1
|
Boopathi N, Karthikeyan G, Raveendran M, Johnson I, Maruthasalam S, Srinivasan T, Manimekalai R. Characterization of phytoplasma associated with wilt disease in coconut and approaches for its sensitive diagnostics. J Microbiol Methods 2025; 228:107072. [PMID: 39592060 DOI: 10.1016/j.mimet.2024.107072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Coconut wilt associated with phytoplasma presence is a serious disease that threatens the coconut plantations in South India. Symptoms progress rapidly and cause complete destruction of coconut palm which results in severe economic loss to farmers. Survey in the areas of Thanjavur and Coimbatore districts revealed disease incidence upto 2.5 % and the affected palms exhibited unique symptoms, which differ from the root wilt disease symptoms reported so far. Nested PCR with universal primers and multilocus characterization of tuf and certain rp genes confirmed the presence of phytoplasmas. The 16S rRNA ribosomal gene sequence-based identification assigned the coconut wilt phytoplasma to the 'Candidatus Phytoplasma asteris' species. To achieve timely management of the disease and also to check its spread, Loop Mediated Isothermal Amplification (LAMP) and real-time LAMP diagnostics by targeting the 16S rRNA gene, were established for rapid and specific detection of phytoplasma presence. PCR with LAMP outer primers was carried out and sequence analysis confirmed the amplification of the 16S rRNA gene of phytoplasma. LAMP assay positive samples showed the color shift from violet to blue and was further confirmed by the ladder-like bands produced during the amplification. Diseased samples also generated a unique annealing peak at 87 ± 0.5 °C in the real-time LAMP assay. The LAMP protocol devised will be useful for quick and sensitive detection of this phytoplasma and it has potential application to detect phytoplasma presence in suspected coconut palms and to allow screening of nursery seedlings to ensure disease free planting.
Collapse
Affiliation(s)
- Natesan Boopathi
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Gandhi Karthikeyan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India.
| | - Muthurajan Raveendran
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Iruthayasamy Johnson
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India
| | | | - Thulasy Srinivasan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India.
| | | |
Collapse
|
2
|
Yu SS, Zhu AN, Che HY, Song WW. Molecular Identification of ' Candidatus Phytoplasma malaysianum'-Related Strains Associated with Areca catechu Palm Yellow Leaf Disease and Phylogenetic Diversity of the Phytoplasmas Within the 16SrXXXII Group. PLANT DISEASE 2024; 108:1331-1343. [PMID: 37953232 DOI: 10.1094/pdis-11-23-2275-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Areca catechu palm is an important cash plant in Hainan Island of China and also in the tropical regions of the world. A. catechu palm yellow leaf (AcYL) disease caused by phytoplasmas is a devastating disease for plant production. In the study, the phytoplasmas associated with the AcYL disease were identified and characterized based on their conserved genes, and genetic variation and phylogenetic relationship of the phytoplasma strains in the 16SrXXXII group were demonstrated. The results indicated that A. catechu palm plants showing yellow leaf symptoms were infected by 'Candidatus Phytoplasma malaysianum'-related strains belonging to the 16SrXXXII-D subgroup. BLAST and multiple sequence alignment analysis based on 16S rRNA and secA genes showed that the AcYL phytoplasmas shared 100% sequence identity and 100% homology with the 'Ca. P. malaysianum'-related strains. Phylogenetic analysis indicated that the AcYL phytoplasmas and 'Ca. P. malaysianum'-related strains belonging to the 16SrXXXII group clustered into one clade with a 100% bootstrap value. Based on computer-simulated digestions, six kinds of restriction fragment length polymorphism patterns within the 16SrXXXII group were obtained, and a novel subgroup in the 16Sr group was recommended to propose and describe the relevant strains in this 16Sr subgroup. To our knowledge, this is the first study to report that A. catechu palm showing yellow leaf symptoms was infected by 'Ca. P. malaysianum'-related strains belonging to the 16SrXXXII group. A novel 16Sr subgroup, 16SrXXXII-F, was proposed based on the systematical analysis of genetic variation of all phytoplasmas within the 16SrXXXII group. The findings of this study will support references for monitoring the epidemiology and developing effective prevention strategies for AcYL disease.
Collapse
Affiliation(s)
- Shao-Shuai Yu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, Hainan, China
| | - An-Na Zhu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, Hainan, China
- College of Forestry, Hainan University, Haikou 570228, Hainan, China
| | - Hai-Yan Che
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
| | - Wei-Wei Song
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, Hainan, China
| |
Collapse
|
3
|
Khan LU, Cao X, Zhao R, Tan H, Xing Z, Huang X. Effect of temperature on yellow leaf disease symptoms and its associated areca palm velarivirus 1 titer in areca palm ( Areca catechu L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1023386. [PMID: 36311112 PMCID: PMC9615470 DOI: 10.3389/fpls.2022.1023386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Yellow leaf disease (YLD) has been a major limiting factor threatening areca palm commonly known as betel palm (Areca catechu L.) plantations in Hainan, China. The YLD disease is closely associated with areca palm velarivirus 1 (APV1), which belongs to the family Closteroviridae. YLD-affected betel palms show more serious yellowing symptoms in winter than in summer based on anecdotal observations. In the present work, the underlying mechanism was investigated. We first observed that the severity of YLD symptoms was closely related with the APV1 viral titer determined by qRT-PCR and ELISA under natural conditions. To further investigate whether temperature plays a key role in APV1 accumulation, the areca palm seedlings were artificially inoculated with APV1-positive mealybugs (Ferrisia virgata) and then cultivated under controlled conditions. According to our results, the YLD symptoms severity in inoculated seedlings were closely associated with temperature, e.g., severest symptoms at low temperature (16/22 ± 2°C, night/day), severer symptoms at room temperature (24/26 ± 2°C, night/day), while moderate symptoms at high temperature (27/34 ± 2°C, night/day). The qRT-PCR and ELISA results showed that APV1 titer accumulates significantly abundant at low temperature as compared to high and room temperatures. In conclusion, this is the first report about the temperature effects on the symptoms severity of YLD and APV1 titer, which may have important implications for the epidemiology of YLD.
