1
|
Lawhon SD, Burbick CR, Munson E, Zapp A, Thelen E, Villaflor M. Update on Novel Taxa and Revised Taxonomic Status of Bacteria Isolated from Nondomestic Animals Described in 2018 to 2021. J Clin Microbiol 2023; 61:e0142522. [PMID: 36533958 PMCID: PMC9945507 DOI: 10.1128/jcm.01425-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Revisions and new additions to bacterial taxonomy can have a significant widespread impact on clinical practice, infectious disease epidemiology, veterinary microbiology laboratory operations, and wildlife conservation efforts. The expansion of genome sequencing technologies has revolutionized our knowledge of the microbiota of humans, animals, and insects. Here, we address novel taxonomy and nomenclature revisions of veterinary significance that impact bacteria isolated from nondomestic wildlife, with emphasis being placed on bacteria that are associated with disease in their hosts or were isolated from host animal species that are culturally significant, are a target of conservation efforts, or serve as reservoirs for human pathogens.
Collapse
Affiliation(s)
- Sara D. Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Claire R. Burbick
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Amanda Zapp
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Elizabeth Thelen
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Maia Villaflor
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Spergser J, DeSoye P, Ruppitsch W, Cabal Rosel A, Dinhopl N, Szostak MP, Loncaric I, Chopra-Dewasthaly R, Busse HJ. Mycoplasma tauri sp. nov. isolated from the bovine genital tract. Syst Appl Microbiol 2021; 45:126292. [PMID: 34990977 DOI: 10.1016/j.syapm.2021.126292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
Since 2006, a Mycoplasma species unidentifiable to the species level has been regularly isolated from the semen and prepuce of apparently healthy bulls, and occasionally from cattle displaying inflammatory disease of the genital tract. Seven of these Mycoplasma isolates were subjected to a comprehensive taxonomic study. The strains investigated grew well in modified Hayflick's medium and colonies on agar exhibited typical fried egg morphology and produced 'film and spots'. Transmission electron microscopy revealed a cell morphology characteristic of mycoplasmas with spherically shaped cells bounded by a bi-layered cell membrane. The strains studied neither produced acid from sugar carbon sources nor did hydrolyse arginine or urea, and genome annotation indicated that organic acids (pyruvate, lactate) are used as energy sources. Phylogenetic analyses of 16S rRNA gene sequences, the 16S-23S intergenic spacer region, and partial rpoB gene and protein sequences placed the strains within the Mycoplasma (M.) bovis cluster of the Hominis group with M. primatum, M. agalactiae, and M. bovis being their closest relatives. Genomic information including whole-genome similarity metrics (ANIb, ANIm, TETRA, dDDH, AAI) and phylogenomics, proteomic features revealed by matrix-assisted laser desorption ionization time of flight (MALDI-ToF) mass spectrometry as well as serological reactions and polar lipid profiling strongly indicated that the strains examined were representatives of a hitherto unclassified species of genus Mycoplasma, for which the name Mycoplasma tauri sp. nov. with type strain Zaradi2T (=ATCC BAA-1891T = DSM 22451T) is proposed.
Collapse
Affiliation(s)
- Joachim Spergser
- Institute of Microbiology, University of Veterinary Medicine, Vienna, Austria.
| | - Philippe DeSoye
- Institute of Microbiology, University of Veterinary Medicine, Vienna, Austria
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety (AGES), Institute of Medical Microbiology and Hygiene, Vienna, Austria
| | - Adriana Cabal Rosel
- Austrian Agency for Health and Food Safety (AGES), Institute of Medical Microbiology and Hygiene, Vienna, Austria
| | - Nora Dinhopl
- Institute of Pathology, University of Veterinary Medicine, Vienna, Austria
| | - Michael P Szostak
- Institute of Microbiology, University of Veterinary Medicine, Vienna, Austria
| | - Igor Loncaric
- Institute of Microbiology, University of Veterinary Medicine, Vienna, Austria
| | | | - Hans-Jürgen Busse
- Institute of Microbiology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
3
|
Gupta RS, Oren A. Necessity and rationale for the proposed name changes in the classification of Mollicutes species. Reply to: 'Recommended rejection of the names Malacoplasma gen. nov., Mesomycoplasma gen. nov., Metamycoplasma gen. nov., Metamycoplasmataceae fam. nov., Mycoplasmoidaceae fam. nov., Mycoplasmoidales ord. nov., Mycoplasmoides gen. nov., Mycoplasmopsis gen. nov. [Gupta, Sawnani, Adeolu, Alnajar and Oren 2018] and all proposed species comb. nov. placed therein', by M. Balish et al. ( Int J Syst Evol Microbiol, 2019;69:3650-3653). Int J Syst Evol Microbiol 2020; 70:1431-1438. [PMID: 31971499 DOI: 10.1099/ijsem.0.003869] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
