1
|
Lin SY, Lin TY, Hameed A, Tsai CF, Young CC. Description of Aliirhizobium terrae sp. nov., A Plant Growth-Promoting Bacterium Isolated from a Maize-Rice Rotation Agriculture Field. Curr Microbiol 2024; 81:328. [PMID: 39186081 DOI: 10.1007/s00284-024-03845-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
A polyphasic taxonomic approach was used to characterize a novel bacterium, designated strain CC-CFT758T, isolated from a maize-rice rotation agriculture field in Taiwan. The cells are aerobic, Gram-stain-negative, rod-shaped, positive for catalase and oxidase, and grow at 20-30 °C (optimal 30 ℃), at pH 6.0-8.0 (optimal 8.0), and with 0-4% (w/v) NaCl (optimum, 2-3%). Phylogenetic analysis based on 16S rRNA gene sequencing, the strain CC-CFT758T belongs to the genus "Aliirhizobium" of the family Rhizobiaceae. The closest known relatives of this strain are "Aliirhizobium wenxiniae" 166T (with 98.7% similarity), "Aliirhizobium cellulosilyticum" SEMIA 448T (with 97.9% similarity), and "Aliirhizobium smilacinae" PTYR-5T (with 97.0% similarity). The genome size was 5.9 Mbp, with a G + C content of 60.6%. Values of digital DNA-DNA hybridization between the strain and closely related species were 29.5% for "Ali. cellulosilyticum", and 23.9% for "Ali. wenxiniae" and "Ali. smilacinae". Strain CC-CFT758T exhibited the highest orthologous average nucleotide identity (OrthoANI) values with members of the genus "Aliirhizobium", ranging from 80.4 to 81.6% (n = 3). Chemotaxonomical analysis indicated that strain CC-CFT758T contained C16:0, C16:0 3OH, C19:0 cyclo ω8c, C14:0 3OH/iso-C16:1 I, and C18:2 ω6,9c/ante C18:0 as dominant fatty acids, and the major polyamines were putrescine and spermidine. The polar lipids comprised diphosphatidylglycerol, phosphatidylcholin, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, seven unidentified aminolipids, three unidentified phospholipids, and two unidentified polar lipids. Strain CC-CFT758T exhibited distinct phylogenetic, phenotypic, and chemotaxonomic characteristics, as well as unique results in comparative analysis of 16S rRNA gene sequence, OrthoANI, AAI, dDDH, and phylogenomic placement. Therefore, this strain represents a new species of the genus "Aliirhizobium", for which the name Aliirhizobium terrae sp. nov. is proposed, with the type strain is CC-CFT758T (= BCRC 81364T = JCM 35482T).
Collapse
Affiliation(s)
- Shih-Yao Lin
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, 145, XingDa Rd, Taichung, 40227, Taiwan
| | - Tzu-Yu Lin
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Asif Hameed
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - Chia-Fang Tsai
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, 145, XingDa Rd, Taichung, 40227, Taiwan
| | - Chiu-Chung Young
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, 145, XingDa Rd, Taichung, 40227, Taiwan.
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 145, XingDa Rd, Taichung, 40227, Taiwan.
| |
Collapse
|
2
|
Pozzi ACM, Petit S, Marjolet L, Youenou B, Lagouy M, Namour P, Schmitt L, Navratil O, Breil P, Branger F, Cournoyer B. Ecological assessment of combined sewer overflow management practices through the analysis of benthic and hyporheic sediment bacterial assemblages from an intermittent stream. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167854. [PMID: 37848137 DOI: 10.1016/j.scitotenv.2023.167854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
Combined sewer overflows (CSO) are used to avoid overloading unitary sewers and wastewater treatment plants. Following the European Council Directive on Urban Wastewater Treatment (UWT), CSO discharges are regulated using guidelines that aim to reduce their ecological impact on aquatic systems. A model CSO, which is part of a long-term experimental field observatory, was modified according to these guidelines and used to evaluate the benefits of compliance through analyses of the bacteriological and chemical states of the receiving intermittent stream. The benthic and hyporheic sediments of similar geomorphic units located upstream and downstream of a monitored CSO outlet were compared before and after changes in CSO regimes. Hydrological, pollutants (Metal Trace Elements, MTE; Polycyclic Aromatic Hydrocarbons, PAH; fecal indicator bacteria, FIB), and tpm-based DNA meta-barcoding datasets resolving the occurrences of >700 bacterial species of nearly 200 genera were studied. The frequency of overflow was confirmed to have significantly decreased following the application of the UWT guidelines. Overflows became almost limited to periods of heavy summer thunderstorm events. These changes were not associated with a significant decrease in most of the surveyed MTE, PAH, and FIB among stream sediments, except for chromium. Ecological benefits were highlighted by significant changes in tpm-based meta-barcoding community patterns between the UWT compliant sampling period and the previous one. Bacterial community change point analyses confirmed this segregation in the meta-barcoding dataset according to hydrological indices such as the number of CSO events and discharged volumes. A significant decline in CSO bacterial taxa in the benthic and hyporheic sediments was observed. Thirty-four CSO indicator species were identified, including Aeromonas caviae, Aeromonas media, and Pseudomonas oleovorans. These indicators, often documented as opportunistic pathogens (to humans, animals or plants) and/or pollutant degraders, were proposed as ecological sentinels for the assessment of CSO impacts.
