1
|
Kim SB, Kim KH, Park JS. Aurantiacibacter poecillastricola sp. nov., Isolated from the Marine Sponge, Poecillastra wondoensis, and Reclassification of Erythrobacter alti as Aurantiacibacter alti comb. nov. J Microbiol Biotechnol 2024; 35:e2409010. [PMID: 39849934 PMCID: PMC11813356 DOI: 10.4014/jmb.2409.09010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/26/2024] [Accepted: 11/21/2024] [Indexed: 01/25/2025]
Abstract
A Gram-stain-negative, facultative anaerobic rods, designated as strain 219JJ12-13T, was isolated from a marine sponge, Poecillastra wondoensis, in Jeju-do, Republic of Korea. The cells displayed catalase and oxidase activity and were non-motile. Strain 219JJ12-13T grew at 10-37°C (optimum, 25-30°C), pH 6.0-8.5 (optimum, pH 7.0-7.5), and in the presence of 0.5-6.0% (w/v) NaCl (optimum, 4.0-5.0%). The polar lipids comprised disphosphatidylglycerol, phosphatidylglycerol, phosphatidylcoline, phosphatidylethanolamine, sphingoglycolipid, two aminophosphoglycolipid, unidentified phospholipid, and two unidentified lipids. The isoprenoid quinone was identified as Q-10, and predominant cellular fatty acids were C17:1 ω6c, summed feature 3 (C16:1 ω7c/C16:1 ω6c), and summed feature 8 (C16:1 ω7c/C18:1 ω6c). The G+C content of the genomic DNA was 63.3%. The 16S rRNA gene and genome sequences-based phylogenetic analyses showed that strain 219JJ12-13T formed a distinct phyletic clade within the genus Aurantiacibacter. Genome relatedness values, including average nucleotide identity and digital DNA-DNA hybridization among strain 219JJ12-13T and closely related type strains, were 74.0-80.2% and 18.2-22.8%, respectively, both markedly below the thresholds for species delineation. Based on polyphasic taxonomic approach, strain 219JJ12-13T represents a novel species of the genus Aurantiacibacter, and the name Aurantiacibacter poecillastricola sp. nov. is proposed. The type strain is 219JJ12-13T (= KACC 23236T = LMG 33060T). The reclassification of Erythrobacter alti to the genus Aurantiacibacter as Aurantiacibacter alti comb. nov. is also proposed (= KCCM 90261T = NBRC 111903T).
Collapse
Affiliation(s)
- Soo-Bin Kim
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34430, Republic of Korea
| | - Kyung Hyun Kim
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34430, Republic of Korea
| | - Jin-Sook Park
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34430, Republic of Korea
| |
Collapse
|
2
|
Park S, Kim I, Woo H, Lee H, Yook S, Seo T. Aurantiacibacter flavus sp. nov. and Aurantiacibacter gilvus sp. nov., isolated from the mudflat of Suaeda japonica colonies. Int J Syst Evol Microbiol 2024; 74. [PMID: 39527473 DOI: 10.1099/ijsem.0.006578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Two novel strains were isolated from the mudflat of Suaeda japonica colonies in Incheon, Republic of Korea. Designated as DGU5T and DGU6T, these strains were Gram-stain-negative, facultatively anaerobic and rod-shaped and had yellowish colonies. Both strains were determined to belong to the genus Aurantiacibacter through phylogenetic analysis of their 16S rRNA sequences and draft genomes. The cells of strain DGU5T were non-motile and grew at temperatures ranging between 7-45°C (optimum, 25-30°C), pH 6.0-10.0 (optimum, 7.0-8.0) and in the presence of 0-11.0% NaCl (optimum, 2.0%). The cells of strain DGU6T were non-motile and grew in temperatures ranging from 10-45 °C (optimum, 30-35°C), pH 3.0-10.0 (optimum, 7.0-8.0) and in the presence of 0-11.0% NaCl (optimum, 2.0%). Overall genome relatedness index calculations revealed average nucleotide identity values (72.3-88.6%) and digital DNA-DNA hybridization values (18.8-35.9%) aligning with those of the genus Aurantiacibacter. The major fatty acids in both strains were C17:1 ω6c and summed feature 8 (C18:1 ω6c/C18:1 ω7c), while the predominant polar lipids were sphingoglycolipid, phosphatidylglycerol, and diphosphatidylglycerol. Phylogenetic, average nucleotide identity, digital DNA-DNA hybridization, physiological, and biochemical data collectively demonstrated the distinctiveness of the novel strains from other members within the family Erythrobacteraceae. We propose the names A. flavus sp. nov. (type strain DGU5T = KACC 23720T = TBRC 19015T) and A. gilvus sp. nov. (type strain DGU6T = KACC 23721T = TBRC 19016T) for the two strains.