This response summarizes the highly disordered state of the Mollicutes taxonomy that existed until recently, where most Mollicutes taxa lacked proper circumscriptions and their names were not in accordance with the International Code of Nomenclature of Prokaryotes and illegitimate. We also summarize the comprehensive phylogenomic and comparative genomic studies forming the basis for the proposed changes in the classification of Mollicultes species. Our responses to the concerns raised by Balish et al., show that the proposed taxonomic changes do not violate any essential point of the Code. Instead the proposed name changes rectify numerous taxonomic anomalies that have long plagued the classification of Mollicutes species, leading to a better understanding of their evolutionary relationships and bringing their nomenclature in conformity with the Code.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | - Aharon Oren
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| |
Collapse
|
4
|
Spergser J, Botes A, Nel T, Ruppitsch W, Lepuschitz S, Langer S, Ries S, Dinhopl N, Szostak M, Loncaric I, Busse HJ. Mycoplasma nasistruthionis sp. nov. and Mycoplasma struthionis sp. nov. isolated from ostriches with respiratory disease. Syst Appl Microbiol 2019; 43:126047. [PMID: 31859015 DOI: 10.1016/j.syapm.2019.126047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/11/2022]
Abstract
Twelve Mycoplasma (M.) strains isolated from the nose, the trachea, and the lung of ostriches (Struthio camelus) displaying respiratory disease were investigated. Analysis of 16S rRNA gene sequences placed five of these strains within the M. synoviae cluster, and seven strains within the M. hominis cluster of genus Mycoplasma, which was further confirmed by analyses of the 16S-23S rRNA intergenic spacer region, and partial rpoB gene and amino acid sequences. Genomic information as well as phenotypic features obtained by matrix-assisted laser desorption ionization time of flight (MALDI-ToF) mass spectrometry analysis and serological reactions indicated that the strains examined are representatives of two hitherto unclassified species of genus Mycoplasma, for which the names Mycoplasma nasistruthionis sp. nov., with type strain 2F1AT (= ATCC BAA-1893T = DSM 22456T), and Mycoplasma struthionis sp. nov., with type strain 237IAT (= ATCC BAA-1890T = DSM 22453T), are proposed.
Collapse
Affiliation(s)
- Joachim Spergser
- Institute of Microbiology, University of Veterinary Medicine, Vienna, Austria.
| | - Annelise Botes
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Tyron Nel
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety (AGES), Institute of Medical Microbiology and Hygiene, Vienna, Austria
| | - Sarah Lepuschitz
- Austrian Agency for Health and Food Safety (AGES), Institute of Medical Microbiology and Hygiene, Vienna, Austria
| | - Stefan Langer
- Institute of Microbiology, University of Veterinary Medicine, Vienna, Austria
| | - Sally Ries
- Institute of Microbiology, University of Veterinary Medicine, Vienna, Austria
| | - Nora Dinhopl
- Institute of Pathology, University of Veterinary Medicine, Vienna, Austria
| | - Michael Szostak
- Institute of Microbiology, University of Veterinary Medicine, Vienna, Austria
| | - Igor Loncaric
- Institute of Microbiology, University of Veterinary Medicine, Vienna, Austria
| | - Hans-Jürgen Busse
- Institute of Microbiology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
5
|
Gupta RS, Sawnani S, Adeolu M, Alnajar S, Oren A. Phylogenetic framework for the phylum Tenericutes based on genome sequence data: proposal for the creation of a new order Mycoplasmoidales ord. nov., containing two new families Mycoplasmoidaceae fam. nov. and Metamycoplasmataceae fam. nov. harbouring Eperythrozoon, Ureaplasma and five novel genera. Antonie van Leeuwenhoek 2018; 111:1583-1630. [PMID: 29556819 DOI: 10.1007/s10482-018-1047-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/08/2018] [Indexed: 12/19/2022]
Abstract
