1
|
Liang KYH, Orata FD, Boucher YF, Case RJ. Roseobacters in a Sea of Poly- and Paraphyly: Whole Genome-Based Taxonomy of the Family Rhodobacteraceae and the Proposal for the Split of the "Roseobacter Clade" Into a Novel Family, Roseobacteraceae fam. nov. Front Microbiol 2021; 12:683109. [PMID: 34248901 PMCID: PMC8267831 DOI: 10.3389/fmicb.2021.683109] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
The family Rhodobacteraceae consists of alphaproteobacteria that are metabolically, phenotypically, and ecologically diverse. It includes the roseobacter clade, an informal designation, representing one of the most abundant groups of marine bacteria. The rapid pace of discovery of novel roseobacters in the last three decades meant that the best practice for taxonomic classification, a polyphasic approach utilizing phenotypic, genotypic, and phylogenetic characteristics, was not always followed. Early efforts for classification relied heavily on 16S rRNA gene sequence similarity and resulted in numerous taxonomic inconsistencies, with several poly- and paraphyletic genera within this family. Next-generation sequencing technologies have allowed whole-genome sequences to be obtained for most type strains, making a revision of their taxonomy possible. In this study, we performed whole-genome phylogenetic and genotypic analyses combined with a meta-analysis of phenotypic data to review taxonomic classifications of 331 type strains (under 119 genera) within the Rhodobacteraceae family. Representatives of the roseobacter clade not only have different environmental adaptions from other Rhodobacteraceae isolates but were also found to be distinct based on genomic, phylogenetic, and in silico-predicted phenotypic data. As such, we propose to move this group of bacteria into a new family, Roseobacteraceae fam. nov. In total, reclassifications resulted to 327 species and 128 genera, suggesting that misidentification is more problematic at the genus than species level. By resolving taxonomic inconsistencies of type strains within this family, we have established a set of coherent criteria based on whole-genome-based analyses that will help guide future taxonomic efforts and prevent the propagation of errors.
Collapse
Affiliation(s)
- Kevin Y H Liang
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Fabini D Orata
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Yann F Boucher
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,Saw Swee Hock School of Public Health, National University Singapore, Singapore, Singapore
| | - Rebecca J Case
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
2
|
Zongyanglinia huanghaiensis gen. nov., sp. nov., a novel denitrifying bacterium isolated from the yellow sea, and transfer of Pelagicola marinus to Zongyanglinia gen. nov. as Zongyanglinia marinus comb. nov. Antonie van Leeuwenhoek 2021; 114:137-149. [DOI: 10.1007/s10482-020-01507-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/27/2020] [Indexed: 11/26/2022]
|
3
|
Muramatsu S, Kanamuro M, Sato-Takabe Y, Hirose S, Muramatsu Y, Takaichi S, Hanada S. Roseobacter cerasinus sp. nov., isolated from a fish farm. Int J Syst Evol Microbiol 2020; 70:4920-4926. [PMID: 32730197 DOI: 10.1099/ijsem.0.004360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An obligate aerobic and bacteriochlorophyll a-containing bacterium, designated strain AI77T, was isolated from a fish farm in Uwa Sea, Japan. Cells were Gram-stain-negative, coccoid- to oval-shaped, and showed no motility. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain AI77T is a member of the genus Roseobacter and closely related to Roseobacter ponti MM-7T (97.8 %), Roseobacter denitrificans OCh 114T (97.3 %) and Roseobacter litoralis OCh 149T (97.3 %). The G+C content of strain AI77T was 61.0 mol%. The average amino acid identity values of the genome in strain AI77T with those in R. denitrificans OCh 114T and R. litoralis OCh 149T were 73.26 % (SD 16.46) and 72.63 % (SD 16.76), respectively. The digital DNA-DNA hybridization values of strain AI77T with the type strains R. denitrificans OCh 114T and R. litoralis OCh 149T were 18.70 and 18.50 %, respectively. The dominant fatty acids (>10 % of total fatty acids) of AI77T were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and saturated fatty acid C16 : 0. The sole respiratory quinone was ubiquinone-10. The predominant polar lipids were phosphatidylcholine, phosphatidylglycerol and diphosphatidylglycerol. Based on the genetic and phenotypic data obtained herein, we conclude that strain AI77T represents a new species of the genus Roseobacter, for which we propose the name Roseobacter cerasinus sp. nov.; the type strain is AI77T (=DSM 110091T=NBRC 114115T).