Collapse
Affiliation(s)
- Sunho Park
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Inhyup Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Haejin Woo
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Hyunji Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Subin Yook
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | | |
Collapse
|
3
|
Ajeeb TT, Gonzalez E, Solomons NW, Koski KG. Human milk microbial species are associated with infant head-circumference during early and late lactation in Guatemalan mother-infant dyads. Front Microbiol 2022; 13:908845. [PMID: 36466698 PMCID: PMC9709448 DOI: 10.3389/fmicb.2022.908845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/10/2022] [Indexed: 08/27/2023] Open
Abstract
Human milk contains abundant commensal bacteria that colonize and establish the infant's gut microbiome but the association between the milk microbiome and head circumference during infancy has not been explored. For this cross-sectional study, head-circumference-for-age-z-scores (HCAZ) of vaginally delivered breastfed infants were collected from 62 unrelated Mam-Mayan mothers living in eight remote rural communities in the Western Highlands of Guatemala during two stages of lactation, 'early' (6-46 days postpartum, n = 29) or 'late' (109-184 days postpartum, n = 33). At each stage of lactation, infants were divided into HCAZ ≥ -1 SD (early: n = 18; late: n = 14) and HCAZ < -1 SD (early: n = 11; late: n = 19). Milk microbiome communities were assessed using 16S ribosomal RNA gene sequencing and DESeq2 was used to compare the differential abundance (DA) of human milk microbiota with infant HCAZ subgroups at both stages of lactations. A total of 503 ESVs annotated 256 putative species across the 64 human milk samples. Alpha-diversity using Chao index uncovered a difference in microbial community richness between HCAZ ≥ -1 SD and HCAZ < -1 SD groups at late lactation (p = 0.045) but not at early lactation. In contrast, Canonical Analysis of Principal Coordinates identified significant differences between HCAZ ≥ -1 SD and HCAZ < -1 SD at both stages of lactation (p = 0.003); moreover, 26 milk microbial taxa differed in relative abundance (FDR < 0.05) between HCAZ ≥ -1 SD and HCAZ < -1 SD, with 13 differentially abundant at each lactation stage. Most species in the HCAZ ≥ -1 SD group were Streptococcus species from the Firmicutes phylum which are considered human colonizers associated with human milk whereas the HCAZ < -1 SD group at late lactation had more differentially abundant taxa associated with environmentally and 'potentially opportunistic' species belonging to the Actinobacteria genus. These findings suggest possible associations between brain growth of breastfed infants and the milk microbiome during lactation. Importantly, these data provide the first evidence of cross talk between the human milk microbiome and the infant brain that requires further investigation.
Collapse
Affiliation(s)
- Tamara T. Ajeeb
- School of Human Nutrition, McGill University, Montréal, QC, Canada
- Department of Clinical Nutrition, College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Emmanuel Gonzalez
- Canadian Centre for Computational Genomics, McGill Genome Centre, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, QC, Canada
| | - Noel W. Solomons
- Center for Studies of Sensory Impairment, Aging and Metabolism (CeSSIAM), Guatemala City, Guatemala
| | | |
Collapse
|
4
|
Aurantiacibacter sediminis sp. nov., a marine bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A yellow-coloured bacterium, designated as strain JGD-13T, was isolated from a tidal flat in the Republic of Korea. Cells were Gram-stain-negative, aerobic, non-flagellated and rod-shaped. Growth was observed at 4–42 °C (optimum, 30 °C), at pH 6.0–12.0 (pH 7.0–8.0) and at 1–7 % (w/v) NaCl concentration (3 %). The 16S rRNA gene sequence analysis indicated that strain JGD-13T was closely related to
Aurantiacibacter gangjinensis
K7-2T with a sequence similarity of 98.2 %, followed by
Aurantiacibacter aquimixticola
JSSK-14T (98.1 %),
Aurantiacibacter atlanticus
s21-N3T (97.6 %),
Aurantiacibacter zhengii
V18T (97.6 %) and
Aurantiacibacter luteus
KA37T (97.5 %). The average nucleotide identity and digital DNA–DNA hybridization values with related strains were 70.3–76.2 % and 18.5–20.3 %. The genomic DNA G+C content was 60.2 mol%. Phylogenetic analysis using the maximum-likelihood method showed that strain JGD-13T formed a clade with
A. aquimixticola
JSSK-14T and
A. gangjinensis
K7-2T. The major fatty acids were summed feature 8 (39.7 %) and C17 : 1
ω6c (14.4 %). The predominant respiratory quinone was ubiquinone-10. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, one sphingoglycolipid and three unidentified lipids. On the basis of phylogenetic, phenotypic and chemotaxonomic characteristics, strain JGD-13T represents a novel species within the genus
Aurantiacibacter
, for which the name Aurantiacibacter sediminis JGD-13Tsp. nov. is proposed. The type strain is JGD-13T (=KCTC 72892T=KACC 21676T=JCM 33995T).