Collapse
Affiliation(s)
- Adrien C M Pozzi
- Université Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Research Team "Bacterial Opportunistic Pathogens and Environment" (BPOE), 69280 Marcy L'Etoile, France.
| | - Stéphanie Petit
- Université Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Research Team "Bacterial Opportunistic Pathogens and Environment" (BPOE), 69280 Marcy L'Etoile, France
| | - Laurence Marjolet
- Université Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Research Team "Bacterial Opportunistic Pathogens and Environment" (BPOE), 69280 Marcy L'Etoile, France
| | - Benjamin Youenou
- Université Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Research Team "Bacterial Opportunistic Pathogens and Environment" (BPOE), 69280 Marcy L'Etoile, France
| | - Mickaël Lagouy
- UR RiverLy, INRAE Centre Lyon-Grenoble, Auvergne-Rhône-Alpes, 69625 Villeurbanne Cedex, France
| | - Philippe Namour
- UR RiverLy, INRAE Centre Lyon-Grenoble, Auvergne-Rhône-Alpes, 69625 Villeurbanne Cedex, France
| | - Laurent Schmitt
- Université de Strasbourg, UMR 7362 Unistra-CNRS-ENGEES, Faculté de Géographie et d'Aménagement, 67000 Strasbourg, France
| | - Oldrich Navratil
- UMR 5600 Environnement Ville Société, Université Lyon 2, CNRS, Lyon, France
| | - Pascal Breil
- UR RiverLy, INRAE Centre Lyon-Grenoble, Auvergne-Rhône-Alpes, 69625 Villeurbanne Cedex, France
| | - Flora Branger
- UR RiverLy, INRAE Centre Lyon-Grenoble, Auvergne-Rhône-Alpes, 69625 Villeurbanne Cedex, France
| | - Benoit Cournoyer
- Université Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Research Team "Bacterial Opportunistic Pathogens and Environment" (BPOE), 69280 Marcy L'Etoile, France.
| |
Collapse
|
3
|
Rudra B, Gupta RS. Phylogenomics studies and molecular markers reliably demarcate genus Pseudomonas sensu stricto and twelve other Pseudomonadaceae species clades representing novel and emended genera. Front Microbiol 2024; 14:1273665. [PMID: 38249459 PMCID: PMC10797017 DOI: 10.3389/fmicb.2023.1273665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/17/2023] [Indexed: 01/23/2024] Open
Abstract
Genus Pseudomonas is a large assemblage of diverse microorganisms, not sharing a common evolutionary history. To clarify their evolutionary relationships and classification, we have conducted comprehensive phylogenomic and comparative analyses on 388 Pseudomonadaceae genomes. In phylogenomic trees, Pseudomonas species formed 12 main clusters, apart from the "Aeruginosa clade" containing its type species, P. aeruginosa. In parallel, our detailed analyses on protein sequences from Pseudomonadaceae genomes have identified 98 novel conserved signature indels (CSIs), which are uniquely shared by the species from different observed clades/groups. Six CSIs, which are exclusively shared by species from the "Aeruginosa clade," provide reliable demarcation of this clade corresponding to the genus Pseudomonas sensu stricto in molecular terms. The remaining 92 identified CSIs are specific for nine other Pseudomonas species clades and the genera Azomonas and Azotobacter which branch in between them. The identified CSIs provide strong independent evidence of the genetic cohesiveness of these species clades and offer reliable means for their demarcation/circumscription. Based on the robust phylogenetic and molecular evidence presented here supporting the distinctness of the observed Pseudomonas species clades, we are proposing the transfer of species from the following clades into the indicated novel genera: Alcaligenes clade - Aquipseudomonas gen. nov.; Fluvialis clade - Caenipseudomonas gen. nov.; Linyingensis clade - Geopseudomonas gen. nov.; Oleovorans clade - Ectopseudomonas gen. nov.; Resinovorans clade - Metapseudomonas gen. nov.; Straminea clade - Phytopseudomonas gen. nov.; and Thermotolerans clade - Zestomonas gen. nov. In addition, descriptions of the genera Azomonas, Azotobacter, Chryseomonas, Serpens, and Stutzerimonas are emended to include information for the CSIs specific for them. The results presented here should aid in the development of a more reliable classification scheme for Pseudomonas species.
Collapse
Affiliation(s)
| | - Radhey S. Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
4
|
Newberger DR, Minas IS, Manter DK, Vivanco JM. A Microbiological Approach to Alleviate Soil Replant Syndrome in Peaches. Microorganisms 2023; 11:1448. [PMID: 37374950 DOI: 10.3390/microorganisms11061448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Replant syndrome (RS) is a global problem characterized by reduced growth, production life, and yields of tree fruit/nut orchards. RS etiology is unclear, but repeated monoculture plantings are thought to develop a pathogenic soil microbiome. This study aimed to evaluate a biological approach that could reduce RS in peach (Prunus persica) orchards by developing a healthy soil bacteriome. Soil disinfection via autoclave followed by cover cropping and cover crop incorporation was found to distinctly alter the peach soil bacteriome but did not affect the RS etiology of RS-susceptible 'Lovell' peach seedlings. In contrast, non-autoclaved soil followed by cover cropping and incorporation altered the soil bacteriome to a lesser degree than autoclaving but induced significant peach growth. Non-autoclaved and autoclaved soil bacteriomes were compared to highlight bacterial taxa promoted by soil disinfection prior to growing peaches. Differential abundance shows a loss of potentially beneficial bacteria due to soil disinfection. The treatment with the highest peach biomass was non-autoclaved soil with a cover crop history of alfalfa, corn, and tomato. Beneficial bacterial species that were cultivated exclusively in the peach rhizosphere of non-autoclaved soils with a cover crop history were Paenibacillus castaneae and Bellilinea caldifistulae. In summary, the non-autoclaved soils show continuous enhancement of beneficial bacteria at each cropping phase, culminating in an enriched rhizosphere which may help alleviate RS in peaches.