Collapse
Affiliation(s)
- So Muramatsu
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo, 192-0397, Japan
| | - Masataka Kanamuro
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo, 192-0397, Japan
| | - Yuki Sato-Takabe
- Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1, Tsukuba, Ibaraki, 305-8569, Japan.,Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo, 192-0397, Japan
| | - Setsuko Hirose
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo, 192-0397, Japan
| | - Yuki Muramatsu
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8, Kazusakamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Shinichi Takaichi
- Department of Molecular Microbiology, Tokyo University of Agriculture, 1-1-1, Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Satoshi Hanada
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo, 192-0397, Japan
| |
Collapse
|
4
|
Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM, Tindall BJ, Gronow S, Kyrpides NC, Woyke T, Göker M. Analysis of 1,000+ Type-Strain Genomes Substantially Improves Taxonomic Classification of Alphaproteobacteria. Front Microbiol 2020; 11:468. [PMID: 32373076 PMCID: PMC7179689 DOI: 10.3389/fmicb.2020.00468] [Citation(s) in RCA: 298] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
The class Alphaproteobacteria is comprised of a diverse assemblage of Gram-negative bacteria that includes organisms of varying morphologies, physiologies and habitat preferences many of which are of clinical and ecological importance. Alphaproteobacteria classification has proved to be difficult, not least when taxonomic decisions rested heavily on a limited number of phenotypic features and interpretation of poorly resolved 16S rRNA gene trees. Despite progress in recent years regarding the classification of bacteria assigned to the class, there remains a need to further clarify taxonomic relationships. Here, draft genome sequences of a collection of genomes of more than 1000 Alphaproteobacteria and outgroup type strains were used to infer phylogenetic trees from genome-scale data using the principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families and genera, including taxa recognized as problematic long ago but also quite recent taxa, as well as a few species were shown to be in need of revision. According proposals are made for the recognition of new orders, families and genera, as well as the transfer of a variety of species to other genera and of a variety of genera to other families. In addition, emended descriptions are given for many species mainly involving information on DNA G+C content and (approximate) genome size, both of which are confirmed as valuable taxonomic markers. Similarly, analysis of the gene content was shown to provide valuable taxonomic insights in the class. Significant incongruities between 16S rRNA gene and whole genome trees were not found in the class. The incongruities that became obvious when comparing the results of the present study with existing classifications appeared to be caused mainly by insufficiently resolved 16S rRNA gene trees or incomplete taxon sampling. Another probable cause of misclassifications in the past is the partially low overall fit of phenotypic characters to the sequence-based tree. Even though a significant degree of phylogenetic conservation was detected in all characters investigated, the overall fit to the tree varied considerably.