Collapse
|
5
|
Lee SD, Kim IS. Aurantiacibacter rhizosphaerae sp. nov., isolated from a rhizosphere mudflat of a halophyte and proposal to reclassify Erythrobacter suaedae Lee et al. 2019. and Erythrobacter flavus Yoon et al. 2003 as Aurantiacibacter suaedae comb. nov. and Qipengyuania flava comb. nov., respectively. Int J Syst Evol Microbiol 2021; 70:6257-6265. [PMID: 33095131 DOI: 10.1099/ijsem.0.004524] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A marine alphaproteobacterium, designated as strain GH3-10T, was isolated from the rhizosphere mud of a halophyte (Suaeda japonica) collected at the seashore of Gangwha Island, Republic of Korea. The isolate was found to be Gram-stain-negative, strictly aerobic, catalase- and oxidase-positive, non-motile, short rods and produced orange-coloured colonies. The 16S rRNA gene- and whole genome-based phylogenetic analyses exhibited that strain GH3-10T belonged to the genus Aurantiacibacter and was most closely related to Aurantiacibacter atlanticus s21-N3T (98.7 % 16S rRNA gene sequence similarity) and Aurantiacibacter marinus KCTC 23554T (98.4 %). The major respiratory quinone was ubiquinone-10. The polar lipids consisted of phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, sphingoglycolipid and an unidentified lipid. The major fatty acids were C18 : 1 ω7c, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and C18 : 1 ω7c 10-methyl. The DNA G+C content was 61.3 mol% (by genome). Average nucleotide identity and DNA-DNA relatedness values between the isolate and its phylogenetically closest relatives, together with phenotypic distinctness warranted the taxonomic description of a new species. On the basis of data obtained by a polyphasic approach, strain GH3-10T (=KCTC 62379T=JCM 32444T) represents a novel species of the genus Aurantiacibacter, for which the name Aurantiacibacter rhizosphaerae sp. nov. is proposed. According to phylogenetic coherence based on 16S rRNA genes and core genomes, it is also proposed that Erythrobacter suaedae Lee et al. 2019. and Erythrobacter flavus Yoon et al. 2003 be transferred to Aurantiacibacter suaedae comb. nov. and Qipengyuania flava comb. nov., respectively.
Collapse
Affiliation(s)
- Soon Dong Lee
- Institute of Jeju Microbial Resources, BioPS Co., Ltd., Jeju 63243, Republic of Korea
| | - In Seop Kim
- Department of Biological Sciences and Biotechnology, Hannam University, Daejon 34054, Republic of Korea
| |
Collapse
|
6
|
Xu L, Sun C, Fang C, Oren A, Xu XW. Genomic-based taxonomic classification of the family Erythrobacteraceae. Int J Syst Evol Microbiol 2020; 70:4470-4495. [PMID: 32726199 PMCID: PMC7660246 DOI: 10.1099/ijsem.0.004293] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/01/2020] [Indexed: 12/22/2022] Open
Abstract
The family Erythrobacteraceae, belonging to the order Sphingomonadales, class Alphaproteobacteria, is globally distributed in various environments. Currently, this family consist of seven genera: Altererythrobacter, Croceibacterium, Croceicoccus, Erythrobacter, Erythromicrobium, Porphyrobacter and Qipengyuania. As more species are identified, the taxonomic status of the family Erythrobacteraceae should be revised at the genomic level because of its polyphyletic nature evident from 16S rRNA gene sequence analysis. Phylogenomic reconstruction based on 288 single-copy orthologous clusters led to the identification of three separate clades. Pairwise comparisons of average nucleotide identity, average amino acid identity (AAI), percentage of conserved protein and evolutionary distance indicated that AAI and evolutionary distance had the highest correlation. Thresholds for genera boundaries were proposed as 70 % and 0.4 for AAI and evolutionary distance, respectively. Based on the phylo-genomic and genomic similarity analysis, the three clades were classified into 16 genera, including 11 novel ones, for which the names Alteraurantiacibacter, Altericroceibacterium, Alteriqipengyuania, Alteripontixanthobacter, Aurantiacibacter, Paraurantiacibacter, Parerythrobacter, Parapontixanthobacter, Pelagerythrobacter, Tsuneonella and Pontixanthobacter are proposed. We reclassified all species of Erythromicrobium and Porphyrobacter as species of Erythrobacter. This study is the first genomic-based study of the family Erythrobacteraceae, and will contribute to further insights into the evolution of this family.
Collapse
Affiliation(s)
- Lin Xu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Cong Sun
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Chen Fang
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
- College of Oceanography, Hohai University, Nanjing 210000, PR China
| | - Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Xue-Wei Xu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, PR China
| |
Collapse
|
7
|
Ye YH, Anwar N, Xamxidin M, Zhang R, Yan C, Nie YF, Zhao Z, Sun C, Wu M. Description of Erythrobacter mangrovi sp. nov., an aerobic bacterium from rhizosphere soil of mangrove plant (Kandelia candel). Antonie van Leeuwenhoek 2020; 113:1425-1435. [PMID: 32696278 DOI: 10.1007/s10482-020-01451-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/11/2020] [Indexed: 10/23/2022]
Abstract
A novel Gram-stain negative, aerobic, non-motile, rod-shaped bacterium, designated as strain EB310T, was isolated from rhizosphere soil of mangrove plant Kandelia candel in Fugong village, Zhangzhou, China. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain EB310T belonged to the genus Erythrobacter, clustering with Erythrobacter pelagi JCM 17468T, Erythrobacter lutimaris KCTC 42109T and Erythrobacter marisflavi KCTC 62896T, and showed the highest 16S rRNA gene sequence similarity of 97.5% to Erythrobacter pelagi JCM 17468T. The genomic average nucleotide identity and in silico DNA-DNA hybridization values between strain EB310T and the reference strains were 71.0-75.5% and 19.8-20.0%, respectively. Growth ranges of the isolate occurred at 10-45 °C (optimum 28-30 °C), pH 5.5-9.5 (optimum pH 7.5) and 0-9.0% NaCl concentrations (optimum 2.0%, w/v). The strain did not produce bacteriochlorophyll a and flexirubin, but produced carotenoids. The strain contained Q-10 as the predominant ubiquinone and summed feature 3 (C16:1 ω7c/C16:1 ω6c) and summed feature 8 (C18:1 ω6c/C18:1 ω7c) as the major fatty acids. The major polar lipids were sphingoglycolipid, phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylcholine. Differential phenotypic characteristics, together with chemotaxonomic, phylogenetic and genomic distinctiveness, indicated that strain EB310T is distinguishable from other members of the genus Erythrobacter. On the basis of the data exhibited, strain EB310T is considered to represent a novel species of the genus Erythrobacter, for which the name Erythrobacter mangrovi sp. nov., is proposed. The type strain is EB310T (= KCTC 72109T = MCCC 1K03690T). The genomic DNA G + C content is 62.9 mol%.