The genus Mycoplasma, including species earlier classified in the genera Eperythrozoon and Haemobartonella, contains ~ 120 species and constitutes an extensively polyphyletic assemblage of bacteria within the phylum Tenericutes. Due to their small genome sizes and lack of unique characteristics, the relationships among the mycoplasmas/Tenericutes are not reliably discerned. Using genome sequences for 140 Tenericutes, their evolutionary relationships were examined using multiple independent approaches. Phylogenomic trees were constructed for 63 conserved proteins, 45 ribosomal proteins, three main subunits of RNA polymerase and 16S rRNA gene sequences. In all of these trees, Tenericutes species reliably grouped into four main clades designated as the "Acholeplasma", "Spiroplasma", "Pneumoniae" and "Hominis" clusters. These clades are also distinguished based on a similarity matrix constructed based on 16S rRNA gene sequences. Mycoplasma species were dispersed across 3 of these 4 clades highlighting their extensive polyphyly. In parallel, our comparative genomic analyses have identified > 100 conserved signature indels (CSIs) and 14 conserved signature proteins (CSPs), which are uniquely shared by the members of four identified clades, strongly supporting their monophyly and identifying them in molecular terms. Mycoplasma mycoides, the type species of the genus Mycoplasma, and a small number of other Mycoplasma species, formed a strongly supported clade within the "Spiroplasma" cluster. Nine CSIs and 14 CSPs reliably distinguish this clade from all other Mycoplasmatales species. The remainder of the Mycoplasmatales species are part of the "Pneumoniae" and "Hominis" clusters, which group together in phylogenetic trees. Here we are proposing that the order Mycoplasmatales should be emended to encompass only the Mycoplasma species within the "Spiroplasma" cluster and that a new order, Mycoplasmoidales ord. nov., should be created to encompass the other Mycoplasma species. The "Pneumoniae" and the "Hominis" clusters are proposed as two new families, Mycoplasmoidaceae fam. nov., which includes the genera Eperythrozoon, Ureaplasma, and the newly proposed genera Malacoplasma and Mycoplasmoides, and Metamycoplasmataceae fam. nov. to contain the newly proposed genera Metamycoplasma, Mycoplasmopsis, and Mesomycoplasma. The results presented here allow reliable discernment, both in phylogenetic and molecular terms, of the members of the two proposed families as well as different described genera within these families including members of the genus Eperythrozoon, which is comprised of uncultivable organisms. The taxonomic reclassifications proposed here, which more accurately portray the genetic diversity among the Tenericutes/Mycoplasma species, provide a new framework for understanding the biological and clinical aspects of these important microbes.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada.
| | - Sahil Sawnani
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Mobolaji Adeolu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Seema Alnajar
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Aharon Oren
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401, Jerusalem, Israel
| |
Collapse
|
6
|
Abstract
Several Mycoplasma spp. are well-known pathogens in poultry. In birds of prey, White Storks ( Ciconia ciconia ), and some waterfowl (Anatidae, Pelecanidae) species, mycoplasmas occur commonly and seem to be apathogenic or commensal and most likely belong to the physiologic microbial flora of the respiratory tract. In other bird species, such as Common Nightingales ( Luscinia megarhynchos ) and tits (Paridae), Mycoplasma spp. are absent in healthy birds. In corvids, the prevalence and role of Mycoplasma spp. in disease remains unclear. In previous studies, Mycoplasma sturni was detected in diseased corvids; however, those studies included only a limited sample size or preselected individuals. We collected tracheal swabs of 97 free-ranging Corvidae, including 68 randomly selected individuals from hunting bags and 29 birds that had been admitted to a veterinary clinic. Tracheal swabs were examined for Mycoplasma spp. using culture and genus-specific PCR. If Mycoplasma spp. were detected, the species were identified by sequencing the 16S ribosomal (r) RNA gene and 16-23S rRNA intergenic transcribed spacer region. Five of 68 (7%) of the hunted birds and nine of 29 (31%) of the birds admitted to the veterinary clinic were PCR positive. In 13 of 14 PCR-positive samples, mycoplasmas were cultured and M. sturni was the only mycoplasmal species identified. None of the positive corvids from the hunting bags had clinical signs, whereas five of nine birds admitted to the veterinary clinic showed apathy, lameness, injuries, or fractures, which may not be associated with mycoplasmal infections. These data support the notion that M. sturni is the Mycoplasma sp. most frequently found in corvids, though its prevalence and ability to cause disease may involve interaction with other aspects of bird health.