Collapse
|
4
|
Molecular Identification and Characterization of Two Groups of Phytoplasma and Candidatus Liberibacter Asiaticus in Single or Mixed Infection of Citrus maxima on Hainan Island of China. BIOLOGY 2022; 11:biology11060869. [PMID: 35741390 PMCID: PMC9220215 DOI: 10.3390/biology11060869] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Based on the 16S rRNA and β-operon gene fragments, two subgroups of phytoplasma—CmPII-hn belonging to 16SrII-V and CmPXXXII-hn belonging to 16SrXXXII-D—and Candidatus Liberibacter asiaticus CmLas-hn were detected separately in 12, 2 and 6 out of 54 citrus samples of Citrus maxima, an important economic crop in Hainan Island, China, infected with Huanglongbing. Among the detection results, mixed infection of 16SrII-V subgroup phytoplasma and Candidatus Liberibacter asiaticus was identified in four samples, accounting for 7.4%. The CmPII-hn strain was in a cluster belonging to the 16SrII-V subgroup, with a 99% bootstrap value. The CmPXXXII-hn strain, Trema tomentosa witches’ broom phytoplasma, belonging to 16SrXXXII-D, and the other 16SrXXXII subgroup strains were in one cluster with a 99% bootstrap value. Sixteen variable loci were detected in the 16S rRNA genes of the tested 16SrXXXII group phytoplasma strains, of which two bases had an insertion/deletion. The CmLas-hn strain and Candidatus Liberibacter asiaticus were in one independent cluster with a 99% bootstrap value. In the study, Citrus maxima, showing yellowing and mottled leaves as disease symptoms, were found, which could have been infected separately by 16SrII-V and 16SrXXXII-D subgroup phytoplasmas or could have been subjected to mixed infection by 16SrII-V phytoplasmas and Candidatus Liberibacter asiaticus in China. Abstract The pathogens associated with citrus Huanglongbing symptoms, including yellowing and mottled leaves in Citrus maxima, an important economic crop on Hainan Island of China, were identified and characterized. In the study, detection, genetic variation and phylogenetic relationship analysis of the pathogens were performed based on 16S rRNA and β-operon gene fragments specific to phytoplasma and Candidatus Liberibacter asiaticus. The results indicated that the pathogens—such as phytoplasma strains of CmPII-hn belonging to the 16SrII-V subgroup and CmPXXXII-hn belonging to the 16SrXXXII-D subgroup, as well as Candidatus Liberibacter asiaticus strains CmLas-hn—were identified in the diseased plant samples, with numbers of 12, 2 and 6 out of 54, respectively. Among them, mixed infection with the 16SrII-V subgroup phytoplasma and Candidatus Liberibacter asiaticus was found in the study, accounting for 7.4% (four samples). The phytoplasma strains of CmPII-hn—Tephrosia purpurea witches’ broom, Melochia corchorifolia witches’ broom and Emilia sonchifolia witches’ broom—were clustered into one clade belonging to the 16SrII-V subgroup, with a 99% bootstrap value. The phytoplasma strains of CmPXXXII-hn and Trema tomentosa witches’ broom belonging to 16SrXXXII-D, and the other 16SrXXXII subgroup strains were clustered into one clade belonging to the 16SrXXXII group with a 99% bootstrap value. There were 16 variable loci in the 16S rRNA gene sequences of the tested 16SrXXXII group phytoplasma strains, of which two bases had an insertion/deletion. The strains of Candidatus Liberibacter asiaticus, identified in the study and the strains that had been deposited in GenBank, were in one independent cluster with a 99% bootstrap value. To our knowledge, this is the first report showing that Citrus maxima can be infected by 16SrII-V and16SrXXXII-D subgroup phytoplasmas in China. Moreover, this is also the first report in which the plants are co-infected by 16SrII-V subgroup phytoplasmas and Candidatus Liberibacter asiaticus. More comprehensive and detailed identification and characterization of the pathogens associated with the diseased symptoms in Citrus maxima on the island in China would be beneficial for epidemic monitoring and for the effective prevention and control of related plant diseases.