Collapse
Affiliation(s)
- Yang-Hui Ye
- Ocean College, Zhejiang University, Zhoushan, 316021, People's Republic of China
| | - Nusratgul Anwar
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Maripat Xamxidin
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Ran Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Cen Yan
- Ocean College, Zhejiang University, Zhoushan, 316021, People's Republic of China
| | - Yan-Fang Nie
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zhe Zhao
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Cong Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
| | - Min Wu
- Ocean College, Zhejiang University, Zhoushan, 316021, People's Republic of China.
| |
Collapse
|
8
|
Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM, Tindall BJ, Gronow S, Kyrpides NC, Woyke T, Göker M. Analysis of 1,000+ Type-Strain Genomes Substantially Improves Taxonomic Classification of Alphaproteobacteria. Front Microbiol 2020; 11:468. [PMID: 32373076 PMCID: PMC7179689 DOI: 10.3389/fmicb.2020.00468] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
The class Alphaproteobacteria is comprised of a diverse assemblage of Gram-negative bacteria that includes organisms of varying morphologies, physiologies and habitat preferences many of which are of clinical and ecological importance. Alphaproteobacteria classification has proved to be difficult, not least when taxonomic decisions rested heavily on a limited number of phenotypic features and interpretation of poorly resolved 16S rRNA gene trees. Despite progress in recent years regarding the classification of bacteria assigned to the class, there remains a need to further clarify taxonomic relationships. Here, draft genome sequences of a collection of genomes of more than 1000 Alphaproteobacteria and outgroup type strains were used to infer phylogenetic trees from genome-scale data using the principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families and genera, including taxa recognized as problematic long ago but also quite recent taxa, as well as a few species were shown to be in need of revision. According proposals are made for the recognition of new orders, families and genera, as well as the transfer of a variety of species to other genera and of a variety of genera to other families. In addition, emended descriptions are given for many species mainly involving information on DNA G+C content and (approximate) genome size, both of which are confirmed as valuable taxonomic markers. Similarly, analysis of the gene content was shown to provide valuable taxonomic insights in the class. Significant incongruities between 16S rRNA gene and whole genome trees were not found in the class. The incongruities that became obvious when comparing the results of the present study with existing classifications appeared to be caused mainly by insufficiently resolved 16S rRNA gene trees or incomplete taxon sampling. Another probable cause of misclassifications in the past is the partially low overall fit of phenotypic characters to the sequence-based tree. Even though a significant degree of phylogenetic conservation was detected in all characters investigated, the overall fit to the tree varied considerably.
Collapse
Affiliation(s)
- Anton Hördt
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marina García López
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Jan P. Meier-Kolthoff
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marcel Schleuning
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Lisa-Maria Weinhold
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Brian J. Tindall
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Sabine Gronow
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Markus Göker
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| |
Collapse
|
9
|
Lee SD, Kim YJ, Kim IS. Erythrobacter suaedae sp. nov., isolated from a rhizosphere mudflat of a halophyte (Suaeda japonica). Int J Syst Evol Microbiol 2019; 69:3287-3292. [DOI: 10.1099/ijsem.0.003625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Soon Dong Lee
- Present address: R&D Center, BioPS Co., Ltd., Daedeuk Valley Campus, Hannam University, Daejon 34054, Republic of Korea
- Faculty of Science Education, Jeju National University, Jeju 63243, Republic of Korea
| | - Young-Ju Kim
- Ilseong Landscaping Co., Ltd., Jeju 63242, Republic of Korea
| | - In Seop Kim
- Department of Biological Sciences and Biotechnology, Hannam University, Daej on 34054, Republic of Korea
| |
Collapse
|
10
|
Setiyono E, Heriyanto, Pringgenies D, Shioi Y, Kanesaki Y, Awai K, Brotosudarmo THP. Sulfur-Containing Carotenoids from A Marine Coral Symbiont Erythrobacter flavus Strain KJ5. Mar Drugs 2019; 17:E349. [PMID: 31212714 PMCID: PMC6627997 DOI: 10.3390/md17060349] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022] Open
Abstract
Erythrobacter flavus strain KJ5 (formerly called Erythrobacter sp. strain KJ5) is a yellowish marine bacterium that was isolated from a hard coral Acropora nasuta in the Karimunjawa Islands, Indonesia. The complete genome sequence of the bacterium has been reported recently. In this study, we examined the carotenoid composition of this bacterium using high-performance liquid chromatography coupled with ESI-MS/MS. We found that the bacterium produced sulfur-containing carotenoids, i.e., caloxanthin sulfate and nostoxanthin sulfate, as the most abundant carotenoids. A new carotenoid zeaxanthin sulfate was detected based on its ESI-MS/MS spectrum. The unique presence of sulfated carotenoids found among the currently known species of the Erythrobacter genus were discussed.
