salt-encrusted depressions are widely spread across the Earth, where they are characterized by high salt concentrations, intense UV radiation, high evaporation, and low precipitation. Their surfaces are completely dry in summer; intermittent flooding occurs in winter turning them into transitory hypersaline lakes. Thanks to new approaches such as culture-dependent, culture-independent, and metagenomic-based methods, it is important to study microbial life under polyextreme conditions and understand what lives in these dynamic ecosystems and how they function. Regarding these particular features, new halophilic microorganisms have been isolated from some salt flats and identified as excellent producers of primary and secondary metabolites and granules such as halocins, enzymes, carotenoids, polyhydroxyalkanoates, and exopolysaccharides. Additionally, halophilic microorganisms are implemented in heavy metal bioremediation and hypersaline wastewater treatment. As a result, there is a growing interest in the distribution of halophilic microorganisms around the world that can be looked upon as good models to develop sustainable biotechnological processes for all fields. This review provides insights into diversity, ecology, metabolism, and genomics of halophiles in hypersaline salt flats worldwide as well as their potential uses in biotechnology.
Collapse
Affiliation(s)
- Manel Ben Abdallah
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia.
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia
| | - Fatma Karray
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| |
Collapse
|
2
|
Nas F, Aissaoui N, Mahjoubi M, Mosbah A, Arab M, Abdelwahed S, Khrouf R, Masmoudi AS, Cherif A, Klouche-Khelil N. A comparative GC-MS analysis of bioactive secondary metabolites produced by halotolerant Bacillus spp. isolated from the Great Sebkha of Oran. Int Microbiol 2021; 24:455-470. [PMID: 34100180 DOI: 10.1007/s10123-021-00185-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 05/16/2021] [Accepted: 05/24/2021] [Indexed: 11/28/2022]
Abstract
The reemergence of infectious diseases and resistant pathogens represents a serious problem for human life. Hence, the screening for new or alternative antimicrobial compounds is still urgent. Unusual ecosystems such as saline habitats are considered promising environments for the purposes of isolating bacterial strains able to produce potent natural products. The aim of this study is the identification of bioactive compounds biosynthesized by three halotolerant strains isolated from the Sebkha of Oran (Algeria) using gas chromatography coupled to mass spectrometry. Primary screening investigation of antimicrobial activities were performed against reference bacterial and fungal strains and revealed a broad-spectrum activity. Secondary metabolite extraction was carried out using ethyl acetate and chloroform. Crude extracts were tested for bioactivity using the disc diffusion method and subjected to GC-MS analysis. The extracts showed an important inhibitory effect against all tested strains. Fifty-six compounds were identified; they include tert-butyl phenol compounds, fatty acid methyl esters due to the methylation procedure, hydrocarbons, aldehydes, benzoquinones, pyrrols, and terpenes. Literature reports such compounds to have wide biological and pharmaceutical applications. The molecular identification of the three isolates was achieved using the 16S-23S rRNA gene intergenic spacer region (ITS) and 16S rRNA sequencing. Partial 16S rRNA gene sequencing showed very high similarity with many species of Bacillus. This study provided insights on the potential of halotolerant Bacillus as drug research target for bioactive metabolites. The findings suggest that the Great Sebkha of Oran is a valuable source of strains exhibiting variety of beneficial attributes that can be utilized in the development of biological antibiotics.
Collapse
Affiliation(s)
- Fatima Nas
- Laboratory of Applied Microbiology in Food, Biomedical and Environment (LAMAABE), Faculty of Nature and Life, Earth and Universe Sciences, Department of Biology, Aboubekr Belkaïd University of Tlemcen, Tlemcen, Algeria
| | - Nadia Aissaoui
- Laboratory of Applied Microbiology in Food, Biomedical and Environment (LAMAABE), Faculty of Nature and Life, Earth and Universe Sciences, Department of Biology, Aboubekr Belkaïd University of Tlemcen, Tlemcen, Algeria
| | - Mouna Mahjoubi
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole SidiThabe, 2020, Ariana, Tunisia
| | - Amor Mosbah
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole SidiThabe, 2020, Ariana, Tunisia
| | - Mounia Arab
- Laboratory of Applied Microbiology in Food, Biomedical and Environment (LAMAABE), Faculty of Nature and Life, Earth and Universe Sciences, Department of Biology, Aboubekr Belkaïd University of Tlemcen, Tlemcen, Algeria
| | - Soukaina Abdelwahed
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole SidiThabe, 2020, Ariana, Tunisia
| | - Rim Khrouf
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole SidiThabe, 2020, Ariana, Tunisia
| | | | - Ameur Cherif
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole SidiThabe, 2020, Ariana, Tunisia
| | - Nihel Klouche-Khelil
- Laboratory of Applied Microbiology in Food, Biomedical and Environment (LAMAABE), Faculty of Nature and Life, Earth and Universe Sciences, Department of Biology, Aboubekr Belkaïd University of Tlemcen, Tlemcen, Algeria. .,Laboratory of Experimental Surgery, Medical Faculty, Dental Surgery Department, Aboubekr Belkaïd University of Tlemcen, Tlemcen, Algeria.
