1
|
Yoon J. Polyphasic Taxonomic Analysis of Pontitalea aquivivens gen. nov., sp. nov., Isolated from Seawater. Curr Microbiol 2025; 82:308. [PMID: 40423755 DOI: 10.1007/s00284-025-04285-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 05/08/2025] [Indexed: 05/28/2025]
Abstract
A Gram-stain-negative, rod-shaped, strictly aerobic, non-motile, and chemo-organoheterotrophic alphaproteobacterium, designated KMU-169T, was isolated from coastal seawater in the Republic of Korea. The novel isolate was able to grow at 0-2.0% NaCl concentrations (w/v), pH 6.0-9.5, and 15-40 °C. The analysis based on 16S rRNA gene sequences indicated that strain KMU-169T belongs to the family Paracoccaceae and shared the highest similarity (97.0%) with "Defluviimonas salinarum" CAU 1641T. The major (> 10%) cellular fatty acids were C18:1 ω7c and summed feature 3 (comprising C16:1 ω6c and/or C16:1 ω7c). The predominant respiratory quinone was ubiquinone-10. Strain KMU-169T comprised phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine, an unidentified aminolipid, an unidentified phospholipid, and an unidentified lipid. The assembled draft genome size of strain KMU-169T was 4.1 Mbp with a DNA G + C content of 65.0%. The average nucleotide identity (ANI), average amino acid identity (AAI), and digital DNA-DNA hybridization (dDDH) values between the genomes of strain KMU-169T and its closely related taxa were 71.9-76.8%, 60.9-76.1%, and 18.4-21.0%, respectively. The genome of the strain KMU-169T revealed the presence of numerous genes involved in bio-macromolecule degradation, indicating a high potential for producing industrially valuable enzymes. Based on the polyphasic taxonomic data reported in this study, a novel genus and a new species of the family Paracoccaceae, for which the name Pontitalea aquivivens gen. nov., sp. nov., is proposed with the type strain KMU-169T (= KCCM 90598T = NBRC 117093T).
Collapse
Affiliation(s)
- Jaewoo Yoon
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu, 42601, Republic of Korea.
| |
Collapse
|
2
|
He W, Zhang DF, Li XJ, Wang HC, Wang LQ, Yuan Y. Description of Albidovulum litorale sp. nov., Albidovulum marisflavi sp. nov., Albidovulum salinarum sp. nov., and Albidovulum sediminicola sp. nov., and proposal for reclassification of the genus Defluviimonas as a later heterotypic synonym of Albidovulum. Syst Appl Microbiol 2025; 48:126576. [PMID: 39667043 DOI: 10.1016/j.syapm.2024.126576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
Four Gram-stain-negative, aerobic, rod-shaped bacteria, designated WL0002T, WL0024T, WL0050T, and WL0075T, were isolated from sediment in the coastal areas of Nantong City, China. Metagenomic analysis revealed higher relative abundance of taxa closely related to the four strains in sediment (0.79-2.0 %) than in water (0.34-1.3 %) (Mann-Whitney U test: p < 0.001). Phylogenetic analysis based on 16S rRNA gene and the bac120 gene set both suggested that the four strains are closely related to the genus Defluviimonas. Additionally, Albidovulum inexpectatum DSM 12048T formed a distinct branch within Defluviimonas. The evolutionary distance (ED) and percentage of conserved proteins (POCP) analysis indicated that the four strains and the genus strains of Albidovulum and Defluviimonas should be recognized as a single genus. Genomic relatedness analysis among the four strains and type strains of the genera Albidovulum and Defluviimonas was below species delimitation thresholds, except for strains WL0024T and "D. salinarum" CAU 1641T, which should belong to the same species. Based on phenotypic and genotypic characterization, the four strains should be recognized as novel species in Albidovulum, and it is reasonable to reclassify the genus Defluviimonas as a later heterotypic synonym of Albidovulum, consistent with the classification of the Genome Taxonomy Database (GTDB). Four names are proposed as follows: Albidovulum marisflavi sp. nov. (type strain WL0002T = MCCC 1K06013T = JCM 34653T = GDMCC 1.2437T), Albidovulum salinarum sp. nov. (WL0024T = MCCC 1K06062T = JCM 34656T = GDMCC 1.2438T), Albidovulum litorale sp. nov. (WL0050T = MCCC 1K07524T = JCM 35566T = GDMCC 1.3084T), and Albidovulum sediminicola sp. nov. (WL0075T = MCCC 1K06064T = JCM 34660T = GDMCC 1.2419T).