Collapse
Affiliation(s)
- Anton Hördt
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marina García López
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Jan P. Meier-Kolthoff
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marcel Schleuning
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Lisa-Maria Weinhold
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Brian J. Tindall
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Sabine Gronow
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Markus Göker
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| |
Collapse
|
5
|
Wei Y, Cao J, Yao H, Mao H, Zhu K, Li M, Liu R, Fang J. Paracoccus sediminilitoris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2019; 69:1035-1040. [DOI: 10.1099/ijsem.0.003265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel marine Gram-stain-negative, non-spore-forming, motile, aerobic, coccoid or ovoid bacterium, designated as strain DSL-16T, was isolated from a tidal flat sediment on the East China Sea and characterized phylogenetically and phenotypically. Optimal growth of the strain occurred at 35 °C (range 4–40 °C), at pH 6 (range 5–11) and with 4 % (w/v) NaCl (range 1–14 %). The nearest phylogenetic neighbour was
Paracoccus
seriniphilus
DSM 14827T (98.2 % 16S rRNA gene sequence similarity). The digital DNA–DNA hybridization value between strain DSL-16T and
P. seriniphilus
DSM 14827T was 19.5±2.2 %. The average nucleotide identity value between strain DSL-16T and
P. seriniphilus
DSM 14827T was 83.6 %. The sole respiratory ubiquinone was Q-10. The major polar lipids were phosphatidylmonomethylethanolamine (PME), phosphatidylglycerol (PG), phosphatidylcholine (PC), phosphatidylethanolamine (PE), diphosphatidyglycerol (DPG) and glycolipid (GL). The predominant cellular fatty acids of strain DSL-16T were C18 : 1ω7c, C18 : 0 and 11-methyl C18 : 1ω7c. The G+C content of the genomic DNA was 64.5 mol%. The combined genotypic and phenotypic data indicated that strain DSL-16T represents a novel species of the genus
Paracoccus
, for which the name
Paracoccus
sediminilitoris sp. nov. is proposed. The type strain is DSL-16T (=KCTC 62644T=MCCC 1K03534T).
Collapse
Affiliation(s)
- Yuli Wei
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Junwei Cao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Huimin Yao
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, PR China
| | - Haiyan Mao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Kelei Zhu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Meng Li
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Rulong Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Jiasong Fang
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
- Department of Natural Sciences, Hawaii Pacific University, Honolulu, HI 96813, USA
| |
Collapse
|
6
|
Ji X, Zhang C, Zhang X, Xu Z, Ding Y, Zhang Y, Song Q, Li B, Zhao H. Pelagivirga sediminicola gen. nov., sp. nov. isolated from the Bohai Sea. Int J Syst Evol Microbiol 2018; 68:3494-3499. [PMID: 30222096 DOI: 10.1099/ijsem.0.003015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative bacterium, strain BH-SD19T, that was isolated from a marine sediment sample collected from the Bohai Sea, was subjected to a polyphasic taxonomic study. Cells of BH-SD19T are non-flagellated, non-gliding, oval-shaped rods, 0.5-1.0 µm wide and 1.0-2.0 µm long. BH-SD19T is strictly aerobic, and oxidase- and catalase-positive. Growth occurs at 15-40 °C (optimum 35 °C), at pH 6.0-8.5 (optimum 7.0-7.5) and with 1-10 % (w/v) NaCl (optimum 2 %). The predominant fatty acids are C19 : 0cyclo ω8c (46.5 %), C16 : 0 (20.3 %) and C18 : 1ω7c and/or C18 : 1ω6c (10.6 %). The major respiratory quinone is Q-10. The major polar lipids are phosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid. The DNA G+C content is 64.0 mol%. BH-SD19T shows the highest 16S rRNA sequence similarity to Pontibaca methylaminivorans (95.2 %) and strains of species of the genus Roseovarius(93.4-95.2 %). Sequence similarity values between BH-SD19T and other phylogenetically related species are all below 95.0 %. Phylogenetic trees based on 16S rRNA gene sequences indicate that BH-SD19T forms a distinct lineage and does not join any known genera in the trees. Phenotypic, chemotaxonomic and phylogenetic data indicate that BH-SD19T represents a novel genus and species in the family Rhodobacteraceae, for which the name Pelagivirga sediminicola gen. nov., sp. nov. is proposed. The type strain is BH-SD19T (=CCTCC AB 2017074T=KCTC 62202T).