Collapse
|
5
|
Zhang H, Zhao X, Cao X, Khan LU, Zhao R, Wang H, Huang X. Transmission of Areca Palm Velarivirus 1 by Mealybugs Causes Yellow Leaf Disease in Betel Palm ( Areca catechu). PHYTOPATHOLOGY 2022; 112:700-707. [PMID: 34491795 DOI: 10.1094/phyto-06-21-0261-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Yellow leaf disease (YLD) is the most destructive disease of betel palm (Areca catechu). A strong association between YLD and areca palm velarivirus 1 (APV1) has been observed. However, the causal relationship between APV1 and disease, and the transmission mode, warrant further investigation. This work showed that APV1 was transmitted by both Ferrisia virgata and Pseudococcus cryptus mealybugs and caused YLD symptoms in betel palm seedlings; therefore, we demonstrate that APV1 is a causal agent of YLD. APV1 was detected in the stylets, foreguts, midguts, and hindguts of the vectors via both immunocapture reverse transcription PCR and immunofluorescence assays. APV1 was not transmitted transovarially from viruliferous female F. virgata to their progeny. In summary, the transmission of APV1 by F. virgata may occur in a noncirculative, semipersistent manner. This study fills important gaps in our knowledge of velarivirus transmission, which is critical for developing YLD management practices.
Collapse
Affiliation(s)
- Huaiwen Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, P. R. China
| | - Xue Zhao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, P. R. China
| | - Xianmei Cao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, P. R. China
| | - Latif Ullah Khan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, P. R. China
| | - Ruibai Zhao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, P. R. China
| | - Hongxing Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, P. R. China
| | - Xi Huang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, P. R. China
| |
Collapse
|
6
|
Cao X, Zhao R, Wang H, Zhang H, Zhao X, Khan LU, Huang X. Genomic diversity of Areca Palm Velarivirus 1 (APV1) in Areca palm (Areca catechu) plantations in Hainan, China. BMC Genomics 2021; 22:725. [PMID: 34620080 PMCID: PMC8499421 DOI: 10.1186/s12864-021-07976-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Background Areca palm (Areca catechu L.) is an important commercial crop in southeast Asia, but its cultivation is threatened by yellowing leaf disease (YLD). Areca palm velarivirus 1 (APV1) was recently associated with YLD, but little is known regarding its population and genetic diversity. To assess the diversity of YLD, the APV1 genome was sequenced in YLD samples collected from different sites in Hainan. Results Twenty new and complete APV1 genomes were identified. The APV1 isolates had highly conserved sequences in seven open reading frames (ORFs; > 95% nucleotide [nt] identity) at the 3′ terminal, but there was diversity (81–87% nt identity) in three ORFs at the 5′ terminal. Phylogenetic analysis divided the APV1 isolates into three phylogroups, with 16 isolates (> 70%) in phylogroup A. Mixed infections with different genotypes in the same tree were identified; this was closely correlated with higher levels of genetic recombination. Conclusions Phylogroup A is the most prevalent APV1 genotype in areca palm plantations in Hainan, China. Mixed infection with different genotypes can lead to genomic recombination of APV1. Our data provide a foundation for accurate diagnostics, characterization of etiology, and elucidation of the evolutionary relationships of APV1 populations. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07976-6.
Collapse
Affiliation(s)
- Xianmei Cao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Ruibai Zhao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Hongxing Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Huaiwen Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Xue Zhao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Latif Ullah Khan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Xi Huang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China.
| |
Collapse
|
7
|
Balanagouda P, Sridhara S, Shil S, Hegde V, Naik MK, Narayanaswamy H, Balasundram SK. Assessment of the Spatial Distribution and Risk Associated with Fruit Rot Disease in Areca catechu L. J Fungi (Basel) 2021; 7:jof7100797. [PMID: 34682220 PMCID: PMC8540003 DOI: 10.3390/jof7100797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 01/04/2023] Open
Abstract
Phytophthora meadii (McRae) is a hemibiotrophic oomycete fungus that infects tender nuts, growing buds, and crown regions, resulting in fruit, bud, and crown rot diseases in arecanut (Areca catechu L.), respectively. Among them, fruit rot disease (FRD) causes serious economic losses that are borne by the growers, making it the greatest yield-limiting factor in arecanut crops. FRD has been known to occur in traditional growing areas since 1910, particularly in Malnad and coastal tracts of Karnataka. Systemic surveys were conducted on the disease several decades ago. The design of appropriate management approaches to curtail the impacts of the disease requires information on the spatial distribution of the risks posed by the disease. In this study, we used exploratory survey data to determine areas that are most at risk. Point pattern (spatial autocorrelation and Ripley’s K function) analyses confirmed the existence of moderate clustering across sampling points and optimized hotspots of FRD were determined. Geospatial techniques such as inverse distance weighting (IDW), ordinary kriging (OK), and indicator kriging (IK) were performed to predict the percent severity rates at unsampled sites. IDW and OK generated identical maps, whereby the FRD severity rates were higher in areas adjacent to the Western Ghats and the seashore. Additionally, IK was used to identify both disease-prone and disease-free areas in Karnataka. After fitting the semivariograms with different models, the exponential model showed the best fit with the semivariogram. Using this model information, OK and IK maps were generated. The identified FRD risk areas in our study, which showed higher disease probability rates (>20%) exceeding the threshold level, need to be monitored with the utmost care to contain and reduce the further spread of the disease in Karnataka.