Collapse
Affiliation(s)
- Wei He
- Institute of Marine Biotechnology and Bio-resource Utilization, College of Oceanography, Hohai University, Nanjing 201198, PR China
| | - Dao-Feng Zhang
- Institute of Marine Biotechnology and Bio-resource Utilization, College of Oceanography, Hohai University, Nanjing 201198, PR China.
| | - Xing-Jie Li
- College of Life Science and Environmental Resources, Yichun University, Yichun 336000, PR China
| | - Hong-Chuan Wang
- Institute of Marine Biotechnology and Bio-resource Utilization, College of Oceanography, Hohai University, Nanjing 201198, PR China
| | - Lin-Qiong Wang
- Institute of Marine Biotechnology and Bio-resource Utilization, College of Oceanography, Hohai University, Nanjing 201198, PR China
| | - Yang Yuan
- Institute of Marine Biotechnology and Bio-resource Utilization, College of Oceanography, Hohai University, Nanjing 201198, PR China.
| |
Collapse
|
3
|
Wei SP, Stensel HD, Ziels RM, Herrera S, Lee PH, Winkler MKH. Partitioning of nutrient removal contribution between granules and flocs in a hybrid granular activated sludge system. WATER RESEARCH 2021; 203:117514. [PMID: 34407486 DOI: 10.1016/j.watres.2021.117514] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Sludge granulation in continuous-flow systems is an emerging technology to intensify existing activated sludge infrastructure for nutrient removal. In these systems, the nutrient removal contributions and partitioning of microbial functions between granules and flocs can offer insights into process implementations. To this end, a reactor system that simulates the continuous-flow environment using an equal amount of initial granule and floc biomass was investigated. The two operational strategies for maintaining granule growth in the continuous-flow system were (a) the higher solids retention time (SRT) for the granules versus flocs, as well as (b) selective feeding of carbon to the granules. The SRT of the large granule fractions (>425 µm, LG) and floc/small granule fractions (<425 µm, FSG) were controlled at 20 and 2.7-6.0 days, respectively. Long term operation of the hybrid granule/floc system achieved high PO43- and NH4+ removal efficiencies. Higher polyphosphate-accumulating organisms (PAO) activity was observed in the FSG than LG, while ammonia-oxidizing bacteria (AOB) activities were similar in the two biomass fractions. Nitrite shunt was observed in the FSG, possibly due to out-competition by the high NOB activity in LG. More importantly, washing out the FSG caused a reduction in LG's AOB and PAO activity, indicating a possible dependency of LG on FSG for maintaining its nutrient removal capacity. Our findings highlighted the partitioning and potential competition/cooperation of key microbial functional groups between LG and FSG, facilitating nutrient removal in a hybrid granular activated sludge system, as well as implications for practical application of the treatment platform.
Collapse
Affiliation(s)
- Stephany P Wei
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98195, USA
| | - H David Stensel
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98195, USA.
| | - Ryan M Ziels
- University of British Columbia, Department of Civil Engineering, Vancouver BC V6T 1Z4, Canada.
| | - Stephanie Herrera
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98195, USA
| | - Po-Heng Lee
- Imperial College London, Department of Civil and Environmental Engineering, Skempton Building, South Kensington Campus, London SW7 2AZ, United Kingdom.
| | - Mari-K H Winkler
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98195, USA.