Collapse
Affiliation(s)
- Xiaofei Ji
- 1Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, PR China
| | - Cong Zhang
- 2Shandong Province Key Laboratory of Applied Mycology, School of Life Science, Qingdao Agricultural University, Qingdao, PR China
| | - Xiying Zhang
- 3State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, PR China
| | - Zheng Xu
- 1Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, PR China
| | - Yunfei Ding
- 1Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, PR China
| | - Yimei Zhang
- 1Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, PR China
| | - Qing Song
- 1Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, PR China
| | - Boqing Li
- 1Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, PR China
| | - Huilin Zhao
- 1Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, PR China
| |
Collapse
|
7
|
Shin YH, Kim JH, Suckhoom A, Kantachote D, Kim W. Limibaculum halophilum gen. nov., sp. nov., a new member of the family Rhodobacteraceae. Int J Syst Evol Microbiol 2017; 67:3812-3818. [PMID: 28879850 DOI: 10.1099/ijsem.0.002200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, cream-pigmented, aerobic, non-motile, non-spore-forming and short-rod-shaped bacterial strain, designated CAU 1123T, was isolated from mud from reclaimed land. The strain's taxonomic position was investigated by using a polyphasic approach. Strain CAU 1123T grew optimally at 37 °C and at pH 7.5 in the presence of 2 % (w/v) NaCl. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain CAU 1123T formed a monophyletic lineage within the family Rhodobacteraceae with 93.8 % or lower sequence similarity to representatives of the genera Rubrimonas, Oceanicella, Pleomorphobacterium, Rhodovulum and Albimonas. The major fatty acids were C18 : 1 ω7c and 11-methyl C18 : 1 ω7c and the predominant respiratory quinone was Q-10. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, two unidentified phospholipids, one unidentified aminolipid and one unidentified lipid. The DNA G+C content was 71.1 mol%. Based on the data from phenotypic, chemotaxonomic and phylogenetic studies, it is proposed that strain CAU 1123T represents a novel genus and novel species of the family Rhodobacteraceae, for which the name Limibaculumhalophilum gen. nov., sp. nov. The type strain is CAU 1123T (=KCTC 52187T, =NBRC 112522T).
Collapse
Affiliation(s)
- Yong Ho Shin
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Jong-Hwa Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Ampaitip Suckhoom
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand
| | - Duangporn Kantachote
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand
| | - Wonyong Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| |
Collapse
|
8
|
Vollmers J, Frentrup M, Rast P, Jogler C, Kaster AK. Untangling Genomes of Novel Planctomycetal and Verrucomicrobial Species from Monterey Bay Kelp Forest Metagenomes by Refined Binning. Front Microbiol 2017; 8:472. [PMID: 28424662 PMCID: PMC5372823 DOI: 10.3389/fmicb.2017.00472] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/07/2017] [Indexed: 12/18/2022] Open
Abstract
The kelp forest of the Pacific temperate rocky marine coastline of Monterey Bay in California is a dominant habitat for large brown macro-algae in the order of Laminariales. It is probably one of the most species-rich, structurally complex and productive ecosystems in temperate waters and well-studied in terms of trophic ecology. However, still little is known about the microorganisms thriving in this habitat. A growing body of evidence suggests that bacteria associated with macro-algae represent a huge and largely untapped resource of natural products with chemical structures that have been optimized by evolution for biological and ecological purposes. Those microorganisms are most likely attracted by algae through secretion of specific carbohydrates and proteins that trigger them to attach to the algal surface and to form biofilms. The algae might then employ those bacteria as biofouling control, using their antimicrobial secondary metabolites to defeat other bacteria or eukaryotes. We here analyzed biofilm samples from the brown macro-algae Macrocystis pyrifera sampled in November 2014 in the kelp forest of Monterey Bay by a metagenomic shotgun and amplicon sequencing approach, focusing on Planctomycetes and Verrucomicrobia from the PVC superphylum. Although not very abundant, we were able to find novel Planctomycetal and Verrucomicrobial species by an innovative binning approach. All identified species harbor secondary metabolite related gene clusters, contributing to our hypothesis that through inter-species interaction, microorganisms might have a substantial effect on kelp forest wellbeing and/or disease-development.