Collapse
Affiliation(s)
- Patil Balanagouda
- Department of Plant Pathology, University of Agricultural and Horticultural Sciences, Shivamogga, Karnataka 577255, India; (P.B.); (M.K.N.); (H.N.)
- Division of Crop Protection, ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala 671124, India;
| | - Shankarappa Sridhara
- Center for Climate Resilient Agriculture, University of Agricultural and Horticultural Sciences, Shivamogga, Karnataka 577255, India
- Correspondence: (S.S.); (S.K.B.)
| | - Sandip Shil
- Research Centre, Division of Social Sciences, ICAR-Central Plantation Crops Research Institute, Mohitnagar, Jalpaiguri, West Bengal 735102, India;
| | - Vinayaka Hegde
- Division of Crop Protection, ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala 671124, India;
| | - Manjunatha K. Naik
- Department of Plant Pathology, University of Agricultural and Horticultural Sciences, Shivamogga, Karnataka 577255, India; (P.B.); (M.K.N.); (H.N.)
| | - Hanumappa Narayanaswamy
- Department of Plant Pathology, University of Agricultural and Horticultural Sciences, Shivamogga, Karnataka 577255, India; (P.B.); (M.K.N.); (H.N.)
| | - Siva K. Balasundram
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (S.S.); (S.K.B.)
| |
Collapse
|
8
|
Zhang L, Yin X, Zhang J, Wei Y, Huo D, Ma C, Chang H, Cai K, Shi H. Comprehensive microbiome and metabolome analyses reveal the physiological mechanism of chlorotic Areca leaves. TREE PHYSIOLOGY 2021; 41:147-161. [PMID: 32857860 DOI: 10.1093/treephys/tpaa112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
As an important economic crop in tropical areas, Areca catechu L. affects the livelihood of millions of farmers. The Areca yellow leaf phenomenon (AYLP) leads to severe crop losses and plant death. To better understand the relationship of microbes and chlorotic Areca leaves, microbial community structure as well as its correlation with differential metabolites was investigated by high-throughput sequencing and metabolomic approaches. High-throughput sequencing of the internal transcribed spacer 1 and 16S rRNA gene revealed that fungal diversity was dominated by Ascomycota and the bacterial community consisted of Proteobacteria as well as Actinobacteria. The microbiota structure on chlorotic Areca leaves exhibited significant changes based on non-metric multidimensional scaling analysis, which were attributed to 477 bacterial genera and 183 fungal genera. According to the results of the Kruskal-Wallis test, several potential pathogens were enriched on chlorotic Areca leaves. Further analysis based on metabolic pathways predicted by Phylogenetic Investigation of Communities by Reconstruction of Unobserved States revealed the metabolism of half-yellow leaves and yellow leaves microbiota were significantly elevated in amino acid metabolism, carbohydrate metabolism, glycan biosynthesis and metabolism, metabolism of cofactors and vitamins, partial xenobiotics biodegradation and metabolism. Furthermore, 22 significantly variable metabolites in Areca leaves were identified by ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry and statistical analysis. Moreover, we further investigated the correlation between the predominant microbes and differential metabolites. Taken together, the association between AYLP and microbiome of Areca leaves was explored from the microecological perspective by omics techniques, and these findings provide new insights into possible prevention, monitoring and control of AYLP in the future.
Collapse
Affiliation(s)
- Lin Zhang
- College of Food Science and Technology, College of Tropical Crops, College of Life and Pharmaceutical Sciences, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570228, China
| | - Xiaojian Yin
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, Jiangsu 211198, China
| | - Jiachao Zhang
- College of Food Science and Technology, College of Tropical Crops, College of Life and Pharmaceutical Sciences, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570228, China
| | - Yunxie Wei
- College of Food Science and Technology, College of Tropical Crops, College of Life and Pharmaceutical Sciences, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570228, China
| | - Dongxue Huo
- College of Food Science and Technology, College of Tropical Crops, College of Life and Pharmaceutical Sciences, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570228, China
| | - Chenchen Ma
- College of Food Science and Technology, College of Tropical Crops, College of Life and Pharmaceutical Sciences, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570228, China
| | - Haibo Chang
- College of Food Science and Technology, College of Tropical Crops, College of Life and Pharmaceutical Sciences, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570228, China
| | - Kun Cai
- College of Food Science and Technology, College of Tropical Crops, College of Life and Pharmaceutical Sciences, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570228, China
| | - Haitao Shi
- College of Food Science and Technology, College of Tropical Crops, College of Life and Pharmaceutical Sciences, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
9
|