Collapse
Affiliation(s)
- Derek R Newberger
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA
| | - Ioannis S Minas
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA
| | - Daniel K Manter
- Agricultural Research Service, United States Department of Agriculture, Fort Collins, CO 80526, USA
| | - Jorge M Vivanco
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
5
|
Pseudomonas oryzagri sp. nov., isolated from a rice field soil. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A Gram-stain-negative, aerobic, rod-shaped and non-motile novel bacterial strain, designated MAHUQ-58T, was isolated from soil sample of a rice field. The colonies were observed to be light pink-coloured, smooth, spherical and 0.6–1.0 mm in diameter when grown on nutrient agar (NA) medium for 2 days. Strain MAHUQ-58T was found to be able to grow at 15–40 °C, at pH 5.5–10.0 and with 0–1.0 % NaCl (w/v). Cell growth occurred on tryptone soya agar, Luria–Bertani agar, NA, MacConkey agar and Reasoner's 2A agar. The strain was found to be positive for both oxidase and catalase tests. The strain was positive for hydrolysis of Tween 20 and l-tyrosine. According to the 16S rRNA gene sequence comparisons, the isolate was identified as a member of the genus
Pseudomonas
and to be closely related to
Pseudomonas oryzae
WM-3T (98.9 % similarity),
Pseudomonas linyingensis
LYBRD3-7T (97.7 %),
Pseudomonas sagittaria
JCM 18195 T (97.6 %) and
Pseudomonas guangdongensis
SgZ-6T (97.2 %). The novel strain MAHUQ-58T has a draft genome size of 4 536 129 bp (46 contigs), annotated with 4064 protein-coding genes, 60 tRNA genes and four rRNA genes. The average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between strain MAHUQ-58T and four closely related type strains were in the range of 85.5–89.5 % and 29.5–38.0 %, respectively. The genomic DNA G+C content was determined to be 67.0 mol%. The predominant isoprenoid quinone was ubiquinone 9. The major fatty acids were identified as C16:0, summed feature 3 (C16 : 1
ω6c and/or C16 : 1
ω7c) and summed feature 8 (C18 : 1
ω6c and/or C18 : 1
ω7c). On the basis of dDDH and ANI values, genotypic results, and chemotaxonomic and physiological data, strain MAHUQ-58T represents a novel species within the genus
Pseudomonas
, for which the name Pseudomonas oryzagri sp. nov. is proposed, with MAHUQ-58T (=KACC 22005T=CGMCC 1.18518T) as the type strain.
Collapse
|
6
|
Yoshimi T, Fujii S, Oki H, Igawa T, Adams HR, Ueda K, Kawahara K, Ohkubo T, Hough MA, Sambongi Y. Crystal structure of thermally stable homodimeric cytochrome c'-β from Thermus thermophilus. Acta Crystallogr F Struct Biol Commun 2022; 78:217-225. [PMID: 35647678 PMCID: PMC9158659 DOI: 10.1107/s2053230x22005088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/11/2022] [Indexed: 11/10/2022] Open
Abstract
Cytochrome c'-β is a heme protein that belongs to the cytochrome P460 family and consists of homodimeric subunits with a predominantly antiparallel β-sheet fold. Here, the crystal structure of cytochrome c'-β from the thermophilic Thermus thermophilus (TTCP-β) is reported at 1.74 Å resolution. TTCP-β has a typical antiparallel β-sheet fold similar to that of cytochrome c'-β from the moderately thermophilic Methylococcus capsulatus (MCCP-β). The phenylalanine cap structure around the distal side of the heme is also similar in TTCP-β and MCCP-β, indicating that both proteins similarly bind nitric oxide and carbon monoxide, as observed spectroscopically. Notably, TTCP-β exhibits a denaturation temperature of 117°C, which is higher than that of MCCP-β. Mutational analysis reveals that the increased homodimeric interface area of TTCP-β contributes to its high thermal stability. Furthermore, 14 proline residues, which are mostly located in the TTCP-β loop regions, possibly contribute to the rigid loop structure compared with MCCP-β, which has only six proline residues. These findings, together with those from phylogenetic analysis, suggest that the structures of Thermus cytochromes c'-β, including TTCP-β, are optimized for function under the high-temperature conditions in which the source organisms live.
Collapse
Affiliation(s)
- Taisuke Yoshimi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Sotaro Fujii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Hiroya Oki
- Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Takeshi Igawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
- Division of Bioresource Science, Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hannah R. Adams
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, United Kingdom
| | - Kengo Ueda
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Kazuki Kawahara
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Tadayasu Ohkubo
- Division of Bioresource Science, Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Japan
| | - Michael A. Hough
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, United Kingdom
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, United Kingdom
| | - Yoshihiro Sambongi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
7
|
Vieto S, Rojas-Gätjens D, Jiménez JI, Chavarría M. The potential of Pseudomonas for bioremediation of oxyanions. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:773-789. [PMID: 34369104 DOI: 10.1111/1758-2229.12999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Non-metal, metal and metalloid oxyanions occur naturally in minerals and rocks of the Earth's crust and are mostly found in low concentrations or confined in specific regions of the planet. However, anthropogenic activities including urban development, mining, agriculture, industrial activities and new technologies have increased the release of oxyanions to the environment, which threatens the sustainability of natural ecosystems, in turn affecting human development. For these reasons, the implementation of new methods that could allow not only the remediation of oxyanion contaminants but also the recovery of valuable elements from oxyanions of the environment is imperative. From this perspective, the use of microorganisms emerges as a strategy complementary to physical, mechanical and chemical methods. In this review, we discuss the opportunities that the Pseudomonas genus offers for the bioremediation of oxyanions, which is derived from its specialized central metabolism and the high number of oxidoreductases present in the genomes of these bacteria. Finally, we review the current knowledge on the transport and metabolism of specific oxyanions in Pseudomonas species. We consider that the Pseudomonas genus is an excellent starting point for the development of biotechnological approaches for the upcycling of oxyanions into added-value metal and metalloid byproducts.