Collapse
Affiliation(s)
- Edi Setiyono
- Ma Chung Research Center for Photosynthetic Pigments (MRCPP) and Department of Chemistry, Universitas Ma Chung, Villa Puncak Tidar N01, Malang 465151, Indonesia; (E.S.); (H.); (Y.S.)
| | - Heriyanto
- Ma Chung Research Center for Photosynthetic Pigments (MRCPP) and Department of Chemistry, Universitas Ma Chung, Villa Puncak Tidar N01, Malang 465151, Indonesia; (E.S.); (H.); (Y.S.)
| | - Delianis Pringgenies
- Department of Coastal Resource Management, Universitas Diponegoro, Jl. Prof. Soedarto Tembalang, Semarang 50275, Indonesia;
| | - Yuzo Shioi
- Ma Chung Research Center for Photosynthetic Pigments (MRCPP) and Department of Chemistry, Universitas Ma Chung, Villa Puncak Tidar N01, Malang 465151, Indonesia; (E.S.); (H.); (Y.S.)
| | - Yu Kanesaki
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan;
| | - Koichiro Awai
- Department of Biological Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan;
| | - Tatas Hardo Panintingjati Brotosudarmo
- Ma Chung Research Center for Photosynthetic Pigments (MRCPP) and Department of Chemistry, Universitas Ma Chung, Villa Puncak Tidar N01, Malang 465151, Indonesia; (E.S.); (H.); (Y.S.)
| |
Collapse
|
11
|
Zhuang L, Lin B, Xu L, Li G, Wu CJ, Luo L. Erythrobacter spongiae sp. nov., isolated from marine sponge. Int J Syst Evol Microbiol 2019; 69:1111-1116. [DOI: 10.1099/ijsem.0.003278] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A taxonomic study was carried out on strain HN-E23T, which was isolated from sponge collected from Yangpu Bay, Hainan, China. Cells of strain HN-E23T were Gram-stain-negative, non-motile, orange-yellow-pigmented, short rods, that could grow at 10–40 °C (optimum, 28 °C), at pH 5–11 (optimun, pH 7) and in 0.5–12 % (w/v) NaCl (optimum, 3 %). This isolate was positive for oxidase, catalase, and the hydrolysis of aesculin, but negative for indole production and the reduction of nitrate. The phylogenetic tree based on 16S rRNA gene sequences revealed that strain HN-E23T formed a distinct phylogenetic lineage within the cluster comprising
Erythrobacter
strains. Strain HN-E23T shared the highest 16S rRNA gene sequence similarity to
Erythrobacter aquimixticola
JSSK-14T (97.2 %), followed by
Erythrobacter atlanticus
s21-N3T (96.6 %),
Erythrobacter luteus
KA37T (96.5 %) and
Erythrobacter citreus
RE35F/1T (96.4 %). The digital DNA–DNA hybridization (dDDH) and the average nucleotide identity (ANI) values between strain HN-E23T and JSSK-14T were 18.8 and 74.9 %, respectively. The dDDH and ANI values are below the standard cut-off criteria for delineation of bacterial species. The dominant fatty acids were summed feature 8 (C18 : 1ω7c/ω6c), C16 : 0 and summed feature 3 (C16 : 1ω7c/ω6c). The major polar lipids comprised phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, sphingoglycolipid, an unidentified glycolipid and six unidentified lipids. The respiratory lipoquinone was identified as Q-10. The G+C content of the genomic DNA was 65.5 mol%. Based on the phenotypic and phylogenetic data, strain HN-E23T represents a novel species of the genus
Erythrobacter
, for which the name Erythrobacter spongiae sp. nov. is proposed, with the type strain HN-E23T (=MCCC 1K03331T=LMG 30457T).