Kirdat K, Tiwarekar B, Thorat V, Sathe S, Shouche Y, Yadav A. 'Candidatus Phytoplasma sacchari', a novel taxon - associated with Sugarcane Grassy Shoot (SCGS) disease. Int J Syst Evol Microbiol 2020; 71. [PMID: 33289626 DOI: 10.1099/ijsem.0.004591] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sugarcane Grassy Shoot (SCGS) disease is known to be related to Rice Yellow Dwarf (RYD) phytoplasmas (16SrXI-B group) which are found predominantly in sugarcane growing areas of the Indian subcontinent and South-East Asia. The 16S rRNA gene sequences of SCGS phytoplasma strains belonging to the 16SrXI-B group share 98.07 % similarity with 'Ca. Phytoplasma cynodontis' strain BGWL-C1 followed by 97.65 % similarity with 'Ca. P. oryzae' strain RYD-J. Being placed distinctly away from both the phylogenetically related species, the taxonomic identity of SCGS phytoplasma is unclear and confusing. We attempted to resolve the phylogenetic positions of SCGS phytoplasma based on the phylogenetic analysis of 16S rRNA gene (>1500 bp), nine housekeeping genes (>3500 aa), core genome phylogeny (>10 000 aa) and OGRI values. The draft genome sequences of SCGS phytoplasma (strain SCGS) and Bermuda Grass White leaf (BGWL) phytoplasma (strain LW01), closely related to 'Ca. P. cynodontis', were obtained. The SCGS genome was comprised of 29 scaffolds corresponding to 505 173 bp while LW01 assembly contained 21 scaffolds corresponding to 483 935 bp with the fold coverages over 330× and completeness over 90 % for both the genomes. The G+C content of SCGS was 19.86 % while that of LW01 was 20.46 %. The orthoANI values for the strain SCGS against strains LW01 was 79.42 %, and dDDH values were 22. Overall analysis reveals that SCGS phytoplasma forms a distant clade in RYD group of phytoplasmas. Based on phylogenetic analyses and OGRI values obtained from the genome sequences, a novel taxon 'Candidatus Phytoplasma sacchari' is proposed.
Collapse
Affiliation(s)
- Kiran Kirdat
- Department of Microbiology, Tuljaram Chaturchand College, Baramati 413 102, Maharashtra, India
- National Centre for Microbial Resource, National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | - Bhavesh Tiwarekar
- National Centre for Microbial Resource, National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | - Vipool Thorat
- National Centre for Microbial Resource, National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | - Shivaji Sathe
- Department of Microbiology, Tuljaram Chaturchand College, Baramati 413 102, Maharashtra, India
| | - Yogesh Shouche
- National Centre for Microbial Resource, National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | - Amit Yadav
- National Centre for Microbial Resource, National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| |
Collapse
|
10
|
Wang H, Zhao R, Zhang H, Cao X, Li Z, Zhang Z, Zhai J, Huang X. Prevalence of Yellow Leaf Disease (YLD) and its Associated Areca Palm Velarivirus 1 (APV1) in Betel Palm ( Areca catechu) Plantations in Hainan, China. PLANT DISEASE 2020; 104:2556-2562. [PMID: 32820701 DOI: 10.1094/pdis-01-20-0140-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Yellow leaf disease (YLD) is an economically important disease affecting betel palm in several countries, the cause of which remains unclear despite associations with putative agents, including phytoplasmas. In this study, we screened the potential casual agents associated with YLD in Hainan, China using next-generation sequencing and revealed the association of areca palm velarivirus 1 (APV1) with the YLD-affected palm. The complete genome of the APV1-WNY isolate was determined to be 17,546 nucleotides in length, approximately 1.5 kb longer than the previously reported APV1_HN genome. Transmission electron microscopy showed that APV1 particles are flexuous and filamentous, a typical morphology of species in the Closteroviridae family. Comparison of symptomatic and symptomless tree populations showed a strong association between APV1 and YLD. APV1 was detected in Pseudococcus sp. mealybugs sampled from YLD-affected trees in many locations, suggesting that mealybugs are a potential transmission vector for APV1. Although further studies are needed to confirm a causal relationship, these results provide timely information for the prevention and management of YLD associated with APV1.
Collapse
Affiliation(s)
- Hongxing Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, P. R. China
| | - Ruibai Zhao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, P. R. China
| | - Huaiwen Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, P. R. China
| | - Xianmei Cao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, P. R. China
| | - Zhaotong Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, P. R. China
| | - Ze Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, P. R. China
| | - Jinling Zhai
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, P. R. China
| | - Xi Huang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, P. R. China
| |
Collapse
|
11
|
Yu SS, Che HY, Wang SJ, Lin CL, Lin MX, Song WW, Tang QH, Yan W, Qin WQ. Rapid and Efficient Detection of 16SrI Group Areca Palm Yellow Leaf Phytoplasma in China by Loop-Mediated Isothermal Amplification. THE PLANT PATHOLOGY JOURNAL 2020; 36:459-467. [PMID: 33082730 PMCID: PMC7542027 DOI: 10.5423/ppj.oa.06.2020.0094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/03/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Areca palm yellow leaf (AYL) disease caused by the 16SrI group phytoplasma is a serious threat to the development of the Areca palm industry in China. The 16S rRNA gene sequence was utilized to establish a rapid and efficient detection system efficient for the 16SrI-B subgroup AYL phytoplasma in China by loop-mediated isothermal amplification (LAMP). The results showed that two sets of LAMP detection primers, 16SrDNA-2 and 16SrDNA-3, were efficient for 16SrIB subgroup AYL phytoplasma in China, with positive results appearing under reaction conditions of 64oC for 40 min. The lowest detection limit for the two LAMP detection assays was the same at 200 ag/μl, namely approximately 53 copies/μl of the target fragments. Phytoplasma was detected in all AYL disease samples from Baoting, Tunchang, and Wanning counties in Hainan province using the two sets of LAMP primers 16SrDNA-2 and 16SrDNA-3, whereas no phytoplasma was detected in the negative control. The LAMP method established in this study with comparatively high sensitivity and stability, provides reliable results that could be visually detected, making it suitable for application and research in rapid diagnosis of AYL disease, detection of seedlings with the pathogen and breeding of disease-resistant Areca palm varieties.