| |
Collapse
|
4
|
Huang Z, Mo S, Yan L, Wei X, Huang Y, Zhang L, Zhang S, Liu J, Xiao Q, Lin H, Guo Y. A Simple Culture Method Enhances the Recovery of Culturable Actinobacteria From Coastal Sediments. Front Microbiol 2021; 12:675048. [PMID: 34194410 PMCID: PMC8236954 DOI: 10.3389/fmicb.2021.675048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/12/2021] [Indexed: 01/19/2023] Open
Abstract
Molecular methods revealed that the majority of microbes in natural environments remains uncultivated. To fully understand the physiological and metabolic characteristics of microbes, however, culturing is still critical for microbial studies. Here, we used bacterial community analysis and four culture media, namely, traditional marine broth 2216 (MB), water extracted matter (WEM), methanol extracted matter (MEM), and starch casein agar (SCA), to investigate the diversity of cultivated bacteria in coastal sediments. A total of 1,036 isolates were obtained in pure culture, and they were classified into five groups, namely, Alphaproteobacteria (52.51%), Gammaproteobacteria (23.26%), Actinobacteria (13.32%), Firmicutes, and Bacteroidetes. Compared to other three media, WEM recovered a high diversity of actinobacteria (42 of 63 genotypes), with Micromonospora and Streptomyces as the most cultivated genera. Amplicon sequencing of the bacterial 16S ribosomal RNA (rRNA) gene V3-V4 fragment revealed eight dominant groups, Alphaproteobacteria (12.81%), Gammaproteobacteria (20.07%), Deltaproteobacteria (12.95%), Chloroflexi (13.09%), Bacteroidetes (8.28%), Actinobacteria (7.34%), Cyanobacteria (6.20%), and Acidobacteria (5.71%). The dominant members affiliated to Actinobacteria belonged to "Candidatus Actinomarinales," "Candidatus Microtrichales," and Nitriliruptorales. The cultivated actinobacteria accounted for a small proportion (<5%) compared to the actinobacterial community, which supported that the majority of actinobacteria are still waiting for cultivation. Our study concluded that WEM could be a useful and simple culture medium that enhanced the recovery of culturable actinobacteria from coastal sediments.
Collapse
Affiliation(s)
- Zhaobin Huang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
- Fujian Province Key Laboratory for the Development of Bioactive Material From Marine Algae, Quanzhou, China
| | - Shiqing Mo
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Lifei Yan
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Xiaomei Wei
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Yuanyuan Huang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Lizhen Zhang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Shuhui Zhang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Jianzong Liu
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Qingqing Xiao
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Hong Lin
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Yu Guo
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| |
Collapse
|
5
|
Liu Y, Pei T, Zhang J, Yang F, Zhu H. Proposal for transfer of Defluviimonas alba to the genus Frigidibacter as Frigidibacter mobilis nom. nov. Int J Syst Evol Microbiol 2020; 70:3553-3558. [PMID: 32379019 DOI: 10.1099/ijsem.0.004216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A polyphasic taxonomic study was undertaken to clarify the exact position of the type strain cai42T of the species Defluviimonas alba Pan et al. 2015. The results of the 16S rRNA gene sequence analysis indicated that the two sequences from cai42T shared 99.6 and 99.7 % similarity to that of the type strain SP32T of the species Frigidibacter albus and formed a coherent clade in the phylogenetic tree. Whole genomic comparison between cai42T and SP32T yielded a digital DNA-DNA hybridization estimate of 36.3 %, an average nucleotide identity of 88.8 % and an average amino acid identity of 89.8 %, clearly indicating that the two strains should belong to two genospecies of the same genus. The close relationship between the two strains was underpinned by the results of genome-based phylogenetic analysis. Although cai42T and SP32T shared similar physiological and biochemical properties, some striking differences, such as mobility, the temperature range for growth and the polar lipid components, could distinguish them as separate species. Therefore, the comparative phenotypic and genotypic analyses supported the incorporation of Defluviimonas alba into the genus Frigidibacter as Frigidibacter mobilis nom. nov. with the type strain cai42T (=CGMCC 1.12518T=LMG 27406T).