Collapse
Affiliation(s)
- Sofía Vieto
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica
| | - Diego Rojas-Gätjens
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica
| | - José I Jiménez
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, 11501-2060, Costa Rica
- Escuela de Química, Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| |
Collapse
|
8
|
He AL, Li HR, Li HP, Gou JY, Chen J, Zhao Q, Zhang JL. Taxonomic description of Pseudomonas rhizovicinus sp. nov., isolated from the rhizosphere of a desert shrub Haloxylon ammodendron. Antonie van Leeuwenhoek 2021; 114:1443-1452. [PMID: 34272636 DOI: 10.1007/s10482-021-01612-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022]
Abstract
A Gram-negative aerobic bacterium, strain M30-35 T, was isolated from the rhizosphere of Haloxylon ammodendron in Tengger desert, Gansu province, northwest China. Our previous research indicated that strain M30-35 T can promote the growth of ryegrass (Lolium perenne L.). In this study, strain M30-35 T was subjected to a polyphasic taxonomic study. Phylogenetic analysis of the 16S rRNA gene and two other housekeeping genes (gyrB, rpoD) showed that strain M30-35 T is a member of Pseudomonas anguilliseptica group. The average nucleotide identity (ANI) scores for strains KMM 3042 T and FR1439T were 76.5% and 83.7%, respectively, and DNA-DNA hybridization (DDH) were 21.6% and 26.6%, respectively, and the rates were less than the threshold range for species determination. The dominant cellular fatty acids of strain M30-35 T were C16:0 (22.7%), summed feature 3 (C16:1ω7c and/or C16:1ω6c; 18.5%), summed feature 8 (C18:1ω7c and/or C18:1ω6c; 23.1%). The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phospholipid and aminophospholipid and the predominant respiratory quinone was ubiquinone (Q9). On the basis of above data, it can be concluded that strain M30-35 T represents a novel species in the genus Pseudomonas, for which the name Pseudomonas rhizovicinus sp. nov. is proposed. The type strain is M30-35 T (= MCCC 1K03247T = KCTC 52664 T).
Collapse
Affiliation(s)
- Ao-Lei He
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hui-Ru Li
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hui-Ping Li
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Jing-Yi Gou
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Jia Chen
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Qi Zhao
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| | - Jin-Lin Zhang
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
9
|
Martínez-Ruiz EB, Cooper M, Barrero-Canosa J, Haryono MAS, Bessarab I, Williams RBH, Szewzyk U. Genome analysis of Pseudomonas sp. OF001 and Rubrivivax sp. A210 suggests multicopper oxidases catalyze manganese oxidation required for cylindrospermopsin transformation. BMC Genomics 2021; 22:464. [PMID: 34157973 PMCID: PMC8218464 DOI: 10.1186/s12864-021-07766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cylindrospermopsin is a highly persistent cyanobacterial secondary metabolite toxic to humans and other living organisms. Strain OF001 and A210 are manganese-oxidizing bacteria (MOB) able to transform cylindrospermopsin during the oxidation of Mn2+. So far, the enzymes involved in manganese oxidation in strain OF001 and A210 are unknown. Therefore, we analyze the genomes of two cylindrospermopsin-transforming MOB, Pseudomonas sp. OF001 and Rubrivivax sp. A210, to identify enzymes that could catalyze the oxidation of Mn2+. We also investigated specific metabolic features related to pollutant degradation and explored the metabolic potential of these two MOB with respect to the role they may play in biotechnological applications and/or in the environment. RESULTS Strain OF001 encodes two multicopper oxidases and one haem peroxidase potentially involved in Mn2+ oxidation, with a high similarity to manganese-oxidizing enzymes described for Pseudomonas putida GB-1 (80, 83 and 42% respectively). Strain A210 encodes one multicopper oxidase potentially involved in Mn2+ oxidation, with a high similarity (59%) to the manganese-oxidizing multicopper oxidase in Leptothrix discophora SS-1. Strain OF001 and A210 have genes that might confer them the ability to remove aromatic compounds via the catechol meta- and ortho-cleavage pathway, respectively. Based on the genomic content, both strains may grow over a wide range of O2 concentrations, including microaerophilic conditions, fix nitrogen, and reduce nitrate and sulfate in an assimilatory fashion. Moreover, the strain A210 encodes genes which may convey the ability to reduce nitrate in a dissimilatory manner, and fix carbon via the Calvin cycle. Both MOB encode CRISPR-Cas systems, several predicted genomic islands, and phage proteins, which likely contribute to their genome plasticity. CONCLUSIONS The genomes of Pseudomonas sp. OF001 and Rubrivivax sp. A210 encode sequences with high similarity to already described MCOs which may catalyze manganese oxidation required for cylindrospermopsin transformation. Furthermore, the analysis of the general metabolism of two MOB strains may contribute to a better understanding of the niches of cylindrospermopsin-removing MOB in natural habitats and their implementation in biotechnological applications to treat water.