Collapse
Affiliation(s)
- John Vollmers
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Martinique Frentrup
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Patrick Rast
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Christian Jogler
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany.,Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud UniversityNijmegen, Netherlands
| | - Anne-Kristin Kaster
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| |
Collapse
|
9
|
Zhong ZP, Liu Y, Wang F, Zhou YG, Liu HC, Liu ZP. Lacimonas salitolerans gen. nov., sp. nov., isolated from surface water of a saline lake. Int J Syst Evol Microbiol 2015; 65:4550-4556. [DOI: 10.1099/ijsem.0.000611] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative bacterium, strain TS-T30T, was isolated from a saline lake (Lake Tuosu) in Qaidam basin, Qinghai province, China, and its taxonomic position was determined by using a polyphasic approach. Cells were non-spore-forming rods, non-motile, 0.8–1.4 μm wide and 1.9–4.0 μm long. Strain TS-T30T was strictly heterotrophic and aerobic. Catalase- and oxidase-positive. Growth was observed in the presence of 0.5–11.0 % (w/v) NaCl (optimum 3.0 %), and at 10–35 °C (optimum 25 °C) and pH 6.5–10.0 (optimum pH 8.5). Strain TS-T30T contained C18 : 1ω7c as the only predominant fatty acid. The major respiratory quinone was Q-10. The DNA G+C content was 62 mol% (T
m). Phylogenetic trees based on 16S rRNA gene sequences showed that strain TS-T30T formed a distinct lineage that was independent of other most closely related genera: Lutimaribacter (95.2–95.9 % 16S rRNA gene sequence similarities), Poseidonocella (95.4 %), Ruegeria (92.8–94.9 %), Marivita (93.6–94.9 %), Seohaeicola (94.7 %), Sediminimonas (94.7 %), Shimia (93.9–94.7 %), Oceanicola (92.6–94.5 %) and Roseicyclus (94.5 %). The major polar lipids were phosphatidylglycerol, one unidentified phospholipid and an unknown aminolipid; phosphatidylcholine was not detected. These data demonstrated that strain TS-T30T represents a novel species of a new genus in the family Rhodobacteraceae, for which the name Lacimonas salitolerans gen. nov., sp. nov. is proposed. The type strain of the type species is TS-T30T ( = CGMCC 1.12477T = NBRC 110969T).
Collapse
Affiliation(s)
- Zhi-Ping Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ying Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Fang Wang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100089, PR China
| | - Yu-Guang Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Hong-Can Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zhi-Pei Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
10
|
Li AH, Zhou YG. Frigidibacter albus gen. nov., sp. nov., a novel member of the family Rhodobacteraceae isolated from lake water. Int J Syst Evol Microbiol 2015; 65:1199-1206. [DOI: 10.1099/ijs.0.000080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three Gram-staining-negative, strictly aerobic, non-pigmented, non-motile, rod-shaped bacterial strains, SP32T ( = SLM-1T), SR68 ( = SLM-3) and SP95 ( = SLM-2), were isolated from two water samples of a cold-water lake in Xinjiang province, China. Growth was observed at 4–25 °C and pH 6.0–9.0, and optimum growth occurred at 18–20 °C and at pH 7.0–7.5. Phylogenetic analysis of 16S rRNA gene sequences revealed that these isolates belonged to the family
Rhodobacteraceae
, but formed an evolutionary lineage distinct from other species of this family with validly published names. Strain SP32T showed the highest 16S rRNA gene sequence similarity (96.7 %) to
Rhodobacter veldkampii
ATCC 35703T, and the similarity to members of the genera
Defluviimonas
,
Haematobacter
and
Pseudorhodobacter
was respectively 95.8–96.4, 96.0–96.1 and 95.3–96.1 %. The genomic DNA G+C content of strain SP32T was 67.6 mol%. The major fatty acids (>5 %) were summed feature 8 (C18 : 1ω7c/C18 : 1ω6c) and11-methyl C18 : 1ω7c. Phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine, one unidentified glycolipid and one unidentified polar lipid were the main polar lipids. Ubiquinone 10 (Q-10) was the sole respiratory quinone. Strain SP32T did not produce photosynthetic pigments and did not contain the gene pufM, by which it differed from the phototrophic species of the family
Rhodobacteraceae
. Based on its distinct phenotypic, chemotaxonomic and phylogenetic properties, strain SP32T represents a novel species in a novel genus within the family
Rhodobacteraceae
, for which we propose the name Frigidibacter albus gen. nov., sp. nov. The type strain of Frigidibacter albus is strain SP32T ( = SLM-1T = CGMCC 1.13995T = NBRC 109671T).