| |
Collapse
|
3
|
Cubillos CF, Paredes A, Yáñez C, Palma J, Severino E, Vejar D, Grágeda M, Dorador C. Insights Into the Microbiology of the Chaotropic Brines of Salar de Atacama, Chile. Front Microbiol 2019; 10:1611. [PMID: 31354691 PMCID: PMC6637823 DOI: 10.3389/fmicb.2019.01611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/27/2019] [Indexed: 02/02/2023] Open
Abstract
Microbial life inhabiting hypersaline environments belong to a limited group of extremophile or extremotolerant taxa. Natural or artificial hypersaline environments are not limited to high concentrations of NaCl, and under such conditions, specific adaptation mechanisms are necessary to permit microbial survival and growth. Argentina, Bolivia, and Chile include three large salars (salt flats) which globally, represent the largest lithium reserves, and are commonly referred to as the Lithium Triangle Zone. To date, a large amount of information has been generated regarding chemical, geological, meteorological and economical perspectives of these salars. However, there is a remarkable lack of information regarding the biology of these unique environments. Here, we report the presence of two bacterial strains (isolates LIBR002 and LIBR003) from one of the most hypersaline lithium-dominated man-made environments (total salinity 556 g/L; 11.7 M LiCl) reported to date. Both isolates were classified to the Bacillus genera, but displayed differences in 16S rRNA gene and fatty acid profiles. Our results also revealed that the isolates are lithium-tolerant and that they are phylogenetically differentiated from those Bacillus associated with high NaCl concentration environments, and form a new clade from the Lithium Triangle Zone. To determine osmoadaptation strategies in these microorganisms, both isolates were characterized using morphological, metabolic and physiological attributes. We suggest that our characterization of bacterial isolates from a highly lithium-enriched environment has revealed that even at such extreme salinities with high concentrations of chaotropic solutes, scope for microbial life exists. These conditions have previously been considered to limit the development of life, and our work extends the window of life beyond high concentrations of MgCl2, as previously reported, to LiCl. Our results can be used to further the understanding of salt tolerance, most especially for LiCl-dominated brines, and likely have value as models for the understanding of putative extra-terrestrial (e.g., Martian) life.
Collapse
Affiliation(s)
- Carolina F. Cubillos
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
- Department of Chemical Engineering and Mineral Process, Center for Advanced Study of Lithium and Industrial Minerals, Universidad de Antofagasta, Antofagasta, Chile
- Centre for Biotechnology and Bioengineering, Universidad de Chile, Santiago, Chile
| | - Adrián Paredes
- Laboratorio Química Biológica, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta, Chile
| | - Carolina Yáñez
- Laboratorio Microbiología, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jenifer Palma
- Departamento de Ciencias de los Alimentos, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Esteban Severino
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Drina Vejar
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
- Centre for Biotechnology and Bioengineering, Universidad de Chile, Santiago, Chile
| | - Mario Grágeda
- Department of Chemical Engineering and Mineral Process, Center for Advanced Study of Lithium and Industrial Minerals, Universidad de Antofagasta, Antofagasta, Chile
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
- Centre for Biotechnology and Bioengineering, Universidad de Chile, Santiago, Chile
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
4
|
Thalassorhabdus alkalitolerans gen. nov., sp. nov., a novel Bacillaceae member isolated from marine sediment. Int J Syst Evol Microbiol 2018; 68:2969-2976. [DOI: 10.1099/ijsem.0.002931] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
5
|
Aliibacillus thermotolerans gen. nov., sp. nov.: a thermophilic and heterotrophic ammonia-oxidizing bacterium from compost. Arch Microbiol 2018; 200:1357-1363. [PMID: 29974158 DOI: 10.1007/s00203-018-1550-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/05/2018] [Accepted: 06/30/2018] [Indexed: 10/28/2022]
Abstract
A novel moderately thermophilic and heterotrophic ammonia-oxidizing bacterium, designated strain BM62T, was isolated from compost in the thermophilic stage in Harbin, China. Phylogenetic analysis based on the 16S rRNA gene indicated that strain BM62T belongs to the family Bacillaceae within the class Bacilli and was most closely related to Alteribacillus iranensis X5BT (only 94.6% sequence similarity). Cells of strain BM62T were Gram-positive, rod-shaped, motile by periflagella, catalase-positive and oxidase-negative. Growth of strain BM62T was observed at salinities of 0-4% (optimum 2-3%), temperatures of 35-65 °C (optimum 50 °C) and pH values of 5-9 (optimum pH 7). The major cellular fatty acid was iso-C16:0, and the predominant ubiquinone was MK-7. The peptidoglycan type is A1γ, and meso-diaminopimelic acid was the diagnostic diamino acid. The major polar lipids were diphosphatidylglycerol, phospholipid and phosphatidylglycerol. The G + C content of its genomic DNA was 36.5 mol%. Data from this polyphasic taxonomy study suggested that strain BM62T should be classified as the type strain of the type species of a new genus within the family Bacillaceae for which the name Aliibacillus thermotolerans gen. nov., sp. nov. is proposed. The type strain of the species Aliibacillus thermotolerans sp. nov. is BM62T (= DSM 101851T = CGMCC 1.15790T). The respective DPD Taxon Number is GA00057.
Collapse
|
6
|
Pan T, He H, Wang X, Shen Y, Zhao J, Yan K, Wang X, Liu C, Zhang J, Xiang W. Bacillus solisilvae sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2017; 67:4449-4455. [DOI: 10.1099/ijsem.0.002312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Tong Pan
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, Harbin 150030, PR China
| | - Hairong He
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaochong Wang
- Shenzhen Institute for Drug Control, ShenZhen 518057, PR China
| | - Yibo Shen
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, Harbin 150030, PR China
| | - Junwei Zhao
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, Harbin 150030, PR China
| | - Kai Yan
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiangjing Wang
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, Harbin 150030, PR China
| | - Chongxi Liu
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, Harbin 150030, PR China
| | - Ji Zhang
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, Harbin 150030, PR China
| | - Wensheng Xiang
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, Harbin 150030, PR China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| |
Collapse
|
7
|
Bhatt HB, Azmatunnisa Begum M, Chintalapati S, Chintalapati VR, Singh SP. Desertibacillus haloalkaliphilus gen. nov., sp. nov., isolated from a saline desert. Int J Syst Evol Microbiol 2017; 67:4435-4442. [PMID: 28920841 DOI: 10.1099/ijsem.0.002310] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two Gram-stain-positive, rod-shaped and endospore-forming bacteria that represent a single species, designated strains KJ1-10-99T and KJ1-10-93, were isolated from a saline desert of Little Rann of Kutch, Gujarat, India. Analysis of 16S rRNA gene sequences revealed that the isolates belonged to the family Bacillaceae and were closely related to each other with 16S rRNA gene sequence similarity of 99.9 %. However, these two isolates formed a novel phylogenetic branch within this family. Both strains were aerobic, catalase and oxidase positive, and could grow optimally at 37 °C and pH 9. Further, strains KJ1-10-99T and KJ1-10-93 grew optimally at a NaCl concentration of 7.5 and 15 % (w/v), respectively. Both strains shared highest sequence similarity with Fermentibacillus polygoni IEB3T (96.90 %) followed by Bacillus nanhaiisediminis NH3T (96.3 %) and Bacillus alkalinitrilicus ANL-iso4T (96.3 %). The major cellular fatty acids were anteiso-C15 : 0, anteiso-C17:0, C16 : 0, and iso-C15 : 0. The major polar lipids were diphosphatidylglycerol and phosphatidylglycerol in both strains. The predominant isoprenoid quinone was MK-7 in both the strains. The peptidoglycan contained meso-diaminopimelic acid (meso-DAP) as the diagnostic diamino acid. The DNA G+C content of strains KJ1-10-99T and KJ1-10-93 were 48.7 and 48.9 mol% respectively. Both strains could be distinguished from closest phylogenetic neighbours based on a number of phenotypic properties. On the basis of polyphasic taxonomic analysis and phylogenetic data, we conclude that the strains KJ1-10-99T (=LMG 29918T=KCTC 33878T) and KJ1-10-93 (=LMG 29919=KCTC 33877) represent a novel species of a new genus in the family Bacillaceae, order Bacillales, for which the name Desertibacillus haloalkaliphilus gen. nov., sp. nov. is proposed.