Collapse
Affiliation(s)
- Erika Berenice Martínez-Ruiz
- Chair of Environmental Microbiology, Technische Universität Berlin, Institute of Environmental Technology, Straße des 17. Juni 135, 10623, Berlin, Germany.
| | - Myriel Cooper
- Chair of Environmental Microbiology, Technische Universität Berlin, Institute of Environmental Technology, Straße des 17. Juni 135, 10623, Berlin, Germany.
| | - Jimena Barrero-Canosa
- Chair of Environmental Microbiology, Technische Universität Berlin, Institute of Environmental Technology, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Mindia A S Haryono
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Irina Bessarab
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Ulrich Szewzyk
- Chair of Environmental Microbiology, Technische Universität Berlin, Institute of Environmental Technology, Straße des 17. Juni 135, 10623, Berlin, Germany
| |
Collapse
|
10
|
Zhang XJ, Liu HC, Zhou YG, Wu XL, Nie Y, Li QR, Wang MZ, Zhao L, Cai M, Kang YQ. Pseudomonas Saliphila sp. nov., a Bacterium Isolated from Oil-Well Production Water in Qinghai Oilfield of China. Curr Microbiol 2020; 77:1924-1931. [DOI: 10.1007/s00284-020-01986-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/06/2020] [Indexed: 10/24/2022]
|
11
|
Pseudomonas jilinensis sp. nov., Isolated from Oil Production Water of Jilin Oilfield in China. Curr Microbiol 2019; 77:688-694. [DOI: 10.1007/s00284-019-01798-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/22/2019] [Indexed: 11/26/2022]
|
12
|
Rao Q, Liu Y, Chen C, Lin Q, Ren L, Huang M, Tu J, Luo T. Pseudomonas ovata sp. nov., Isolated from the Skin of the Tail of Farmed Murray cod (Maccullochella peelii peelii) with a Profound Ulceration. Curr Microbiol 2019; 76:1168-1174. [PMID: 31263923 DOI: 10.1007/s00284-019-01729-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 06/25/2019] [Indexed: 12/30/2022]
Abstract
A Gram-negative, strictly aerobic, motile, rod-shaped bacterium with monopolar flagellum, designated as F51T, was isolated from the skin ulcer of farmed Murray cod sampled from Zhejiang Province, China. Strain F51T grew at 4-37 °C (optimal temperature, 28 °C), pH 5.0-8.5 (optimal pH, 7.5) and NaCl concentration of 0-6.0% (w/v) (optimal concentration, 2.0%). Phylogenetic analysis based on average nucleotide identity (76.2-78.4%) and in silico DNA-DNA hybridization (22.3-23.2%) values revealed that strain F51T forms a distinct lineage in the clade of genus Pseudomonas with less than 98.9% 16S rRNA gene sequence similarity to type strains of the genus and represents a novel species related most closely to Pseudomonas floridensis LMG 30013T. Three housekeeping genes (rpoB, rpoD and gyrB) of strain F51T were analysed to further confirm that the isolate is distinctly delineated from related Pseudomonas species. Chemotaxonomic analysis indicated that the sole respiratory quinone of strain F51T is Q-9; its predominant cellular fatty acids are C16:0, summed feature 3 (iso-C15:0 2-OH and/or C16:1ω7c), summed feature 8 (C18:1ω7c and/or C18:1ω6c) and C10:0 3-OH; and its major polar lipids consist of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, two unidentified glycolipids, three unidentified phospholipids and an unidentified aminophosphoglycolipid. This composition is typical of the chemotaxonomic attributes of Pseudomonas. Based on its phenotypic, chemotaxonomic and phylogenetic features, strain F51T is considered to represent a novel species for which the name Pseudomonas ovata sp. nov. is proposed. The type strain is F51T (= KCTC 62133T = MCCC 1K03458T).
Collapse
Affiliation(s)
- Qiuhua Rao
- Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, People's Republic of China
| | - Yang Liu
- Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, People's Republic of China.,College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, People's Republic of China
| | - Can Chen
- Ocean College, Zhejiang University, Zhoushan, 316000, People's Republic of China
| | - Qiu Lin
- Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, People's Republic of China
| | - Lihua Ren
- Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, People's Republic of China
| | - Minmin Huang
- Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, People's Republic of China
| | - Jiefeng Tu
- Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, People's Republic of China
| | - Tuyan Luo
- Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, People's Republic of China.
| |
Collapse
|
13
|
Chen P, Li S, Li QX. Pseudomonas tianjinensis sp. nov., isolated from domestic sewage. Int J Syst Evol Microbiol 2018; 68:2760-2769. [DOI: 10.1099/ijsem.0.002799] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Peizhen Chen
- 1Agro-Environmental Protection Institute (AEPI) of Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture/Tianjin Key Laboratory of Agro-Environment and Safe-Product, Tianjin, 300191, PR China
| | - Shaopeng Li
- 1Agro-Environmental Protection Institute (AEPI) of Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture/Tianjin Key Laboratory of Agro-Environment and Safe-Product, Tianjin, 300191, PR China
- 2College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, PR China
| | - Qing X. Li
- 3Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
14
|
Yu XY, Zhai JY, Wu C, Zhang CY, Shi JY, Ding LX, Wu M. Pseudomonas pharmafabricae sp. nov., Isolated From Pharmaceutical Wastewater. Curr Microbiol 2018; 75:1119-1125. [PMID: 29725767 DOI: 10.1007/s00284-018-1495-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/17/2018] [Indexed: 11/25/2022]
Abstract
A Gram-stain-negative, aerobic, rod-shaped bacterial strain, designated ZYSR67-ZT, was isolated from a pharmaceutical wastewater sample collected from a chemical factory in Zhejiang, China. The strain was motile by a single polar flagellum and grew at 4-42 °C (optimum, 35 °C), pH 5.0-9.0 (optimum, 6.0) and 0-5.0% (w/v) NaCl (optimum, 2.0%). Based on multilocus sequence analysis using 16S rRNA, gyrB, rpoB and rpoD, the strain ZYSR67-ZT formed a distinct phylogenetic group in the genus Pseudomonas. The average nucleotide identity values between strain ZYSR67-ZT and the closely related 10 type strains of the Pseudomonas species were 75.8-78.6%. The in silico DNA-DNA hybridization values indicated that strain ZYSR67-ZT and the type strains of the Pseudomonas shared 21.4-23.1% DNA relatedness. The predominant isoprenoid quinone system was ubiquinone-9 while ubiquinone-8 was present in trace amounts. The major fatty acids (> 10%) identified were C12:0, C16:0, C18:1 ω7c and summed features 3 (C16:1 ω7c and/or iso-C15:0 2OH). The major polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The genomic DNA G+C content was 62.6 mol%. On the basis of morphological, physiological and chemotaxonomic characteristics, together with the results of phylogenetic analysis, strain ZYSR67-ZT was proposed to represent a novel species of the genus Pseudomonas, named Pseudomonas pharmafabricae sp. nov.. The type strain is ZYSR67-ZT (= CGMCC 1.15498T = JCM 31306T).