Collapse
Affiliation(s)
- Ai-Hua Li
- China General Microbiological Culture Collection Center and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yu-Guang Zhou
- China General Microbiological Culture Collection Center and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
11
|
Kim YO, Park S, Nam BH, Kim DG, Yoon JH. Pseudopelagicola gijangensis gen. nov., sp. nov., isolated from the sea squirt Halocynthia roretzi. Int J Syst Evol Microbiol 2014; 64:3447-3452. [DOI: 10.1099/ijs.0.062067-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, aerobic, non-motile, rod-shaped bacterial strain, designated YSS-7T, was isolated from a sea squirt (Halocynthia roretzi) collected from the South Sea of South Korea. Strain YSS-7T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain YSS-7T clustered with the type strains of
Pelagicola litoralis
,
Planktotalea frisia
,
Pacificibacter maritimus
and
Roseovarius marinus
. Strain YSS-7T exhibited the highest 16S rRNA gene sequence similarity (97.7 %) to the type strain of
Pelagicola litoralis
and sequence similarity of more than 96.0 % to the type strains of some other species. Strain YSS-7T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c and 11-methyl C18 : 1ω7c as the major fatty acids. The major polar lipids of strain YSS-7T were phosphatidylcholine, phosphatidylglycerol, an unidentified aminolipid and an unidentified lipid. The fatty acid and polar lipid profiles of strain YSS-7T were different from those of the type strains of phylogenetically related species. The DNA G+C content of strain YSS-7T was 55.5 mol%. Other phenotypic properties demonstrated that strain YSS-7T is distinguished from phylogenetically related species. On the basis of the data presented, strain YSS-7T is considered to represent a novel genus and species, for which the name Pseudopelagicola gijangensis gen. nov., sp. nov. is proposed. The type strain of Pseudopelagicola gijangensis is YSS-7T ( = KCTC 42049T = CECT 8540T).
Collapse
Affiliation(s)
- Young-Ok Kim
- Biotechnology Research Division, National Fisheries Research and Development Institute (NFRDI), Gijang, Busan 619-705, South Korea
| | - Sooyeon Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, South Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Fisheries Research and Development Institute (NFRDI), Gijang, Busan 619-705, South Korea
| | - Dong-Gyun Kim
- Biotechnology Research Division, National Fisheries Research and Development Institute (NFRDI), Gijang, Busan 619-705, South Korea
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, South Korea
| |
Collapse
|
12
|
Park S, Won SM, Kim H, Park DS, Yoon JH. Aestuariivita boseongensis gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014; 64:2969-2974. [DOI: 10.1099/ijs.0.062406-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, aerobic, non-motile and coccoid, ovoid or rod-shaped bacterial strain, BS-B2T, which was isolated from a tidal flat sediment at Boseong in South Korea, was characterized taxonomically. Strain BS-B2T grew optimally at 30 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. The novel strain exhibited highest 16S rRNA gene sequence similarity (97.4 %) to
Marivita geojedonensis
DPG-138T. Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences revealed that strain BS-B2T is closely related to
Primorskyibacter sedentarius
KMM 9018T, showing 96.5 % sequence similarity. Strain BS-B2T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the predominant fatty acid. The polar lipid profile of strain BS-B2T comprised phosphatidylcholine, phosphatidylglycerol, one unidentified aminolipid and one unidentified lipid as major components, and differentiated it from the type strains of
P. sedentarius
and
M. geojedonensis
. The DNA G+C content of strain BS-B2T was 62.2 mol%. Differential phenotypic properties, together with the phylogenetic and chemotaxonomic data, demonstrated that strain BS-B2T can be distinguished from phylogenetically related genera as well as
P. sedentarius
and
M. geojedonensis
. On the basis of the data presented, strain BS-B2T is considered to represent a novel species of a new genus, for which the name Aestuariivita boseongensis gen. nov., sp. nov. is proposed. The type strain of Aestuariivita boseongensis is BS-B2T ( = KCTC 42052T = CECT 8532T).