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Tao Pei
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Jun Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Fan Yang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Honghui Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| |
Collapse
|
6
|
Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM, Tindall BJ, Gronow S, Kyrpides NC, Woyke T, Göker M. Analysis of 1,000+ Type-Strain Genomes Substantially Improves Taxonomic Classification of Alphaproteobacteria. Front Microbiol 2020; 11:468. [PMID: 32373076 PMCID: PMC7179689 DOI: 10.3389/fmicb.2020.00468] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
The class Alphaproteobacteria is comprised of a diverse assemblage of Gram-negative bacteria that includes organisms of varying morphologies, physiologies and habitat preferences many of which are of clinical and ecological importance. Alphaproteobacteria classification has proved to be difficult, not least when taxonomic decisions rested heavily on a limited number of phenotypic features and interpretation of poorly resolved 16S rRNA gene trees. Despite progress in recent years regarding the classification of bacteria assigned to the class, there remains a need to further clarify taxonomic relationships. Here, draft genome sequences of a collection of genomes of more than 1000 Alphaproteobacteria and outgroup type strains were used to infer phylogenetic trees from genome-scale data using the principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families and genera, including taxa recognized as problematic long ago but also quite recent taxa, as well as a few species were shown to be in need of revision. According proposals are made for the recognition of new orders, families and genera, as well as the transfer of a variety of species to other genera and of a variety of genera to other families. In addition, emended descriptions are given for many species mainly involving information on DNA G+C content and (approximate) genome size, both of which are confirmed as valuable taxonomic markers. Similarly, analysis of the gene content was shown to provide valuable taxonomic insights in the class. Significant incongruities between 16S rRNA gene and whole genome trees were not found in the class. The incongruities that became obvious when comparing the results of the present study with existing classifications appeared to be caused mainly by insufficiently resolved 16S rRNA gene trees or incomplete taxon sampling. Another probable cause of misclassifications in the past is the partially low overall fit of phenotypic characters to the sequence-based tree. Even though a significant degree of phylogenetic conservation was detected in all characters investigated, the overall fit to the tree varied considerably.
Collapse
Affiliation(s)
- Anton Hördt
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marina García López
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Jan P. Meier-Kolthoff
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marcel Schleuning
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Lisa-Maria Weinhold
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Brian J. Tindall
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Sabine Gronow
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Markus Göker
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| |
Collapse
|
7
|
Fei X, Sun S, He S, Huang J, Zhou W. Application of a novel two-stage biofiltration system for simulated brackish aquaculture wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:636-646. [PMID: 31808093 DOI: 10.1007/s11356-019-06969-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Biofiltration is one kind of common technology used for treating micro-polluted brackish aquaculture wastewater. Based on the characteristics of actual water quality, a novel two-stage biofiltration system was set up to reduce potential nutrient pollution brought by the frequent exchange of water in brackish pond aquaculture. Zeolite was selected as filtration media for the first stage and pyrite mixed with a small amount of sulfur for the second stage. Apart from the adsorption of nutrients exerted by these natural minerals, biofilm played a leading role in nutrient removal. The surface and internal pore of zeolite-sheltered nitrifiers and sulfur-containing compounds enhanced autotrophic denitrification. It was found that ammonia adsorption capacity of zeolite was reduced by nearly 58% when salinity was increased to 1.5%, while phosphate adsorption capacity of pyrite was hardly influenced and systematic hydraulic retention time (HRT) of 24 h was proven appropriate, 9.6 h and 14.4 h for the two stages, respectively. Meanwhile, removal efficiency of 96.5% for NH4+-N and 92.1% for total inorganic nitrogen (TIN) was achieved under this condition. The analysis of microbial community of biofilm indicated that dominant genera responsible for nitritation and nitration on the surface of zeolite were Nitrosomonas and Nitrospira, respectively. Dominant genera responsible for autotrophic denitrification on the surface of pyrite and sulfur were both Thiobacillus. In addition, Ferritrophicum, related to the iron-oxidizing bacterium, also coexisted due to biological oxidation of pyrite. Long-term operation verified applicability and stability of this two-stage biofiltration system for brackish aquaculture wastewater purification.