Collapse
Affiliation(s)
- Xiao-Yun Yu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jing-Yu Zhai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Chen Wu
- Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, People's Republic of China
| | - Chong-Ya Zhang
- Ocean College, Zhejiang University, Zhoushan, 316000, People's Republic of China
| | - Jie-Ying Shi
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Lin-Xian Ding
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Min Wu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
15
|
The current status on the taxonomy of Pseudomonas revisited: An update. INFECTION GENETICS AND EVOLUTION 2017; 57:106-116. [PMID: 29104095 DOI: 10.1016/j.meegid.2017.10.026] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022]
Abstract
The genus Pseudomonas described in 1894 is one of the most diverse and ubiquitous bacterial genera which encompass species isolated worldwide. In the last years more than 70 new species have been described, which were isolated from different environments, including soil, water, sediments, air, animals, plants, fungi, algae, compost, human and animal related sources. Some of these species have been isolated in extreme environments, such as Antarctica or Atacama desert, and from contaminated water or soil. Also, some species recently described are plant or animal pathogens. In this review, we revised the current status of the taxonomy of genus Pseudomonas and the methodologies currently used for the description of novel species which includes, in addition to the classic ones, new methodologies such as MALDI-TOF MS, MLSA and genome analyses. The novel Pseudomonas species described in the last years are listed, together with the available genome sequences of the type strains of Pseudomonas species present in different databases.
Collapse
|
16
|
De Serrano LO. Biotechnology of siderophores in high-impact scientific fields. Biomol Concepts 2017; 8:169-178. [DOI: 10.1515/bmc-2017-0016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/29/2017] [Indexed: 01/06/2023] Open
Abstract
AbstractDifferent aspects of bacterial and fungal siderophore biotechnological applications will be discussed. Areas of application presented include, but are not limited to agriculture, medicine, pharmacology, bioremediation, biodegradation and food industry. In agriculture-related applications, siderophores could be employed to enhance plant growth due to their uptake by rhizobia. Siderophores hindered the presence of plant pathogens in biocontrol strategies. Bioremediation studies on siderophores discuss mostly the mobilization of heavy metals and radionuclides; the emulsifying effects of siderophore-producing microorganisms in oil-contaminated environments are also presented. The different applications found in literature based in medicine and pharmacological approaches range from iron overload to drug delivery systems and, more recently, vaccines. Additional research should be done in siderophore production and their metabolic relevance to have a deeper understanding for future biotechnological advances.
Collapse
Affiliation(s)
- Luis O. De Serrano
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
- Center for Translational Medicine, University of Montana, 32 Campus Dr., Missoula, MT 59801, USA
| |
Collapse
|
17
|
Korshunova TY, Ramírez-Bahena MH, Chetverikov SP, Igual JM, Peix Á, Loginov O. Pseudomonas turukhanskensis sp. nov., isolated from oil-contaminated soils. Int J Syst Evol Microbiol 2016; 66:4657-4664. [PMID: 27503709 DOI: 10.1099/ijsem.0.001406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A bacterial strain named IB1.1T was isolated in a screening of hydrocarbon-degrading bacteria from oil-contaminated soils on the territory of the Turukhansk District of Krasnoyarsk Krai, East Siberia, Russia. The 16S rRNA gene sequence had 98.7 % identity with respect to the closest phylogenetic relative, Pseudomonas granadensis F-278,770T, and the next most closely related species with 98.6 % similarity was Pseudomonaspunonensis, suggesting that IB1.1T should be classified within the genus Pseudomonas. The analysis of housekeeping genes rpoB, rpoD and gyrB showed similarities lower than 90 % in all cases with respect to the closest relatives, confirming its phylogenetic affiliation. The strain showed a polar flagellum. The respiratory quinone was Q9. The major fatty acids were 16 : 1ω7c/16 : 1ω6c (summed feature 3), 18 : 1ω7c and 16 : 0. The strain was oxidase- and catalase-positive, but the arginine dihydrolase system was not present. Nitrate reduction, urease and β-galactosidase production, and aesculin hydrolysis were negative. The temperature range for growth was 4-34 °C, and the strain could grow at pH 11. The DNA G+C content was 58.5 mol%. DNA-DNA hybridization results showed values of less than 30 % relatedness with respect to the type strains of the eight most closely related species. Therefore, the dataset of genotypic, phenotypic and chemotaxonomic data support the classification of strain IB1.1T into a novel species of the genus Pseudomonas, for which the name Pseudomonasturukhanskensis sp. nov. is proposed. The type strain is IB1.1T (=VKM B-2935T=CECT 9091T).