Collapse
Affiliation(s)
- Hitarth B Bhatt
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot-360005, Gujarat, India
| | - M Azmatunnisa Begum
- Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, J. N. T. University, Kukatpally, Hyderabad 500085, India
| | - Sasikala Chintalapati
- Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, J. N. T. University, Kukatpally, Hyderabad 500085, India
| | - Venkata Ramana Chintalapati
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Satya P Singh
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot-360005, Gujarat, India
| |
Collapse
|
8
|
Siroosi M, Amoozegar MA, Khajeh K. Purification and characterization of an alkaline chloride-tolerant laccase from a halotolerant bacterium, Bacillus sp. strain WT. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Description of Alteribacillus alkaliphilus sp. nov., reassignment of Bacillus iranensis (Bagheri et al. 2012) as Alteribacillus iranensis comb. nov. and emended description of the genus Alteribacillus. Int J Syst Evol Microbiol 2016; 66:4772-4778. [DOI: 10.1099/ijsem.0.001428] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
10
|
Zhang S, Li Z, Yan Y, Zhang C, Li J, Zhao B. Bacillus urumqiensis sp. nov., a moderately haloalkaliphilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol 2016; 66:2305-2312. [DOI: 10.1099/ijsem.0.001028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Shanshan Zhang
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhaojun Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanchun Yan
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuanlun Zhang
- The School of Ocean and Earth Sciences, Tongji University, Shanghai 200092, China
| | - Jun Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Baisuo Zhao
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
11
|
Daroonpunt R, Itoh T, Kudo T, Ohkuma M, Tanasupawat S. Bacillus piscicola sp. nov., isolated from Thai fish sauce (Nam-pla). Int J Syst Evol Microbiol 2016; 66:1151-1155. [DOI: 10.1099/ijsem.0.000851] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Rungsima Daroonpunt
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Takashi Itoh
- Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Takuji Kudo
- Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
12
|
Zhu D, Zhang P, Niu L, Xie C, Li P, Sun J, Hang F. Bacillus ectoiniformans sp. nov., a halotolerant bacterium isolated from deep-sea sediments. Int J Syst Evol Microbiol 2016; 66:616-622. [PMID: 26559004 DOI: 10.1099/ijsem.0.000763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A halotolerant, Gram-positive bacterium (strain NE-14T), which was isolated from sediment samples of the South China Sea, was subjected to a taxonomic study. Strain NE-14T grew well at wide temperature and pH ranges, 10.0-45.0 °C and pH 6-10, with an optimum at 30 °C and pH 8.0, respectively. Growth of strain NE-14T was observed at total salt concentrations of 0-10 % (w/v) with optimum at 2 % (w/v). Phylogenetic analysis based on 16S rRNA gene sequence comparison indicated that the isolate belongs to the genus Bacillus. Strain NE-14T was related most closely to Bacillus shackletonii LMG 18435T, Bacillus bataviensis LMG 21833T, Bacillus idriensis SMC 4352-2T and Bacillus drentensis LMG 21831T with 16S rRNA gene sequence similarities of 96.2, 95.9, 95.8 and 95.7 %, respectively. DNA-DNA hybridization between strain NE-14T and B. shackletonii LMG 18435T, B. bataviensis LMG 21833T, B. idriensis SMC 4352-2T and B. drentensis LMG 21831T gave reassociation values of about 27.4, 22.4, 16.4 and 15.9 %, respectively. The DNA G+C content of strain NE-14T was 39.2 mol%. The predominant isoprenoid quinone was menaquinone 7 (MK-7). The cell-wall peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. The predominant cellular fatty acids of strain NE-14T were iso-C15 : 0 and anteiso-C15 : 0. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phospholipid. Based on the phenotypic and phylogenetic characteristics, it is proposed that strain NE-14T be classified as representing a novel species of the genus Bacillus, for which the name Bacillus ectoiniformans sp. nov. is proposed. The type strain is NE-14T ( = DSM 28970T = JCM 30397T).