Collapse
Affiliation(s)
- Xiang Fei
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Dong Chuan Road 800, Shanghai, 200240, People's Republic of China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Dong Chuan Road 800, Shanghai, 200240, People's Republic of China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Dong Chuan Road 800, Shanghai, 200240, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| | - Jungchen Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Dong Chuan Road 800, Shanghai, 200240, People's Republic of China
| | - Weili Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Dong Chuan Road 800, Shanghai, 200240, People's Republic of China
| |
Collapse
|
8
|
Kandeliimicrobium roseum gen. nov., sp. nov., a new member of the family Rhodobacteraceae isolated from mangrove rhizosphere soil. Int J Syst Evol Microbiol 2018; 68:2158-2164. [DOI: 10.1099/ijsem.0.002773] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Defluviimonas pyrenivorans sp. nov., a novel bacterium capable of degrading polycyclic aromatic hydrocarbons. Int J Syst Evol Microbiol 2018; 68:957-961. [DOI: 10.1099/ijsem.0.002629] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
10
|
Liu Y, Lai Q, Wang W, Shao Z. Defluviimonas nitratireducens sp. nov., isolated from surface seawater. Int J Syst Evol Microbiol 2017; 67:2752-2757. [DOI: 10.1099/ijsem.0.002015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yang Liu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, State Oceanic Administration, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA, Xiamen 361005, PR China
| | - Qiliang Lai
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, State Oceanic Administration, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA, Xiamen 361005, PR China
| | - Wanpeng Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, State Oceanic Administration, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA, Xiamen 361005, PR China
| | - Zongze Shao
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, State Oceanic Administration, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA, Xiamen 361005, PR China
| |
Collapse
|
11
|
Abstract
Two Gram-stain-negative, rod-shaped bacterial strains, cai42T and b45, were isolated from oil-production water taken from Xinjiang Oilfield, China. Optimum growth was observed at 30 °C, at pH 8 and with 1–3 % (w/v) NaCl. According to phylogenetic analyses, the two strains were members of the genus
Defluviimonas
, with 16S rRNA gene sequence similarities of 95.5−96.3 % with the type strains of species of the genus. The major cellular fatty acids of strains cai42T and b45 were C10 : 0 3-OH, C16 : 0 and summed feature 8 (C18 : 1ω7c/C18 : 1ω6c), and the predominant ubiquinone was Q-10, all of these data being typical for the genus
Defluviimonas
. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, glycolipid, phosphatidylcholine, two unidentified aminolipids, an unidentified phospholipid and two unidentified lipids. The mean genomic DNA G+C contents of strains cai42T and b45 were 60.8±1.1 and 60.4±1.0 mol%, respectively. On the basis of phylogenetic, physiological and chemotaxonomic analyses, strains cai42T and b45 represent a novel species of the genus
Defluviimonas
, for which the name Defluviimonas alba sp. nov. is proposed. The type strain is cai42T ( = CGMCC 1.12518T = LMG 27406T).
Collapse
|
12
|
Li AH, Zhou YG. Frigidibacter albus gen. nov., sp. nov., a novel member of the family Rhodobacteraceae isolated from lake water. Int J Syst Evol Microbiol 2015; 65:1199-1206. [DOI: 10.1099/ijs.0.000080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three Gram-staining-negative, strictly aerobic, non-pigmented, non-motile, rod-shaped bacterial strains, SP32T ( = SLM-1T), SR68 ( = SLM-3) and SP95 ( = SLM-2), were isolated from two water samples of a cold-water lake in Xinjiang province, China. Growth was observed at 4–25 °C and pH 6.0–9.0, and optimum growth occurred at 18–20 °C and at pH 7.0–7.5. Phylogenetic analysis of 16S rRNA gene sequences revealed that these isolates belonged to the family
Rhodobacteraceae
, but formed an evolutionary lineage distinct from other species of this family with validly published names. Strain SP32T showed the highest 16S rRNA gene sequence similarity (96.7 %) to
Rhodobacter veldkampii
ATCC 35703T, and the similarity to members of the genera
Defluviimonas
,
Haematobacter
and
Pseudorhodobacter
was respectively 95.8–96.4, 96.0–96.1 and 95.3–96.1 %. The genomic DNA G+C content of strain SP32T was 67.6 mol%. The major fatty acids (>5 %) were summed feature 8 (C18 : 1ω7c/C18 : 1ω6c) and11-methyl C18 : 1ω7c. Phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine, one unidentified glycolipid and one unidentified polar lipid were the main polar lipids. Ubiquinone 10 (Q-10) was the sole respiratory quinone. Strain SP32T did not produce photosynthetic pigments and did not contain the gene pufM, by which it differed from the phototrophic species of the family
Rhodobacteraceae
. Based on its distinct phenotypic, chemotaxonomic and phylogenetic properties, strain SP32T represents a novel species in a novel genus within the family
Rhodobacteraceae
, for which we propose the name Frigidibacter albus gen. nov., sp. nov. The type strain of Frigidibacter albus is strain SP32T ( = SLM-1T = CGMCC 1.13995T = NBRC 109671T).