Collapse
Affiliation(s)
- Tatiana Y Korshunova
- Laboratory of Biologically Active Agents, Ufa Institute of Biology of the Russian Academy of Sciences, Ufa, Russia
| | - Martha-Helena Ramírez-Bahena
- Instituto de Recursos Naturales y Agrobiología, IRNASA-CSIC, Salamanca, Spain.,Unidad Asociada Grupo de Interacción Planta-Microorganismo Universidad de Salamanca-IRNASA (CSIC), Salamanca, Spain
| | - Sergey P Chetverikov
- Laboratory of Biologically Active Agents, Ufa Institute of Biology of the Russian Academy of Sciences, Ufa, Russia
| | - Jose M Igual
- Instituto de Recursos Naturales y Agrobiología, IRNASA-CSIC, Salamanca, Spain.,Unidad Asociada Grupo de Interacción Planta-Microorganismo Universidad de Salamanca-IRNASA (CSIC), Salamanca, Spain
| | - Álvaro Peix
- Unidad Asociada Grupo de Interacción Planta-Microorganismo Universidad de Salamanca-IRNASA (CSIC), Salamanca, Spain.,Instituto de Recursos Naturales y Agrobiología, IRNASA-CSIC, Salamanca, Spain
| | - Oleg Loginov
- Laboratory of Biologically Active Agents, Ufa Institute of Biology of the Russian Academy of Sciences, Ufa, Russia
| |
Collapse
|
18
|
Lin SY, Hameed A, Hung MH, Liu YC, Hsu YH, Young LS, Young CC. Pseudomonas matsuisoli sp. nov., isolated from a soil sample. Int J Syst Evol Microbiol 2015; 65:902-909. [DOI: 10.1099/ijs.0.000035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An aerobic, Gram-stain-negative, rod-shaped and polar-flagellated bacterium, designated strain CC-MHH0089T, was isolated from a soil sample taken on Matsu Island (Taiwan). Strain CC-MHH0089T grew at 15–30 °C and pH 5.0–10.0 and tolerated ≤8 % (w/v) NaCl. 16S rRNA gene sequence analysis showed high pairwise sequence similarity to
Pseudomonas azotifigens
6H33bT (97.3 %) and
Pseudomonas balearica
SP1402T (96.7 %) and lower sequence similarity to other strains (<96.0 %). In DNA–DNA reassociation experiments, the relatedness of strain CC-MHH0089T to
P. azotifigens
JCM 12708T was 38.3 % (reciprocal value 19.5 %). Evolutionary trees reconstructed on the basis of 16S rRNA, gyrB and rpoB gene sequences revealed a varying phylogenetic neighbourhood of strain CC-MHH0089T with regard to the most closely related type strains. The predominant quinone system was ubiquinone 9 (Q-9) and the DNA G+C content was 63.6 mol%. The major fatty acids were C12 : 0, C16 : 0, C17 : 0, C19 : 0 cyclo ω8c and summed features 2 (C14 : 0 3-OH/iso-C16 : 1 I), 3 (C16 : 1ω7c/C16 : 1ω6c) and 8 (C18 : 1ω7c/C18 : 1ω6c). The major polar lipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine and diphosphatidylglycerol. According to its distinct phylogenetic, phenotypic and chemotaxonomic features, strain CC-MHH0089T is proposed to represent a novel species within the genus
Pseudomonas
, for which the name Pseudomonas matsuisoli sp. nov. is proposed. The type strain is CC-MHH0089T ( = BCRC 80771T = JCM 30078T).
Collapse
Affiliation(s)
- Shih-Yao Lin
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Asif Hameed
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Mei-Hua Hung
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - You-Cheng Liu
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Han Hsu
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Li-Sen Young
- Department of Biotechnology, College of Applied Arts and Sciences, National Formosa University, Yunlin, Taiwan
| | - Chiu-Chung Young
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
19
|
Pascual J, García-López M, Bills GF, Genilloud O. Pseudomonas granadensis sp. nov., a new bacterial species isolated from the Tejeda, Almijara and Alhama Natural Park, Granada, Spain. Int J Syst Evol Microbiol 2014; 65:625-632. [PMID: 25410940 DOI: 10.1099/ijs.0.069260-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
During the course of screening bacterial isolates as sources of as-yet unknown bioactive compounds with pharmaceutical applications, a chemo-organotrophic, Gram-negative bacterium was isolated from a soil sample taken from the Tejeda, Almijara and Alhama Natural Park, Granada, Spain. Strain F-278,770(T) was oxidase- and catalase-positive, aerobic, with a respiratory type of metabolism with oxygen as the terminal electron acceptor, non-spore-forming and motile by one polar flagellum, although some cells had two polar flagella. Phylogenetic analysis of the 16S rRNA, gyrB, rpoB and rpoD genes revealed that strain F-278,770(T) belongs to the Pseudomonas koreensis subgroup (Pseudomonas fluorescens lineage), with Pseudomonas moraviensis, P. koreensis, P. baetica and P. helmanticensis as its closest relatives. Chemotaxonomic traits such as polar lipid and fatty acid compositions and G+C content of genomic DNA corroborated the placement of strain F-278,770(T) in the genus Pseudomonas. DNA-DNA hybridization assays and phenotypic traits confirmed that this strain represents a novel species of the genus Pseudomonas, for which the name Pseudomonas granadensis sp. nov. is proposed. The type strain is F-278,770(T) ( = DSM 28040(T) = LMG 27940(T)).