Collapse
Affiliation(s)
- Lingping Zhuang
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources, Xiamen Medica College, Xiamen, 361023, PR China
- Fujian Province University Technology and Engineering Center for Marine Biomedical Resource Utilization, Xiamen Medical College, Xiamen, 361023, PR China
| | - Binbin Lin
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources, Xiamen Medica College, Xiamen, 361023, PR China
- Fujian Province University Technology and Engineering Center for Marine Biomedical Resource Utilization, Xiamen Medical College, Xiamen, 361023, PR China
| | - Li Xu
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources, Xiamen Medica College, Xiamen, 361023, PR China
- Fujian Province University Technology and Engineering Center for Marine Biomedical Resource Utilization, Xiamen Medical College, Xiamen, 361023, PR China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy Ocean, University of China, Qingdao 266003, PR China
| | - Chang-Jer Wu
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan, ROC
| | - Lianzhong Luo
- Fujian Province University Technology and Engineering Center for Marine Biomedical Resource Utilization, Xiamen Medical College, Xiamen, 361023, PR China
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources, Xiamen Medica College, Xiamen, 361023, PR China
| |
Collapse
|
12
|
Fang C, Wu YH, Sun C, Wang H, Cheng H, Meng FX, Wang CS, Xu XW. Erythrobacter zhengii sp. nov., a bacterium isolated from deep-sea sediment. Int J Syst Evol Microbiol 2019; 69:241-248. [DOI: 10.1099/ijsem.0.003136] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Chen Fang
- 1Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, PR China
| | - Yue-Hong Wu
- 1Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, PR China
| | - Cong Sun
- 1Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, PR China
- 2College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Hong Wang
- 3Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chao Wang Road, Hangzhou 310014, PR China
| | - Hong Cheng
- 1Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, PR China
| | - Fan-Xu Meng
- 1Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, PR China
| | - Chun-Sheng Wang
- 1Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, PR China
| | - Xue-Wei Xu
- 1Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, PR China
| |
Collapse
|
13
|
Xing T, Liu Y, Wang N, Xu B, Liu K, Shen L, Gu Z, Guo B, Zhou Y, Liu H. Erythrobacter arachoides sp. nov., isolated from ice core. Int J Syst Evol Microbiol 2017; 67:4235-4239. [DOI: 10.1099/ijsem.0.002290] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Tingting Xing
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Yongqin Liu
- University of Chinese Academy of Sciences, Beijing, PR China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, PR China
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Ninglian Wang
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, PR China
- College of Urban and Environmental Science, Northwest University, Xi’an, 710069, PR China
| | - Baiqing Xu
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, PR China
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Keshao Liu
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Liang Shen
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Zhengquan Gu
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Bixi Guo
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Yuguang Zhou
- Institute of Microbiology, China General Microbiological Culture Collection Center, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Hongcan Liu
- Institute of Microbiology, China General Microbiological Culture Collection Center, Chinese Academy of Sciences, Beijing, 100101, PR China
| |
Collapse
|
14
|
Park S, Jung YT, Choi SJ, Yoon JH. Erythrobacter aquimixticola sp. nov., isolated from the junction between the ocean and a freshwater spring. Int J Syst Evol Microbiol 2017; 67:2964-2969. [DOI: 10.1099/ijsem.0.002055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sooyeon Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Yong-Taek Jung
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Su Jung Choi
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| |
Collapse
|
15
|
Erythrobacter xanthus sp. nov., isolated from surface seawater of the South China Sea. Int J Syst Evol Microbiol 2017; 67:2459-2464. [DOI: 10.1099/ijsem.0.001991] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
16
|
Foran E, Buravenkov V, Kopel M, Mizrahi N, Shoshani S, Helbert W, Banin E. Functional characterization of a novel “ulvan utilization loci” found in Alteromonas sp. LOR genome. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.04.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Erythrobacter alti sp. nov., a marine alphaproteobacterium isolated from seawater. Arch Microbiol 2017; 199:1133-1139. [DOI: 10.1007/s00203-017-1384-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/25/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
|
18
|
Zheng Q, Lin W, Liu Y, Chen C, Jiao N. A Comparison of 14 Erythrobacter Genomes Provides Insights into the Genomic Divergence and Scattered Distribution of Phototrophs. Front Microbiol 2016; 7:984. [PMID: 27446024 PMCID: PMC4919336 DOI: 10.3389/fmicb.2016.00984] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/08/2016] [Indexed: 11/15/2022] Open
Abstract
Aerobic anoxygenic phototrophic bacteria (AAPB) are bacteriochlorophyll a (Bchl a)-containing microbial functional population. Erythrobacter is the first genus that was identified to contain AAPB species. Here, we compared 14 Erythrobacter genomes: seven phototrophic strains and seven non- phototrophic strains. Interestingly, AAPB strains are scattered in this genus based on their phylogenetic relationships. All 14 strains could be clustered into three groups based on phylo-genomic analysis, average genomic nucleotide identity and the phylogeny of signature genes (16S rRNA and virB4 genes). The AAPB strains were distributed in three groups, and gain and loss of phototrophic genes co-occurred in the evolutionary history of the genus Erythrobacter. The organization and structure of photosynthesis gene clusters (PGCs) in seven AAPB genomes displayed high synteny of major regions except for few insertions. The 14 Erythrobacter genomes had a large range of genome sizes, from 2.72 to 3.60 M, and the sizes of the core and pan- genomes were 1231 and 8170 orthologous clusters, respectively. Integrative and conjugative elements (ICEs) were frequently identified in genomes we studied, which might play significant roles in shaping or contributing to the pan-genome of Erythrobacter. Our findings suggest the ongoing evolutionary divergence of Erythrobacter genomes and the scattered distribution characteristic of PGC.