Collapse
Affiliation(s)
- Daochen Zhu
- State Key Laboratory of Dairy Biotechnology, Technology Center of Bright Dairy & Food Co. Ltd, Shanghai 200436, PR China
- School of Environmental Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Peipei Zhang
- School of Environmental Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Lili Niu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Changxiao Xie
- School of Environmental Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Pingping Li
- Institute of Agricultural Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Jianzhong Sun
- School of Environmental Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Feng Hang
- State Key Laboratory of Dairy Biotechnology, Technology Center of Bright Dairy & Food Co. Ltd, Shanghai 200436, PR China
| |
Collapse
|
13
|
Abbas S, Ahmed I, Kudo T, Iqbal M, Lee YJ, Fujiwara T, Ohkuma M. A heavy metal tolerant novel bacterium, Bacillus malikii sp. nov., isolated from tannery effluent wastewater. Antonie Van Leeuwenhoek 2015; 108:1319-1330. [PMID: 26362330 DOI: 10.1007/s10482-015-0584-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/04/2015] [Indexed: 11/29/2022]
Abstract
The taxonomic position of a Gram-stain positive and heavy metal tolerant bacterium, designated strain NCCP-662(T), was investigated by polyphasic characterisation. Cells of strain NCCP-662(T) were observed to be rod to filamentous shaped, motile and strictly aerobic, and to grow at 10-50 °C (optimum 30-37 °C) and at pH range of 6-10 (optimum pH 7-8). The strain was found to be able to tolerate 0-12 % NaCl (w/v) and heavy metals (Cr 1200 ppm, Pb 1800 ppm and Cu 1200 ppm) in tryptic soya agar medium. The phylogenetic analysis based on the 16S rRNA gene sequence of strain NCCP-662(T) showed that it belongs to the genus Bacillus and showed high sequence similarity (98.2 and 98.0 %, respectively) with the type strains of Bacillus niabensis 4T19(T) and Bacillus halosaccharovorans E33(T). The chemotaxonomic data showed that the major quinone is MK-7; the predominant cellular fatty acids are anteiso-C15 :0, iso-C14:0, iso-C16:0 and C16:0 and iso-C15:0; the major polar lipids are diphosphatidylglycerol, phosphatidylglycerol along with several unidentified glycolipids, phospholipids and polar lipids. The DNA G+C content was determined to be 36.9 mol%. These data also support the affiliation of strain NCCP-662(T) with the genus Bacillus. The level of DNA-DNA relatedness between strain NCCP-662(T) and B. niabensis JCM 16399(T) was 20.5 ± 0.5 %. On the basis of physiological and biochemical characteristics, phylogenetic analyses and DNA-DNA hybridization data, strain NCCP-662(T) can be clearly differentiated from the validly named Bacillus species and thus represents a new species, for which the name Bacillus malikii sp. nov. is proposed with the type strain NCCP-662(T) (= LMG 28369(T) = DSM 29005(T) = JCM 30192(T)).
Collapse
Affiliation(s)
- Saira Abbas
- National Culture Collection of Pakistan (NCCP), National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan
- Department of Plant Genomics and Biotechnology (PGB), PARC Institute of Advanced Studies in Agriculture (PIASA), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan
- Japan Collection of Microorganisms, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
- Laboratory of Plant Nutrition and Fertilizers, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Iftikhar Ahmed
- National Culture Collection of Pakistan (NCCP), National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan.
- Department of Plant Genomics and Biotechnology (PGB), PARC Institute of Advanced Studies in Agriculture (PIASA), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan.
- Japan Collection of Microorganisms, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan.
- Laboratory of Plant Nutrition and Fertilizers, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Takuji Kudo
- Japan Collection of Microorganisms, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Muhammad Iqbal
- Department of Plant Genomics and Biotechnology (PGB), PARC Institute of Advanced Studies in Agriculture (PIASA), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan
| | - Yong-Jae Lee
- Korean Collection for Type Cultures, Biological Resources Centre, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, 305-806, Republic of Korea
| | - Toru Fujiwara
- Laboratory of Plant Nutrition and Fertilizers, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| |
Collapse
|
14
|
Parag B, Sasikala C, Ramana CV. Bacillus endolithicus sp. nov., isolated from pebbles. Int J Syst Evol Microbiol 2015; 65:4568-4573. [PMID: 26373875 DOI: 10.1099/ijsem.0.000612] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain JC267T was isolated from pebbles collected from Pingleshwar beach, Gujarat, India. Cells are Gram-stain-positive, facultatively anaerobic, non-motile rods forming sub-terminal endospores in swollen ellipsoidal to oval sporangia. Strain JC267T contains anteiso-C15 : 0, iso-C15 : 0, iso-C14 : 0, iso-C16 : 0, C16 : 0 and anteiso-C17 : 0 as major (>5 %) cellular fatty acids. Polar lipids include phosphatidylglycerol, phospholipids (PL1-3), glycolipids (GL1-2) and an unidentified lipid. Cell-wall amino acids are composed of diagnostic meso-diaminopimelic acid, dl-alanine and a small amount of d-glutamic acid. The genomic DNA G+C content of strain JC267T is 45.5 mol%. The 16S rRNA gene sequence of strain JC267T showed highest sequence similarities of < 98.41 % with all species of the genus Bacillus when subjected to EzTaxon-e blast analysis. The reassociation values based on DNA-DNA hybridization of strain JC267T with Bacillus halosaccharovorans IBRC-M 10095T and Bacillus niabensis JCM 16399T were 26 ± 1 % and 34 ± 3 %, respectively. Based on taxonomic data obtained using a polyphasic approach, strain JC267T represents a novel species of the genus Bacillus, for which the name Bacillus endolithicus sp. nov. is proposed. The type strain is JC267T ( = IBRC-M 10914T = KCTC 33579T).
Collapse
Affiliation(s)
- B Parag
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | - Ch Sasikala
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India.,Bacterial Discovery Laboratory, Centre for Environment, IST, JNT University Hyderabad, Kukatpally, Hyderabad-500 085, India
| | - Ch V Ramana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| |
Collapse
|
15
|
Sylvan JB, Hoffman CL, Momper LM, Toner BM, Amend JP, Edwards KJ. Bacillus rigiliprofundi sp. nov., an endospore-forming, Mn-oxidizing, moderately halophilic bacterium isolated from deep subseafloor basaltic crust. Int J Syst Evol Microbiol 2015; 65:1992-1998. [PMID: 25813363 DOI: 10.1099/ijs.0.000211] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A facultatively anaerobic bacterium, designated strain 1MBB1T, was isolated from basaltic breccia collected from 341 m below the seafloor by seafloor drilling of Rigil Guyot during Integrated Ocean Drilling Program Expedition 330. The cells were straight rods, 0.5 μm wide and 1-3 μm long, that occurred singly and in chains. Strain 1MBB1T stained Gram-positive. Catalase and oxidase were produced. The isolate grew optimally at 30 °C and pH 7.5, and could grow with up to 12 % (w/v) NaCl. The DNA G+C content was 40.5 mol%. The major cellular fatty acids were C16:1ω11c (26.5 %), anteiso-C15:0 (19.5 %), C16:0 (18.7 %) and iso-C15:0 (10.4 %), and the cell-wall diamino acid was meso-diaminopimelic acid. Endospores of strain 1MBB1T oxidized Mn(II) to Mn(IV), and siderophore production by vegetative cells was positive. Phylogenetic analysis of the 16S rRNA gene indicated that strain 1MBB1T was a member of the family Bacillaceae, with Bacillus foraminis CV53T and Bacillus novalis LMG 21837T being the closest phylogenetic neighbours (96.5 and 96.2 % similarity, respectively). This is the first novel species described from deep subseafloor basaltic crust. On the basis of our polyphasic analysis, we conclude that strain 1MBB1T represents a novel species of the genus Bacillus, for which we propose the name Bacillus rigiliprofundi sp. nov. The type strain is 1MBB1T ( = NCMA B78T = LMG 28275T).