Collapse
|
7
|
Catania S, Gobbo F, Ramirez AS, Guadagnini D, Baldasso E, Moronato ML, Nicholas RAJ. Laboratory investigations into the origin of Mycoplasma synoviae isolated from a lesser flamingo (Phoeniconaias minor). BMC Vet Res 2016; 12:52. [PMID: 26968657 PMCID: PMC4788927 DOI: 10.1186/s12917-016-0680-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/12/2015] [Indexed: 12/04/2022] Open
Abstract
Background The role of wild birds in the transmission and spread of mycoplasmas is not clear. Up to now different Mycoplasma species have been isolated from wild birds many of which are not considered pathogens sensu stricto for domestic flocks. This report describes the first isolation of Mycoplasma synoviae in a captive lesser flamingo (Phoeniconaias minor) held in a zoo in Italy and the laboratory investigations performed to elucidate its origin. Results showed that the strain was similar to the MS-H vaccine strain using the vlhA methods although no vaccination with this product was used in the zoo. Case presentation This paper describes investigations into a case in which 10 of 12 adult lesser flamingos (Phoeniconaias minor) died after having recently been moved from the Netherlands to a new zoo in Northern Italy. While most of the birds appeared to have died from the stress of movement and poor adaptation to their new environment, Mycoplasma synoviae, an important poultry pathogen in the layer and meat industry, was isolated for the first time from the trachea of one animal presenting catarrhal tracheitis and fibrinous airsacculitis. Genetic analysis of the conserved region of the vlhA was not able to differentiate the flamingo strain from the MS-H vaccine strain. However differences in the sequences of the obg gene of the flamingo and vaccine strain were detected. A test for temperature-sensitivity (ts) gave a ts− phenotype for the flamingo strain, in contrast to the ts+ status of the MS-H strain. Based on this information and knowing that the flamingos were not vaccinated against M. synoviae, it is highly likely that the flamingo was infected with a genetically similar wild strain by contact with infected birds. Conclusions This case provides evidence for the potential role of international trade of ornamental birds as a possible route of introduction of new mycoplasma strains between countries, and moreover highlight that vlhA gene sequencing was not sufficient to discriminate the wild strain isolated from the flamingo from the MS-H vaccine strain. Electronic supplementary material The online version of this article (doi:10.1186/s12917-016-0680-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Salvatore Catania
- Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'Universita' 10, Legnaro, 35020, Padova, Italy.
| | - Federica Gobbo
- Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'Universita' 10, Legnaro, 35020, Padova, Italy.,Università degli Studi di Padova, Dipartimento di Medicina Animale, Produzioni e Salute (MAPS), Legnaro, Padova, Italy
| | - Ana S Ramirez
- Unidad de Epidemiología y Medicina Preventiva, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, C/Trasmontala s/n, Arucas, 35413, Islas Canarias, Spain
| | | | - Elisa Baldasso
- Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'Universita' 10, Legnaro, 35020, Padova, Italy
| | - Maria Luisa Moronato
- Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'Universita' 10, Legnaro, 35020, Padova, Italy.,Università degli Studi di Padova, Dipartimento di Medicina Animale, Produzioni e Salute (MAPS), Legnaro, Padova, Italy
| | | |
Collapse
|
8
|
Vela AI, Casas-Díaz E, Fernández-Garayzábal JF, Serrano E, Agustí S, Porrero MC, Sánchez del Rey V, Marco I, Lavín S, Domínguez L. Estimation of cultivable bacterial diversity in the cloacae and pharynx in Eurasian griffon vultures (Gyps fulvus). MICROBIAL ECOLOGY 2015; 69:597-607. [PMID: 25388757 DOI: 10.1007/s00248-014-0513-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 10/08/2014] [Indexed: 06/04/2023]
Abstract
In this work, we describe the biodiversity of cloacal and pharynx culture-based bacteria (commensal and pathogenic), in 75 Eurasian griffon vultures (Gyps fulvus) from two geographic areas. We address the question of whether the cultivable microbiota of vultures is organised into assemblages occurring by chance. In addition, we assess bacterial diversity in both anatomic regions and geographic areas. Bacterial diversity was represented by 26 Gram-negative and 20 Gram-positive genera. The most common genera were Escherichia, Enterococcus, Staphylococcus, Clostridium and Lactococcus. Escherichia coli and Enterococcus faecalis were the most common species in cloacal and pharyngeal samples. Staphylococcus and Erysipelothrix were isolated from the pharynx and Salmonella and Corynebacterium from the cloacae, and no Campylobacter was isolated from the cloacal swabs. Ten cloacal swabs were positive for Salmonella, of which five isolates were Salmonella enterica serotype 4,(5),12:i:-, one isolate was S. enterica serotype Derby, three isolates were S. enterica serotype 61:k:1,5,7 and one isolate was S. enterica serotype Infantis. The null modelling approach revealed that the commensal bacteria of vultures are not structured in assemblages. On the other hand, differences in bacterial genus and species richness between cloacal and pharyngeal samples or between geographic areas were clear, with the pharynx in vultures from both geographic areas being richer. The results of this study indicate also that vultures can serve as a reservoir of certain pathogenic zoonotic bacteria. The dissemination of these zoonotic pathogens in wildlife could be prevented by periodic sanitary surveys.
Collapse
Affiliation(s)
- Ana I Vela
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, 28040, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|