Collapse
Affiliation(s)
- Javier Pascual
- Fundación MEDINA, Avenida del Conocimiento, 3. Health Sciences Technology Park, 18016 Granada, Spain
| | - Marina García-López
- Fundación MEDINA, Avenida del Conocimiento, 3. Health Sciences Technology Park, 18016 Granada, Spain
| | - Gerald F Bills
- Fundación MEDINA, Avenida del Conocimiento, 3. Health Sciences Technology Park, 18016 Granada, Spain
| | - Olga Genilloud
- Fundación MEDINA, Avenida del Conocimiento, 3. Health Sciences Technology Park, 18016 Granada, Spain
| |
Collapse
|
20
|
Hameed A, Shahina M, Lin SY, Liu YC, Young CC. Pseudomonas hussainii sp. nov., isolated from droppings of a seashore bird, and emended descriptions of Pseudomonas pohangensis, Pseudomonas benzenivorans and Pseudomonas segetis. Int J Syst Evol Microbiol 2014; 64:2330-2337. [PMID: 24744016 DOI: 10.1099/ijs.0.060319-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two Gram-staining-negative, aerobic, rod-shaped, non-spore-forming bacterial strains that are motile by a monopolar flagellum, designated CC-AMH-11(T) and CC-AMHZ-5, were isolated from droppings of a seashore bird off the coast of Hualien, Taiwan. The strains showed 99.7% mutual pairwise 16S rRNA gene sequence similarity, while exhibiting <96.2% sequence similarity to strains of other species of the genus Pseudomonas (95.7-95.9% similarity with type species, Pseudomonas aeruginosa LMG 1242T), and formed a distinct co-phyletic lineage in the phylogenetic trees. The common major fatty acids (>5% of the total) were C18 : 1ω7c and/or C18 : 1ω6c (summed feature 8), C16 : 1ω6c and/or C16 : 1ω7c (summed feature 3), C16 : 0 and C12 : 0. Phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylserine, an unidentified lipid and an unidentified phospholipid were detected as common polar lipids. The DNA G+C contents of strains CC-AMH-11(T) and CC-AMHZ-5 were 61.1 and 61.6 mol%, respectively. The common major respiratory quinone was ubiquinone 9 (Q-9), and the predominant polyamine was putrescine. The DNA-DNA hybridization obtained between the two strains was 79.0% (reciprocal value 89.4% using CC-AMHZ-5 DNA as the probe). The very high 16S rRNA gene sequence similarity and DNA-DNA relatedness and the poorly distinguishable phenotypic features witnessed between CC-AMH-11(T) and CC-AMHZ-5 suggested unambiguously that they are two distinct strains of a single genomic species. However, the strains also showed several genotypic and phenotypic characteristics that distinguished them from other closely related species of Pseudomonas. Thus, the strains are proposed to represent a novel species of Pseudomonas, for which the name Pseudomonas hussainii sp. nov. is proposed. The type strain is CC-AMH-11(T) ( = JCM 19513(T) = BCRC 80696(T)); a second strain of the same species is CC-AMHZ-5 ( = JCM 19512 = BCRC 80697). In addition, emended descriptions of the species Pseudomonas pohangensis, Pseudomonas benzenivorans and Pseudomonas segetis are also proposed.
Collapse
Affiliation(s)
- Asif Hameed
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402, Taiwan
| | - Mariyam Shahina
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402, Taiwan
| | - Shih-Yao Lin
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402, Taiwan
| | - You-Cheng Liu
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402, Taiwan
| | - Chiu-Chung Young
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan.,Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
21
|
Yang G, Han L, Wen J, Zhou S. Pseudomonas guangdongensis sp. nov., isolated from an electroactive biofilm, and emended description of the genus Pseudomonas Migula 1894. Int J Syst Evol Microbiol 2013; 63:4599-4605. [PMID: 23918787 DOI: 10.1099/ijs.0.054676-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, straight to slightly curved rod-shaped bacterium, motile with peritrichous flagella, designated SgZ-6(T), was isolated from an electroactive biofilm and was characterized by means of a polyphasic approach. Growth occurred with 0-5.0 % (w/v) NaCl (optimum 1 %), at pH 6.0-10.0 (optimum pH 7.0) and at 10-42 °C (optimum 30 °C) in trypticase soya broth. Phylogenetic analyses based on the 16S rRNA and gyrB genes identified the isolate as a member of a novel species of the genus Pseudomonas. Strain SgZ-6(T) exhibited the highest 16S rRNA gene sequence similarity to 'Pseudomonas linyingensis' CGMCC 1.10701 (97.5 %), followed by Pseudomonas sagittaria JCM 18195(T) (97.4 %), P. oleovorans subsp. lubricantis DSM 21016(T) (96.6 %), P. tuomuerensis JCM 14085(T) (96.5 %) and P. alcaliphila JCM 10630(T) (96.4 %). Strain SgZ-6(T) showed the highest gyrB gene sequence similarity of 93.7 % to 'P. linyingensis' CGMCC 1.10701 among all type strains of genus Pseudomonas. DNA-DNA pairing studies showed that strain SgZ-6(T) displayed 47.1 and 40.3 % relatedness to 'P. linyingensis' CGMCC 1.10701 and P. sagittaria JCM 18195(T), respectively. The major isoprenoid quinone was ubiquinone 9 (Q-9). The whole-cell fatty acids consisted mainly of summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c), C16 : 0 and summed feature 8 (C18 : 1ω6c and/or C18 : 1ω7c). The DNA G+C content of the genomic DNA was 68.1 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain SgZ-6(T) is proposed to represent a novel species of the genus Pseudomonas, for which the name Pseudomonas guangdongensis sp. nov. is proposed. The type strain is SgZ-6(T) ( = CCTCC AB 2012022(T) = KACC 16606(T)). An emended description of the genus Pseudomonas is also proposed.
Collapse
Affiliation(s)
- Guiqin Yang
- Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, PR China
| | - Luchao Han
- Chemistry and Materials Institute, Sichuan Normal University, Chengdu 610068, PR China.,Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, PR China
| | - Junlin Wen
- Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, PR China
| | - Shungui Zhou
- Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, PR China
| |
Collapse
|