Collapse
Affiliation(s)
- Jason B Sylvan
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA, 90089, USA
| | - Colleen L Hoffman
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA, 90089, USA.,Earth Science Department, University of Minnesota - Twin Cities, 1991 Upper Buford Circle, Saint Paul, MN, 55108, USA
| | - Lily M Momper
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA, 90089, USA
| | - Brandy M Toner
- Earth Science Department, University of Minnesota - Twin Cities, 1991 Upper Buford Circle, Saint Paul, MN, 55108, USA
| | - Jan P Amend
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA, 90089, USA
| | - Katrina J Edwards
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA, 90089, USA
| |
Collapse
|
16
|
Extracellular Proteases from Halophilic and Haloalkaliphilic Bacteria: Occurrence and Biochemical Properties. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2015. [DOI: 10.1007/978-3-319-14595-2_16] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Amoozegar MA, Bagheri M, Didari M, Mehrshad M, Schumann P, Spröer C, Sánchez-Porro C, Ventosa A. Aquibacillus halophilus gen. nov., sp. nov., a moderately halophilic bacterium from a hypersaline lake, and reclassification of Virgibacillus koreensis as Aquibacillus koreensis comb. nov. and Virgibacillus albus as Aquibacillus albus comb. nov. Int J Syst Evol Microbiol 2014; 64:3616-3623. [DOI: 10.1099/ijs.0.065375-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-positive, moderately halophilic bacterium, designated strain B6BT, was isolated from the water of an Iranian hypersaline lake, Aran-Bidgol, and characterized taxonomically using a polyphasic approach. Cells of strain B6BT were rod-shaped, motile and produced ellipsoidal endospores in terminal positions in non-swollen sporangia. Strain B6BT was a strictly aerobic bacterium and catalase- and oxidase-positive. The strain was able to grow at NaCl concentrations of 0.5–20.0 % (w/v), with optimum growth occurring at 10.0 % (w/v) NaCl. The optimum temperature and pH for growth were 35 °C and pH 7.0. On the basis of 16S rRNA gene sequence analysis, strain B6BT was shown to belong to the phylum
Firmicutes
and its closest phylogenetic similarities were with the species
Virgibacillus koreensis
BH30097T (97.5 %),
Virgibacillus albus
YIM 93624T (97.4 %),
Sediminibacillus halophilus
EN8dT (96.8 %),
Sediminibacillus albus
NHBX5T (96.6 %),
Virgibacillus carmonensis
LMG 20964T (96.3 %) and
Paraliobacillus quinghaiensis
YIM-C158T (96.0 %), respectively. Phylogenetic analysis revealed that strain B6BT, along with
V. koreensis
BH30097T and
V. albus
YIM 93624T, clustered in a separate clade in the family
Bacillaceae
. The DNA G+C content of the novel isolate was 35.8 mol%. DNA–DNA hybridization experiments revealed low levels of relatedness between strain B6BTand
V. koreensis
BH30097T (13 %) and
V. albus
YIM 93624T (33 %). The major cellular fatty acid of strain B6BT was anteiso-C15 : 0 (75.1 %) and its polar lipid pattern consisted of phosphatidylglycerol, diphosphatidylglycerol, an unknown phospholipid and an unknown glycolipid. The isoprenoid quinones were MK-7 (90 %) and MK-6 (3 %). The peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. All of these features support the placement of isolate B6BT within the phylum
Firmicutes
. It is closely related to
V. koreensis
and
V. albus
, but with features that clearly distinguish it from species of the genus
Virgibacillus
or of other related genera. On the basis of the polyphasic evidence derived in this study, we propose that strain B6BT be placed within a new genus, as Aquibacillus halophilus gen. nov., sp. nov., with B6BT as the type strain ( = IBRC-M 10775T = KCTC 13828T). We also propose that
V. koreensis
and
V. albus
should be transferred to this new genus and be named Aquibacillus koreensis comb. nov. and Aquibacillus albus comb. nov., respectively. The type strain of Aquibacillus koreensis comb. nov. is BH30097T ( = KCTC 3823T = IBRC-M 10657T = JCM 12387T) and the type strain of Aquibacillus albus comb. nov. is YIM 93624T ( = DSM 23711T = IBRC-M 10798T = JCM 17364T).
Collapse
Affiliation(s)
- Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, Faculty of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Bagheri
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), ACECR, Tehran, Iran
| | - Maryam Didari
- Extremophiles Laboratory, Department of Microbiology, Faculty of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Maliheh Mehrshad
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), ACECR, Tehran, Iran
- Extremophiles Laboratory, Department of Microbiology, Faculty of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Peter Schumann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
18
|
Zhao F, Feng YZ, Chen RR, Zhang HY, Wang JH, Lin XG. Bacillus fengqiuensis sp. nov., isolated from a typical sandy loam soil under long-term fertilization. Int J Syst Evol Microbiol 2014; 64:2849-2856. [PMID: 24871777 DOI: 10.1099/ijs.0.063081-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-staining-positive, endospore-forming, moderately alkaliphilic bacterium, strain NPK15(T), was isolated from a typical sandy loam soil under long-term NPK fertilization in northern China and was subjected to a polyphasic taxonomic study. The diamino acid of the cell-wall peptidoglycan of strain NPK15(T) was found to be meso-diaminopimelic acid and the cell-wall sugars were xylose, glucose and traces of mannose. The only respiratory quinone found in strain NPK15(T) was menaquinone 7 (MK-7). The major cellular fatty acids were iso-C(15 : 0), anteiso-C(15 : 0), C(16 : 0) and C(16 : 1)ω6c/C(16 : 1)ω7c. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. Phylogenetic analysis of the strain based on its 16S rRNA gene sequence showed that it was related most closely to 'Bacillus thaonhiensis' KACC 17216 (99.59%), B. songklensis KCTC 13881(T) (99.52%) and B. abyssalis CCTCC AB 2012074(T) (99.00%). DNA-DNA hybridization results indicated that the strain was distinct from other species of the genus Bacillus, the degree of relatedness being 35.4% with B. abyssalis CCTCC AB 2012074(T), 39.7% with B. songklensis KCTC 13881(T) and 51.2% with 'B. thaonhiensis' KACC 17216. The DNA G+C content of strain NPK15(T) was 45.5 mol%. Phenotypic, chemotaxonomic and molecular analyses identified strain NPK15(T) as a member of a novel species of the genus Bacillus, for which the name Bacillus fengqiuensis sp. nov. is proposed. The type strain is NPK15(T) ( = DSM 26745(T) = CCTCC AB 2013156(T)).