Collapse
Affiliation(s)
- Shao-shuai Yu
- Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang 57339, China
| | - Hai-yan Che
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Sheng-jie Wang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Cai-li Lin
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Ming-xing Lin
- Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang 57339, China
| | - Wei-wei Song
- Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang 57339, China
| | - Qing-hua Tang
- Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang 57339, China
| | - Wei Yan
- Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang 57339, China
| | - Wei-quan Qin
- Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang 57339, China
| |
Collapse
|
12
|
Hira P, Singh P, Pinnaka AK, Korpole S, Lal R. Taxonomically Characterized and Validated Bacterial Species Based on 16S rRNA Gene Sequences from India During the Last Decade. Indian J Microbiol 2019; 60:54-61. [PMID: 32089574 DOI: 10.1007/s12088-019-00845-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/27/2019] [Indexed: 12/26/2022] Open
Abstract
Microbial taxonomy dealing with identification and characterization of prokaryotes like bacteria and archaea has always been a major area of research all over the world. Exploring diversity of microbes and description of novel species with different genes and secondary compounds is of utmost importance for better future and sustenance of life. India having an enormous range of ecosystems and diverse species inhabiting these niches is considered to be one of the richest biodiversity regions of the world. During the last decade, with newer methodologies and better technology, the prokaryotic taxonomy from India has extended our inventory of microbial communities in specific niches. However, there still exist some limitations in classifying the microbes from India as compared to that is done world-over. This review enlists the taxonomic description of novel taxa of prokaryotes from India in the past decade. A total of 378 new bacterial species have been classified from different habitats in India in the last ten years and no descriptions of archaeal species is documented till date.
Collapse
Affiliation(s)
- Princy Hira
- 1Department of Zoology, Maitreyi College (University of Delhi), Chanakyapuri, New Delhi 110021 India
| | - Priya Singh
- 2Department of Zoology, Acharya Narendra Dev College (University of Delhi), Govindpuri, Kalkaji, New Delhi, 110019 India
| | - Anil Kumar Pinnaka
- 3CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036 India
| | - Suresh Korpole
- 3CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036 India
| | - Rup Lal
- The Energy and Resource Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi, 110003 India
| |
Collapse
|
13
|
Yang K, Shen W, Li Y, Li Z, Miao W, Wang A, Cui H. Areca Palm Necrotic Ringspot Virus, Classified Within a Recently Proposed Genus Arepavirus of the Family Potyviridae, Is Associated With Necrotic Ringspot Disease in Areca Palm. PHYTOPATHOLOGY 2019; 109:887-894. [PMID: 30133353 DOI: 10.1094/phyto-06-18-0200-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Areca palm (Areca catechu), one of the two most important commercial crops in Hainan, China, has been severely damaged by a variety of pathogens and insects. Here, we report a new disease, tentatively referred to as areca palm necrotic ringspot disease (ANRSD), which is highly epidemic in the main growing regions in Hainan. Transmission electron microscopy observation and small RNA deep sequencing revealed the existence of a viral agent of the family Potyviridae in a diseased areca palm plant (XC1). The virus was tentatively named areca palm necrotic ringspot virus (ANRSV). Subsequently, the positive-sense single-stranded genome of ANRSV isolate XC1 was completely determined. The genome annotation revealed the existence of two cysteine proteinases in tandem (HC-Pro1 and HC-Pro2) in the genomic 5' terminus of ANRSV. Sequence comparison and phylogenetic analysis suggested the taxonomic classification of ANRSV into the recently proposed genus Arepavirus in the family Potyviridae. Given the close relationship of ANRSV with another newly reported arepavirus (areca palm necrotic spindle-spot virus), the exact taxonomic status of ANRSV needs to be further investigated. In this study, a reverse transcription polymerase chain reaction assay for ANRSV-specific detection was developed and a close association between ANRSV and ANRSD was found.