Collapse
Affiliation(s)
- Sooyeon Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Sung-Min Won
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Hyangmi Kim
- Microbiological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), PO Box 115, Yuseong, Daejeon, Republic of Korea
| | - Doo-Sang Park
- Microbiological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), PO Box 115, Yuseong, Daejeon, Republic of Korea
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| |
Collapse
|
13
|
Chen Z, Liu Y, Liu LZ, Zhong ZP, Liu ZP, Liu Y. Cribrihabitans marinus gen. nov., sp. nov., isolated from a biological filter in a marine recirculating aquaculture system. Int J Syst Evol Microbiol 2014; 64:1257-1263. [DOI: 10.1099/ijs.0.059576-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative bacterium, strain CZ-AM5T, was isolated from an aerated biological filter in a marine recirculating aquaculture system in Tianjin, China. Its taxonomic position was investigated by using a polyphasic approach. Cells of strain CZ-AM5T were non-spore-forming rods, 0.5–0.8 µm wide and 1.2–2.0 µm long, and motile by means of one or two polar or lateral flagella. Strain CZ-AM5T was strictly aerobic, heterotrophic, oxidase-negative and catalase-positive. Growth occurred at 15–40 °C (optimum, 30–35 °C), at pH 6.5–10.5 (optimum, pH 7.0–7.5) and in the presence of 0–12.0 % (w/v) NaCl (optimum, 4.0 %). The predominant fatty acid was C18 : 1ω7c (80.3 %). Ubiquinone 10 (Q-10) was the sole respiratory quinone. The polar lipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, an unknown aminolipid, an unknown phospholipid and three unknown lipids. The DNA G+C content was 60.4 mol%. Strain CZ-AM5T showed the highest 16S rRNA gene sequence similarity (96.5 %) to
Phaeobacter caeruleus
LMG 24369T; it exhibited 16S rRNA gene sequence similarity of 95.0–96.5, 95.2–96.3, 96.2, 94.6–95.7 and 94.8–95.8 % to members of the genera
Phaeobacter
,
Ruegeria
,
Citreimonas
,
Leisingera
and
Donghicola
, respectively. However, phylogenetic trees based on 16S rRNA gene sequences showed that strain CZ-AM5T did not join any of the above genera, but formed a distinct lineage in the trees. On the basis of phenotypic, chemotaxonomic and phylogenetic analyses, strain CZ-AM5T is considered to represent a novel genus and species of the family
Rhodobacteraceae
, for which the name Cribrihabitans marinus gen. nov., sp. nov. is proposed. The type strain of Cribrihabitans marinus is CZ-AM5T ( = CGMCC 1.13219T = JCM 19401T).
Collapse
Affiliation(s)
- Zhu Chen
- R&D Center of Marine Biotechnology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Ying Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Liang-Zi Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zhi-Ping Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zhi-Pei Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Ying Liu
- R&D Center of Marine Biotechnology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| |
Collapse
|
14
|
Nonhongiella spirulinensis gen. nov., sp. nov., a bacterium isolated from a cultivation pond of Spirulina platensis in Sanya, China. Antonie van Leeuwenhoek 2013; 104:933-9. [DOI: 10.1007/s10482-013-0012-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/19/2013] [Indexed: 10/26/2022]
|
15
|
Yoon JH, Park S, Jung YT. Aestuariihabitans beolgyonensis gen. nov., sp. nov., a novel alphaproteobacterium isolated from tidal flat sediment. Antonie van Leeuwenhoek 2013; 104:217-24. [DOI: 10.1007/s10482-013-9940-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/24/2013] [Indexed: 11/28/2022]
|