Collapse
Affiliation(s)
- Fei Zhao
- Joint Open Laboratory of Soil and the Environment, Hong Kong Baptist University & Institute of Soil Science, Chinese Academy of Sciences, Nanjing, PR China.,State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - You-Zhi Feng
- Joint Open Laboratory of Soil and the Environment, Hong Kong Baptist University & Institute of Soil Science, Chinese Academy of Sciences, Nanjing, PR China.,State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Rui-Rui Chen
- Joint Open Laboratory of Soil and the Environment, Hong Kong Baptist University & Institute of Soil Science, Chinese Academy of Sciences, Nanjing, PR China.,State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Hua-Yong Zhang
- Joint Open Laboratory of Soil and the Environment, Hong Kong Baptist University & Institute of Soil Science, Chinese Academy of Sciences, Nanjing, PR China.,State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Jun-Hua Wang
- Joint Open Laboratory of Soil and the Environment, Hong Kong Baptist University & Institute of Soil Science, Chinese Academy of Sciences, Nanjing, PR China.,State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Xian-Gui Lin
- Joint Open Laboratory of Soil and the Environment, Hong Kong Baptist University & Institute of Soil Science, Chinese Academy of Sciences, Nanjing, PR China.,State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| |
Collapse
|
19
|
Amoozegar MA, Didari M, Bagheri M, Fazeli SAS, Schumann P, Spröer C, Sánchez-Porro C, Ventosa A. Bacillus
salsus sp. nov., a halophilic bacterium from a hypersaline lake. Int J Syst Evol Microbiol 2013; 63:3324-3329. [DOI: 10.1099/ijs.0.050120-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-staining-positive, endospore-forming, rod-shaped, strictly aerobic, slightly halophilic bacterium, designated strain A24T, was isolated from the hypersaline lake Aran-Bidgol in Iran. Cells of strain A24T were motile rods and produced oval endospores at a terminal position in swollen sporangia. Strain A24T was catalase and oxidase positive. Growth occurred with between 0.5 and 7.5 % (w/v) NaCl and the isolate grew optimally at 3 % (v/w) NaCl. The optimum temperature and pH for growth were 35 °C and pH 8.0, respectively. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain A24T belonged to the genus
Bacillus
within the phylum
Firmicutes
and showed the closest phylogenetic similarity with the species
Bacillus alkalitelluris
BA288T (97.2 %),
Bacillus herbersteinensis
D-1,5aT (96.0 %) and
Bacillus litoralis
SW-211T (95.6 %). The G+C content of the genomic DNA of this strain was 35.9 mol%. The polar lipid pattern of strain A24T consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and two unknown phospholipids. The major cellular fatty acids of strain A24T were anteiso-C15 : 0 and iso-C15 : 0. The respiratory quinones were MK-7 (94 %) and MK-6 (4 %). The peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. All these features confirm the placement of isolate A24T within the genus
Bacillus
. DNA–DNA hybridization experiments revealed a relatedness of 8 % between strain A24T and
Bacillus alkalitelluris
IBRC-M 10596T, supporting its placement as a novel species. Phenotypic characteristics, phylogenetic analysis and DNA–DNA relatedness data suggest that this strain represents a novel species of the genus
Bacillus
, for which the name
Bacillus
salsus sp. nov. is proposed. The type strain is strain A24T ( = IBRC-M 10078 T = KCTC 13816T).
Collapse
Affiliation(s)
- Mohammad Ali Amoozegar
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), ACECR, Tehran, Iran
- Extremophiles Laboratory, Department of Microbiology, Faculty of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Didari
- Extremophiles Laboratory, Department of Microbiology, Faculty of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Bagheri
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), ACECR, Tehran, Iran
- Extremophiles Laboratory, Department of Microbiology, Faculty of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | | | - Peter Schumann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
20
|
Marinobacter persicus sp. nov., a moderately halophilic bacterium from a saline lake in Iran. Antonie van Leeuwenhoek 2013; 104:47-54. [DOI: 10.1007/s10482-013-9923-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/09/2013] [Indexed: 11/25/2022]
|
21
|
Yang G, Chen M, Yu Z, Lu Q, Zhou S. Bacillus composti sp. nov. and Bacillus thermophilus sp. nov., two thermophilic, Fe(III)-reducing bacteria isolated from compost. Int J Syst Evol Microbiol 2013; 63:3030-3036. [PMID: 23396719 DOI: 10.1099/ijs.0.049106-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two novel thermophilic bacteria, designated SgZ-9(T) and SgZ-10(T), were isolated from compost. Cells of the two strains were catalase-positive, endospore-forming and Gram-staining-positive rods. Strain SgZ-9(T) was oxidase-positive and non-motile, and strain SgZ-10(T) was oxidase-negative and motile. The highest 16S rRNA gene sequence similarity for both strains SgZ-9(T) and SgZ-10(T) was observed with Bacillus fortis (97.5 % and 96.9 %, respectively). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain SgZ-9(T) formed a cluster with B. fortis R-6514(T) and Bacillus fordii R-7190(T), and SgZ-10(T) formed a cluster with Bacillus farraginis R-6540(T). The DNA-DNA pairing studies showed that SgZ-9(T) displayed 41.6 % and 30.7 % relatedness to the type strains of B. fortis and B. fordii, respectively. The 16S rRNA gene sequence similarity between strains SgZ-9(T) and SgZ-10(T) was 97.2 %, and the level of DNA-DNA relatedness between them was 39.2 %. The DNA G+C content of SgZ-9(T) and SgZ-10(T) was 45.3 and 47.9 mol%, respectively. Chemotaxonomic analysis revealed that both strains contained the menaquinone 7 (MK-7) as the predominant respiratory quinone. The major cellular fatty acids (>5 %) were iso-C15 : 0, anteiso-C15 : 0, anteiso-C17 : 0, iso-C16 : 0 and iso-C17 : 0 in SgZ-9(T) and iso-C15 : 0, anteiso-C15 : 0, iso-C17 : 0, anteiso-C17 : 0 and iso-C16 : 0 in SgZ-10(T). Based on the phenotypic characteristics, chemotaxonomic features, DNA-DNA hybridization with the nearest phylogenetic neighbours and phylogenetic analysis based on the 16S rRNA gene sequences, the two strains were determined to be two distinct novel species in the genus Bacillus, and the names proposed are Bacillus composti sp. nov. SgZ-9(T) ( = CCTCC AB2012109(T) = KACC 16872(T)) and Bacillus thermophilus sp. nov. SgZ-10(T) (CCTCC AB2012110(T) = KACC 16873(T)).