Collapse
Affiliation(s)
- Qiang Zheng
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen UniversityXiamen, China
| | - Wenxin Lin
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen UniversityXiamen, China
| | - Yanting Liu
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen UniversityXiamen, China
| | - Chang Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
- Xisha Deep Sea Marine Environment Observation and Research Station, South China Sea Institute of Oceanology, Chinese Academy of SciencesSansha, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen UniversityXiamen, China
| |
Collapse
|
19
|
Zhuang L, Liu Y, Wang L, Wang W, Shao Z. Erythrobacter atlanticus sp. nov., a bacterium from ocean sediment able to degrade polycyclic aromatic hydrocarbons. Int J Syst Evol Microbiol 2016. [PMID: 26220886 DOI: 10.1099/ijsem.0.000481] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, motile, rod-shaped, orange-pigmented bacterium able to degrade polycyclic aromatic hydrocarbons was isolated from deep-sea sediment of the Atlantic Ocean and subjected to a polyphasic taxonomic study. The strain, designated s21-N3T, could grow at 4–37 °C (optimum 28 °C), at pH 5–10 (optimum pH 7–8) and with 1–7 % (w/v) NaCl (optimum 2–3 %). Strain s21-N3T was positive for nitrate reduction, denitrification, aesculin hydrolysis, oxidase and catalase, but negative for indole production and urease. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain s21-N3T formed a distinct branch within the genus Erythrobacter, sharing high similarities with three closely related strains, Erythrobacter marinus HWDM-33T (98.67 %), ‘Erythrobacter luteus’ KA37 (97.80 %) and Erythrobacter gangjinensis K7-2T (97.59 %). The similarities between strain s21-N3T and other type strains of recognized species within the genus Erythrobacter ranged from 95.00 to 96.47 %. The digital DNA–DNA hybridization values and average nucleotide identity (ANI) values between strain s21-N3T and the three closely related strains Erythrobacter marinus HWDM-33T, ‘Erythrobacter luteus’ KA37 and Erythrobacter gangjinensis K7-2T were 18.60, 18.00 and 18.50 % and 74.24, 72.49 and 72.54 %, respectively. The principal fatty acids were summed feature 8 (C18 : 1ω7c/ω6c) and summed feature 3 (C16 : 1ω7c/ω6c). The respiratory lipoquinone was identified as Q-10. The major polar lipids comprised sphingoglycolipid, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine and diphosphatidylglycerol. The G+C content of the chromosomal DNA was determined to be 58.18 mol%. The combined genotypic and phenotypic distinctiveness demonstrated that strain s21-N3T represents a novel species of the genus Erythrobacter, for which the name Erythrobacter atlanticus sp. nov. is proposed, with the type strain s21-N3T ( = MCCC 1A00519T = KCTC 42697T).
Collapse
Affiliation(s)
- Lingping Zhuang
- State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA; Key Laboratory of Marine Genetic Resources of Fujian Province; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, PR China
| | - Yang Liu
- State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA; Key Laboratory of Marine Genetic Resources of Fujian Province; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, PR China
| | - Lin Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA; Key Laboratory of Marine Genetic Resources of Fujian Province; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, PR China
| | - Wanpeng Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA; Key Laboratory of Marine Genetic Resources of Fujian Province; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, PR China
| | - Zongze Shao
- State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA; Key Laboratory of Marine Genetic Resources of Fujian Province; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, PR China
| |
Collapse
|
20
|
Park S, Kim S, Jung YT, Yoon JH. Marivivens donghaensis gen. nov., sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2016; 66:666-672. [DOI: 10.1099/ijsem.0.000772] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sooyeon Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, South Korea
| | - Sona Kim
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, South Korea
| | - Yong-Taek Jung
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, South Korea
- University of Science and Technology (UST), 113 Gwahak-ro, Yuseong-gu, Daejeon, South Korea
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, South Korea
| |
Collapse
|
21
|
Gutierrez T, Biddle JF, Teske A, Aitken MD. Cultivation-dependent and cultivation-independent characterization of hydrocarbon-degrading bacteria in Guaymas Basin sediments. Front Microbiol 2015. [PMID: 26217326 PMCID: PMC4493657 DOI: 10.3389/fmicb.2015.00695] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Marine hydrocarbon-degrading bacteria perform a fundamental role in the biodegradation of crude oil and its petrochemical derivatives in coastal and open ocean environments. However, there is a paucity of knowledge on the diversity and function of these organisms in deep-sea sediment. Here we used stable-isotope probing (SIP), a valuable tool to link the phylogeny and function of targeted microbial groups, to investigate polycyclic aromatic hydrocarbon (PAH)-degrading bacteria under aerobic conditions in sediments from Guaymas Basin with uniformly labeled [13C]-phenanthrene (PHE). The dominant sequences in clone libraries constructed from 13C-enriched bacterial DNA (from PHE enrichments) were identified to belong to the genus Cycloclasticus. We used quantitative PCR primers targeting the 16S rRNA gene of the SIP-identified Cycloclasticus to determine their abundance in sediment incubations amended with unlabeled PHE and showed substantial increases in gene abundance during the experiments. We also isolated a strain, BG-2, representing the SIP-identified Cycloclasticus sequence (99.9% 16S rRNA gene sequence identity), and used this strain to provide direct evidence of PHE degradation and mineralization. In addition, we isolated Halomonas, Thalassospira, and Lutibacterium sp. with demonstrable PHE-degrading capacity from Guaymas Basin sediment. This study demonstrates the value of coupling SIP with cultivation methods to identify and expand on the known diversity of PAH-degrading bacteria in the deep-sea.