Collapse
Affiliation(s)
- Ke Yang
- 1 Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou, Hainan 570228, China
| | - Wentao Shen
- 2 Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Ye Li
- 3 Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; and
| | - Zengping Li
- 1 Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou, Hainan 570228, China
| | - Weiguo Miao
- 1 Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou, Hainan 570228, China
| | - Aiming Wang
- 4 London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada
| | - Hongguang Cui
- 1 Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
14
|
Naderali N, Nejat N, Vadamalai G, Davis RE, Wei W, Harrison NA, Kong L, Kadir J, Tan YH, Zhao Y. 'Candidatus Phytoplasma wodyetiae', a new taxon associated with yellow decline disease of foxtail palm (Wodyetia bifurcata) in Malaysia. Int J Syst Evol Microbiol 2017; 67:3765-3772. [PMID: 28905707 DOI: 10.1099/ijsem.0.002187] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Landscape-grown foxtail palm (Wodyetia bifurcata A. K. Irvine) trees displaying symptoms of severe foliar chlorosis, stunting, general decline and mortality reminiscent of coconut yellow decline disease were observed in Bangi, Malaysia, during 2012. DNA samples from foliage tissues of 15 symptomatic palms were analysed by employing a nested PCR assay primed by phytoplasma universal ribosomal RNA operon primer pairs, P1/P7 followed by R16F2n/R2. The assay yielded amplicons of a single band of 1.25 kb from DNA samples of 11 symptomatic palms. Results from cloning and sequence analysis of the PCR-amplified 16S rRNA gene segments revealed that, in three palms, three mutually distinct phytoplasmas comprising strains related to 'Candidatus Phytoplasma asteris' and 'Candidatus Phytoplasma cynodontis', as well as a novel phytoplasma, were present as triple infections. The 16S rRNA gene sequence derived from the novel phytoplasma shared less than 96 % nucleotide sequence identity with that of each previously describedspecies of the provisional genus 'Ca. Phytoplasma', justifying its recognition as the reference strain of a new taxon, 'Candidatus Phytoplasma wodyetiae'. Virtual RFLP profiles of the R16F2n/R2 portion of the 16S rRNA gene and the pattern similarity coefficient value (0.74) supported the delineation of 'Ca. Phytoplasma wodyetiae' as the sole representative subgroup A member of a new phytoplasma ribosomal group, 16SrXXXVI.
Collapse
Affiliation(s)
- Neda Naderali
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400, Malaysia
| | - Naghmeh Nejat
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400, Malaysia.,School of Science, Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia
| | - Ganesan Vadamalai
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400, Malaysia.,Plant Protection Department, Universiti Putra Malaysia, 43400, Malaysia
| | - Robert E Davis
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Wei Wei
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Nigel A Harrison
- Department of Plant Pathology, Fort Lauderdale Research and Education Center, University of Florida, Fort Lauderdale, FL 33314, USA
| | - LihLing Kong
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400, Malaysia
| | - Jugah Kadir
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400, Malaysia
| | - Yee-How Tan
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400, Malaysia
| | - Yan Zhao
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| |
Collapse
|
15
|
Gurr GM, Johnson AC, Ash GJ, Wilson BAL, Ero MM, Pilotti CA, Dewhurst CF, You MS. Coconut Lethal Yellowing Diseases: A Phytoplasma Threat to Palms of Global Economic and Social Significance. FRONTIERS IN PLANT SCIENCE 2016; 7:1521. [PMID: 27833616 PMCID: PMC5080360 DOI: 10.3389/fpls.2016.01521] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/26/2016] [Indexed: 05/25/2023]
Abstract
The recent discovery of Bogia coconut syndrome in Papua New Guinea (PNG) is the first report of a lethal yellowing disease (LYD) in Oceania. Numerous outbreaks of LYDs of coconut have been recorded in the Caribbean and Africa since the late Nineteenth century and have caused the death of millions of palms across several continents during the Twentieth century. Despite the severity of economic losses, it was only in the 1970s that the causes of LYDs were identified as phytoplasmas, a group of insect-transmitted bacteria associated with diseases in many other economically important crop species. Since the development of polymerase chain reaction (PCR) technology, knowledge of LYDs epidemiology, ecology and vectors has grown rapidly. There is no economically viable treatment for LYDs and vector-based management is hampered by the fact that vectors have been positively identified in very few cases despite many attempted transmission trials. Some varieties and hybrids of coconut palm are known to be less susceptible to LYD but none are completely resistant. Optimal and current management of LYD is through strict quarantine, prompt detection and destruction of symptomatic palms, and replanting with less susceptible varieties or crop species. Advances in technology such as loop mediated isothermal amplification (LAMP) for detection and tracking of phytoplasma DNA in plants and insects, remote sensing for identifying symptomatic palms, and the advent of clustered regularly interspaced short palindromic repeats (CRISPR)-based tools for gene editing and plant breeding are likely to allow rapid progress in taxonomy as well as understanding and managing LYD phytoplasma pathosystems.