Collapse
Affiliation(s)
- Guiqin Yang
- Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, PR China
| | - Ming Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China.,Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, PR China
| | - Zhen Yu
- Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, PR China
| | - Qin Lu
- Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, PR China
| | - Shungui Zhou
- Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, PR China
| |
Collapse
|
22
|
Glaeser SP, Dott W, Busse HJ, Kämpfer P. Fictibacillus phosphorivorans gen. nov., sp. nov. and proposal to reclassify Bacillus arsenicus, Bacillus barbaricus, Bacillus macauensis, Bacillus nanhaiensis, Bacillus rigui, Bacillus solisalsi and Bacillus gelatini in the genus Fictibacillus. Int J Syst Evol Microbiol 2013; 63:2934-2944. [PMID: 23355698 DOI: 10.1099/ijs.0.049171-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-positive-staining, aerobic, endospore-forming bacterium (Ca7(T)) was isolated from a bioreactor showing extensive phosphorus removal. Based on 16S rRNA gene sequence similarity comparisons, strain Ca7(T) was grouped in the genus Bacillus, most closely related to Bacillus nanhaiensis JSM 082006(T) (100 %), Bacillus barbaricus V2-BIII-A2(T) (99.2 %) and Bacillus arsenicus Con a/3(T) (97.7 %). Moderate 16S rRNA gene sequence similarities were found to the type strains of the species Bacillus gelatini and Bacillus rigui (96.4 %), Bacillus macauensis (95.1 %) and Bacillus solisalsi (96.1 %). All these species were grouped into a monophyletic cluster and showed very low sequence similarities (<94 %) to the type species of the genus Bacillus, Bacillus subtilis. The quinone system of strain Ca7(T) consists predominantly of menaquinone MK-7. The polar lipid profile exhibited the major compounds diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. In addition, minor compounds of an unidentified phospholipid and an aminophospholipid were detected. No glycolipids were found in strain Ca7(T), which was consistent with the lipid profiles of B. nanhaiensis, B. barbaricus, B. arsenicus, B. rigui, B. solisalsi, B. macauensis and B. gelatini, but in contrast to B. subtilis. The diagnostic diamino acid of the peptidoglycan was meso-diaminopimelic acid and the polyamine pattern contained predominantly spermidine and spermine. The major fatty acids, which were iso-C15 : 0, anteiso-C15 : 0 and C16 : 0, supported the grouping of strain Ca7(T) in the family Bacillaceae. The strain showed DNA-DNA similarities of 48 % (reciprocal 47 %) to B. nanhaiensis DSM 23009(T), 31 % (reciprocal 36 %) to B. barbaricus V2-BIII-A2(T) and 29 % (reciprocal 39 %) to B. arsenicus DSM 15822(T), respectively. These results clearly demonstrate that strain Ca7(T) is a representative of a novel species, which can be differentiated from its closest relatives by physiological and biochemical tests. Because of the low sequence similarity of strain Ca7(T) to B. subtilis, which was shared by B. nanhaiensis, B. barbaricus, B. arsenicus, B. gelatini, B. rigui, B. solisalsi and B. macauensis, and their unique lipid patterns, we propose that strain Ca7(T) represents a novel species in a novel genus for which the name Fictibacillus phosphorivorans gen. nov., sp. nov. is proposed. The type strain is Ca7(T) (= CCM 8426(T) = LMG 27063(T)). In addition we propose the reclassification of B. nanhaiensis, B. barbaricus, B. arsenicus, B. rigui, B. macauensis, B. solisalsi and B. gelatini as Fictibacillus nanhaiensis comb. nov., Fictibacillus barbaricus comb. nov., Fictibacillus arsenicus comb. nov., Fictibacillus rigui comb. nov., Fictibacillus macauensis comb. nov., Fictibacillus solisalsi comb. nov. and Fictibacillus gelatini comb. nov., respectively [type strains JSM 082006(T) (= DSM 23009(T) = KCTC 13712(T)), V2-BIII-A2(T) ( = CCM 4982(T) = DSM 14730(T)), Con a/3(T) ( = MTCC 4380(T) = DSM 15822(T) = JCM 12167(T)), WPCB074(T) ( = KCTC 13278(T) = JCM 16348(T)), ZFHKF-1(T) ( = JCM 13285(T) = DSM 17262(T)), YC1(T) ( = KCTC 13181(T) = CGMCC 1.6854(T)) and LMG 21881(T) ( = DSM 15866(T)), respectively].