Collapse
Affiliation(s)
- Ai-Hua Li
- China General Microbiological Culture Collection Center and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yu-Guang Zhou
- China General Microbiological Culture Collection Center and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
13
|
Defluviimonas aquaemixtae sp. nov., isolated from the junction between a freshwater spring and the ocean. Int J Syst Evol Microbiol 2014; 64:4191-4197. [DOI: 10.1099/ijs.0.068767-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, coccoid- or short-rod-shaped and non-gliding bacterial strain, designated CDM-7T, was isolated from the zone where the ocean meets a freshwater spring at Jeju island, South Korea, and was subjected to a polyphasic taxonomic study. Strain CDM-7T grew optimally at pH 7.0–8.0, at 30 °C and in the presence of 2–3 % (w/v) NaCl. Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain CDM-7T falls within the clade comprising species of the genus
Defluviimonas,
clustering with the type strain of
Defluviimonas aestuarii
, with which it exhibited the highest 16S rRNA gene sequence similarity value (98.4 %). The 16S rRNA gene sequence similarity values between strain CDM-7T and the type strains of
Defluviimonas denitrificans
and
Defluviimonas indica
were 97.1 and 96.2 %, respectively. The genomic DNA G+C content was 66.8 mol% and the mean DNA–DNA relatedness values between strain CDM-7T and the type strains of
D. aestuarii
and
D. denitrificans
were 15.6±2.5 and 6.7±3.2 %, respectively. Strain CDM-7T contained Q-10 as the predominant ubiquinone and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) as the major fatty acid. The major polar lipids were phosphatidylcholine, phosphatidylglycerol, an unidentified aminolipid, an unidentified phospholipid and an unidentified lipid. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, demonstrated that strain CDM-7T is distinguishable from other species of the genus
Defluviimonas
. On the basis of the data presented, strain CDM-7T is considered to represent a novel species of the genus
Defluviimonas
, for which the name Defluviimonas
aquaemixtae sp. nov. is proposed. The type strain is CDM-7T ( = KCTC 42108T = CECT 8626T).
Collapse
|
14
|
Jiang L, Xu H, Shao Z, Long M. Defluviimonas indica sp. nov., a marine bacterium isolated from a deep-sea hydrothermal vent environment. Int J Syst Evol Microbiol 2014; 64:2084-2088. [DOI: 10.1099/ijs.0.061614-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, strictly aerobic, chemoheterotrophic marine bacterium, designated 20V17T, was isolated from a deep-sea hydrothermal vent chimney collected from the South-west Indian Ridge. Cells of strain 20V17T were motile, short rods, 1.2–1.8 µm in length and 0.5–0.7 µm in width. Growth was observed at between 20 and 37 °C (optimum 25 °C–28 °C), pH 5.0 and 8.0 (optimum pH 7.0) and 0.5 and 8 % (w/v) NaCl (optimum 1.5–2.0 % NaCl). The major fatty acids were C18 : 1ω7c (74.4 %), C19 : 0 cyclo ω8c (11 %), C18 : 0 (5.1 %) and C18 : 0 3-OH (2.8 %), and the polar lipid profile comprised diphosphatidylglycerol, phosphatidylethanolamine, an unidentified glycolipid and four unidentified phospholipids. Ubiquinone 10 was the major quinone. The G+C content of genomic DNA was 66.3 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain 20V17T belonged to the genus
Defluviimonas
and shared 96.5 and 96.1 % sequence similarity with
Defluviimonas denitrificans
D9-3T and
Defluviimonas aestuarii
BS14T, respectively. On the basis of the taxonomic data obtained in this study, strain 20V17T represents a novel species of the genus
Defluviimonas
, for which the name Defluviimonas indica sp. nov. is proposed. The type strain is 20V17T (CGMCC 1.10859T = JCM 17871T = MCCC 1A01802T).
Collapse
Affiliation(s)
- Lijing Jiang
- State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
- School of Energy Research, Xiamen University, Xiamen 361005, PR China
| | - Hongxiu Xu
- State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Zongze Shao
- State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Minnan Long
- School of Energy Research, Xiamen University, Xiamen 361005, PR China
| |
Collapse
|