Collapse
Affiliation(s)
- Geoff M. Gurr
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujain Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, College of Plant Protection, Fujian Agriculture and Forestry UniversityFuzhou, China
- Graham Centre of Agricultural Innovation, Charles Sturt UniversityOrange, NSW, Australia
| | - Anne C. Johnson
- Graham Centre of Agricultural Innovation, Charles Sturt UniversityOrange, NSW, Australia
| | - Gavin J. Ash
- Research and Innovation Division, Centre for Crop Health, Institute for Agriculture and the Environment, University of Southern QueenslandToowoomba, QLD, Australia
| | - Bree A. L. Wilson
- Research and Innovation Division, Centre for Crop Health, Institute for Agriculture and the Environment, University of Southern QueenslandToowoomba, QLD, Australia
| | - Mark M. Ero
- PNG Oil Palm Research AssociationKimbe, Papua New Guinea
| | | | - Charles F. Dewhurst
- Formerly affiliated with the PNG Oil Palm Research AssociationKimbe, Papua New Guinea
| | - Minsheng S. You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujain Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, College of Plant Protection, Fujian Agriculture and Forestry UniversityFuzhou, China
| |
Collapse
|
16
|
Abeysinghe S, Abeysinghe PD, Kanatiwela-de Silva C, Udagama P, Warawichanee K, Aljafar N, Kawicha P, Dickinson M. Refinement of the Taxonomic Structure of 16SrXI and 16SrXIV Phytoplasmas of Gramineous Plants using Multilocus Sequence Typing. PLANT DISEASE 2016; 100:2001-2010. [PMID: 30683016 DOI: 10.1094/pdis-02-16-0244-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phytoplasmas that infect gramineous plants, including Napier grass stunt, sugarcane whiteleaf, sugarcane grassy shoot, and Bermuda grass whiteleaf, have been classified into two closely related groups, 16SrXI and 16SrXIV, based on the 16S ribosomal RNA (rRNA) gene. Subsequently, phytoplasmas associated with coconut and Areca palm in southern India and Sri Lanka have been added into the 16SrXI group. However, the 16S rRNA gene gives relatively poor resolution between these phytoplasmas. In this study, a new set of universal phytoplasma primers that amplify approximately 1 kb of the leucyl transfer RNA synthetase (leuS) gene have been validated on a broad range of phytoplasma taxonomic groups. These have been used along with partial sequences of the secA gene to clarify the taxonomic classification of 16SrXI and 16SrXIV phytoplasmas. Based on this data, the sugarcane whiteleaf and grassy shoot phytoplasmas appear to be the same phytoplasma. The Napier grass stunt phytoplasma forms a distinct group from the Bermuda grass whiteleaf and sugarcane phytoplasmas, suggesting that Napier grass stunt should be in its own 'Candidatus Phytoplasma sp.'. The phytoplasmas associated with coconut and arecanut in southern India and Sri Lanka, which are in the same 16SrXI group, appear in different groups based on secA analysis.
Collapse
Affiliation(s)
- Saman Abeysinghe
- Department of Botany, Faculty of Science, University of Ruhuna, Matara, Sri Lanka
| | | | | | - Preethi Udagama
- Department of Zoology, Faculty of Science, University of Colombo, Colombo 03, Sri Lanka
| | - Kanjana Warawichanee
- Plant Virology Section, Department of Agriculture, Chatuchak, Bangkok, 10900, Thailand
| | - Naofel Aljafar
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, LE12 5RD, UK
| | - Praphat Kawicha
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, LE12 5RD, UK
| | - Matt Dickinson
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, LE12 5RD, UK
| |
Collapse
|
17
|
Nair S, Manimekalai R, Ganga Raj P, Hegde V. Loop mediated isothermal amplification (LAMP) assay for detection of coconut root wilt disease and arecanut yellow leaf disease phytoplasma. World J Microbiol Biotechnol 2016; 32:108. [PMID: 27263003 DOI: 10.1007/s11274-016-2078-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/27/2016] [Indexed: 11/28/2022]
Abstract
The coconut root wilt disease (RWD) and the arecanut yellow leaf disease (YLD) are two major phytoplasma associated diseases affecting palms in South India. Greatly debilitating the palm health, these diseases cause substantial yield reduction and economic loss to farmers. A rapid and robust diagnostic technique is crucial in efficient disease management. We established phytoplasma 16S rDNA targeted loop mediated isothermal amplification (LAMP) and real time LAMP based diagnostics for coconut RWD and arecanut YLD. The LAMP reaction was set at 65 °C and end point detection made using hydroxynaphthol blue (HNB) and agarose gel electrophoresis. Molecular typing of LAMP products were made with restriction enzyme HpyCH4 V. Conventional PCR with LAMP external primers and sequencing of amplicons was carried out. Real time LAMP was performed on the Genei II platform (Optigene Ltd., UK). An annealing curve analysis was programmed at the end of the incubation to check the fidelity of the amplicons. The phytoplasma positive samples produced typical ladder like bands on agarose gel, showed colour change from violet to blue with HNB and produced unique annealing peak at 85 ± 0.5 °C in the real time detection. Restriction digestion produced predicted size fragments. Sequencing and BLASTN analysis confirmed that the amplification corresponded to phytoplasma 16S rRNA gene. LAMP method devised here was found to be more robust compared to conventional nested PCR and hence has potential applications in detection of phytoplasma from symptomatic palm samples and in rapid screening of healthy seedlings.
Collapse
Affiliation(s)
- Smita Nair
- Central Plantation Crops Research Institute, Indian Council of Agricultural Research (ICAR), Kudlu P.O, Kasaragod, 671124, Kerala, India
| | - Ramaswamy Manimekalai
- Department of Biotechnology, Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, 641007, Tamil Nadu, India.
| | - Palliyath Ganga Raj
- Central Plantation Crops Research Institute, Indian Council of Agricultural Research (ICAR), Kudlu P.O, Kasaragod, 671124, Kerala, India
| | - Vinayaka Hegde
- Central Plantation Crops Research Institute, Indian Council of Agricultural Research (ICAR), Kudlu P.O, Kasaragod, 671124, Kerala, India
| |
Collapse
|