Collapse
Affiliation(s)
- Tony Gutierrez
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC USA ; School of Life Sciences, Heriot-Watt University, Edinburgh UK
| | - Jennifer F Biddle
- College of Earth, Ocean, and Environment, University of Delaware, Lewes, DE USA
| | - Andreas Teske
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Michael D Aitken
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|
22
|
Lei X, Zhang H, Chen Y, Li Y, Chen Z, Lai Q, Zhang J, Zheng W, Xu H, Zheng T. Erythrobacter luteus sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2015; 65:2472-2478. [PMID: 25911535 DOI: 10.1099/ijs.0.000283] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-staining-negative, orange-pigmented, aerobic bacterial strain, designated KA37T, was isolated from a mangrove sediment sample collected from Yunxiao mangrove National Nature Reserve, Fujian Province, China. Growth was observed at 4-37 °C, 0-3% (w/v) NaCl and pH 5-10. Mg2+ ions were required for growth. Phylogenetic analysis based on 16S rRNA gene sequencing revealed that the isolate was a member of the genus Erythrobacter, which belongs to the family Erythrobacteraceae. Strain KA37T was most closely related to Erythrobacter gangjinensis KCTC 22330T (96.9% sequence similarity), followed by Erythrobacter marinus KCTC 23554T (96.8%); similarity to other members of the genus was below 96.6%. The major fatty acids were C17 : 1ω6c, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). Strain KA37T did not produce bacteriochlorophyll a. The predominant respiratory quinone was ubiquinone 10 (Q-10). The polar lipids of strain KA37T were sphingoglycolipid, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, five unknown lipids and one unidentified phospholipid. According to its morphology, physiology, fatty acid composition and 16S rRNA sequence, the novel strain most appropriately belongs to the genus Erythrobacter, but can be distinguished readily from species of the genus Erythrobacter with validly published names. The name Erythrobacter luteus sp. nov. is proposed, with strain KA37T ( = MCCC 1F01227T = KCTC 42179T) as the type strain.
Collapse
Affiliation(s)
- Xueqian Lei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Huajun Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Yao Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Yi Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Zhangran Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Qiliang Lai
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, PR China.,Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, PR China
| | - Jingyan Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Wei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Hong Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Tianling Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, PR China
| |
Collapse
|
23
|
Erythrobacter lutimaris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014; 64:4184-4190. [DOI: 10.1099/ijs.0.067728-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, non-motile, coccoid- or oval-shaped bacterial strain, designated S-5T, belonging to the class
Alphaproteobacteria
, was isolated from a tidal flat sediment of the Yellow Sea, Korea and was subjected to a polyphasic taxonomic study. Strain S-5T grew optimally at pH 7.0–8.0, at 30 °C and in the presence of 2–3 % (w/v) NaCl. Neighbour-joining analysis based on 16S rRNA gene sequences showed that strain S-5T fell within the clade comprising the species of the genus
Erythrobacter
, clustering with the type strains of
Erythrobacter pelagi
,
Erythrobacter citreus
and
Erythrobacter seohaensis
with which it exhibited the highest 16S rRNA gene sequence similarity (96.0–96.7 %). The DNA G+C content was 66.0 mol%. Strain S-5T contained Q-10 as the predominant ubiquinone and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and C17 : 1ω6c as the major fatty acids. The major polar lipids were sphingoglycolipid, phosphatidylcholine, phosphatidylglycerol, an unidentified glycolipid and two unidentified lipids. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, demonstrated that strain S-5T is distinguishable from other species of the genus
Erythrobacter
. On the basis of the data presented, strain S-5T is considered to represent a novel species of the genus
Erythrobacter
, for which the name Erythrobacter
lutimaris sp. nov. is proposed. The type strain is S-5T ( = KCTC 42109T = CECT 8624T).
Collapse
|
24
|
Citrimicrobium luteum gen. nov., sp. nov., aerobic anoxygenic phototrophic bacterium isolated from the gut of a sea cucumber Stichopus japonicus. J Microbiol 2014; 52:819-24. [PMID: 25163838 DOI: 10.1007/s12275-014-4136-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 07/17/2014] [Accepted: 08/05/2014] [Indexed: 10/24/2022]
Abstract
A Gram-stain negative, yellow-pigmented, motile, pleomorphic bacterium, designated strain CBA4602(T), was isolated from the gut of the sea cucumber Stichopus japonicus, which was collected from Jeju Island in the Republic of Korea. In a phylogenetic analysis based on the 16S rRNA gene, strain CBA4602(T) belonged to the order Sphingomonadales in the class Alphaproteobacteria. The 16S rRNA gene sequence similarity between strain CBA4602(T) and 'Citromicrobium bathyomarinum' JF-1, the most closely related strain having nonvalidly published name, was 98.4%, followed by 95.2-96.7% identities with sequence of the other closest strains in the genus Erythrobacter. Strain CBA4602(T) had bacteriochlorophyll a and carotenoids. Strain CBA4602(T) grew in 0-10% (w/v) NaCl, at 10-42°C and pH 6.0-8.0, with optimal growth in 1-2% NaCl, at 30-37°C and pH 7.0. Strain CBA4602(T) was positive for catalase and oxidase activities and was able to hydrolyse gelatine and Tween 20 and 40, but not starch, Tween 80 or L-tyrosine. The G+C content of genomic DNA from strain CBA4602(T) was 68.0 mol% and Q-10 was the major detected isoprenoid quinone. The polar lipids were three unidentified phospholipids, three unidentified glycolipids, and two unidentified lipids. The dominant fatty acids were anteiso-C15:0, C16:0, anteiso-C17:0 and C18:0. As considering the current taxonomic status of the genus 'Citromicrobium' and polyphasic taxonomic analyses, strain CBA4602(T) represents a novel genus and species. The name Citrimicrobium luteum is proposed for the type strain CBA4602(T) (=KACC 17668(T) =JCM 19530(T)).
Collapse
|