Collapse
Affiliation(s)
- Stefanie P Glaeser
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - Wolfgang Dott
- Institut für Hygiene und Umweltmedizin, RWTH Aachen, Germany
| | - Hans-Jürgen Busse
- Institut für Bakteriologie, Mykologie und Hygiene, Veterinärmedizinische Universität, A-1210 Wien, Austria
| | - Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| |
Collapse
|
23
|
Mehrshad M, Amoozegar MA, Didari M, Bagheri M, Fazeli SAS, Schumann P, Spröer C, Sánchez-Porro C, Ventosa A. Bacillus halosaccharovorans sp. nov., a moderately halophilic bacterium from a hypersaline lake. Int J Syst Evol Microbiol 2013; 63:2776-2781. [PMID: 23291894 DOI: 10.1099/ijs.0.046961-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-positive, moderately halophilic bacterium, designated strain E33(T), was isolated from water of the hypersaline lake Aran-Bidgol in Iran and characterized taxonomically using a polyphasic approach. Cells of strain E33(T) were motile rods and produced ellipsoidal endospores at a central or subterminal position in swollen sporangia. Strain E33(T) was a strictly aerobic bacterium, catalase- and oxidase-positive. The strain was able to grow at NaCl concentrations of 0.5-25 % (w/v), with optimum growth occurring at 5-15 % (w/v) NaCl. The optimum temperature and pH for growth were 40 °C and pH 7.5-8.0, respectively. On the basis of 16S rRNA gene sequence analysis, strain E33(T) was shown to belong to the genus Bacillus within the phylum Firmicutes and showed the closest phylogenetic similarity with the species Bacillus niabensis 4T19(T) (99.2 %), Bacillus herbersteinensis D-1-5a(T) (97.3 %) and Bacillus litoralis SW-211(T) (97.2 %). The DNA G+C content of the type strain of the novel species was 42.6 mol%. The major cellular fatty acids of strain E33(T) were anteiso-C15 : 0 and iso-C15 : 0, and the polar lipid pattern consisted of diphosphatidylglycerol, phosphatidylglycerol, two unknown glycolipids, an unknown lipid and an unknown phospholipid. The isoprenoid quinones were MK-7 (97 %), MK-6 (2 %) and MK-8 (0.5 %). The peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. All these features confirm the placement of isolate E33(T) within the genus Bacillus. DNA-DNA hybridization experiments revealed low levels of relatedness between strain E33(T) and Bacillus niabensis IBRC-M 10590(T) (22 %), Bacillus herbersteinensis CCM 7228(T) (38 %) and Bacillus litoralis DSM 16303(T) (19 %). On the basis of polyphasic evidence from this study, a novel species of the genus Bacillus, Bacillus halosaccharovorans sp. nov. is proposed, with strain E33(T) (= IBRC-M 10095(T) = DSM 25387(T)) as the type strain.
Collapse
Affiliation(s)
- Maliheh Mehrshad
- Extremophiles Laboratory, Department of Microbiology, Faculty of Biology and Center of Excellence in Phylogeny of living organisms, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Ali Amoozegar
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), ACECR, Tehran, Iran.,Extremophiles Laboratory, Department of Microbiology, Faculty of Biology and Center of Excellence in Phylogeny of living organisms, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Didari
- Extremophiles Laboratory, Department of Microbiology, Faculty of Biology and Center of Excellence in Phylogeny of living organisms, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Bagheri
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), ACECR, Tehran, Iran.,Extremophiles Laboratory, Department of Microbiology, Faculty of Biology and Center of Excellence in Phylogeny of living organisms, College of Science, University of Tehran, Tehran, Iran
| | - Seyed Abolhassan Shahzadeh Fazeli
- Department of Genetics, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Microorganisms Bank, Iranian Biological Resource Centre (IBRC), ACECR, Tehran, Iran
| | - Peter Schumann
- DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Cathrin Spröer
- DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
24
|
Amoozegar MA, Bagheri M, Didari M, Shahzedeh Fazeli SA, Schumann P, Sánchez-Porro C, Ventosa A. Saliterribacillus persicus gen. nov., sp. nov., a moderately halophilic bacterium isolated from a hypersaline lake. Int J Syst Evol Microbiol 2013; 63:345-351. [DOI: 10.1099/ijs.0.041640-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-positive, moderately halophilic bacterium, designated strain X4BT, was isolated from soil around the hypersaline lake Aran-Bidgol in Iran and characterized taxonomically using a polyphasic approach. Cells of strain X4BT were motile rods and formed ellipsoidal endospores at a terminal or subterminal position in swollen sporangia. Strain X4BT was a strictly aerobic bacterium, catalase- and oxidase-positive. The strain was able to grow at NaCl concentrations of 0.5–22.5 % (w/v), with optimum growth occurring at 7.5 % (w/v) NaCl. The optimum temperature and pH for growth were 35 °C and pH 7.0. Analysis of 16S rRNA gene sequence revealed that strain X4BT is a member of the family
Bacillaceae
, constituting a novel phyletic lineage within this family. Highest sequence similarities were obtained with the 16S rRNA gene sequences of the type strains of
Sediminibacillus albus
(96.0 %),
Paraliobacillus ryukyuensis
(95.9 %),
Paraliobacillus quinghaiensis
(95.8 %) and
Sediminibacillus halophilus
(95.7 %), respectively. The DNA G+C content of this novel isolate was 35.2 mol%. The major cellular fatty acids of strain X4BT were anteiso-C15 : 0 and anteiso-C17 : 0 and its polar lipid pattern consisted of diphosphatidylglycerol, phosphatidylglycerol, two aminolipids, an aminophospholipid and an unknown phospholipid. The isoprenoid quinones were MK-7 (89 %) and MK-6 (11 %). The peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. On the basis of 16S rRNA gene sequence analysis in combination with chemotaxonomic and phenotypic data, strain X4BT represents a novel species in a new genus in the family
Bacillaceae
, order
Bacillales
for which the name Saliterribacillus persicus gen. nov., sp. nov. is proposed. The type strain of the type species (Saliterribacillus persicus) is X4BT ( = IBRC-M 10629T = KCTC 13827T).
Collapse
Affiliation(s)
- Mohammad Ali Amoozegar
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), ACECR, Tehran, Iran
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Bagheri
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), ACECR, Tehran, Iran
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Didari
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | | | - Peter Schumann
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| |
Collapse
|