1
|
Chaudhari DN, Ahire JJ, Devkatte AN, Kulthe AA. Complete Genome Sequence and Probiotic Characterization of Lactobacillus delbrueckii subsp. Indicus DC-3 Isolated from Traditional Indigenous Fermented Milk. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10385-2. [PMID: 39417972 DOI: 10.1007/s12602-024-10385-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
In this study, Lactobacillus delbrueckii subsp. indicus DC-3 was isolated from Indian traditional indigenous fermented milk Dahi and identified using whole genome sequencing. The safety of the strain was evaluated using genetic and phenotypic analyses, such as the presence of virulence factors, mobile and insertion elements, plasmids, antibiotic resistance, etc. Besides this, the strain was comprehensively investigated for in vitro probiotic traits, biofilm formation, antibacterials, and exopolysaccharide (EPS) production. In results, the strain showed a single circular chromosome (3,145,837 bp) with a GC content of 56.73%, a higher number of accessory and unique genes, an open pan-genome, and the absence of mobile and insertion elements, plasmids, virulence, and transmissible antibiotic resistance genes. The strain was capable of surviving in gastric juice (83% viability at 3 h) and intestinal juice (71% viability at 6 h) and showed 42.5% autoaggregation, adhesion to mucin, 8.7% adhesion to xylene, and 8.3% adhesion to Caco-2 cells. The γ-hemolytic nature, usual antibiotic susceptibility profile, and negative results for mucin and gelatin degradation ensure the safety of the strain. The strain produced 10.5 g/L of D-lactic acid and hydrogen peroxide, capable of inhibiting and co-aggregating Escherichia coli MTCC 1687, Proteus mirabilis MTCC 425, and Candida albicans ATCC 14,053. In addition, the strain showed 90 mg/L EPS (48 h) and biofilm formation. In conclusion, this study demonstrates that L. delbrueckii subsp. indicus DC-3 is unique and different than previously reported L. delbrueckii subsp. indicus strains and is a safe potential probiotic candidate.
Collapse
Affiliation(s)
| | - Jayesh J Ahire
- Dr. Reddy's Laboratories Limited, Hyderabad, 500016, India.
| | | | - Amit A Kulthe
- MIT School of Food Technology, MIT-ADT University, Pune, 412201, India
| |
Collapse
|
2
|
Yamane K, Tanizawa Y, Kobayashi H, Kamizono T, Kojima Y, Takagi H, Tohno M. Proposal of Lactobacillus amylovorus subsp. animalis subsp. nov. and an emended description of Lactobacillus amylovorus. Int J Syst Evol Microbiol 2024; 74. [PMID: 39264830 DOI: 10.1099/ijsem.0.006517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
Seven novel lactic acid bacterial strains (BF125T, BF186, TKL145, YK3, YK6, YK10 and NSK) were isolated from the fresh faeces of Japanese black beef cattle and weanling piglets, spent mushroom substrates, or steeping water of a corn starch production plant. These strains are rod-shaped, Gram-stain-positive, non-motile, non-spore-forming, catalase-negative, cytochrome oxidase-negative, facultatively anaerobic, and homofermentative. Strain BF125T did not produce any gas from glucose; both d- and l-lactate were produced as end-products of glucose (D/L, 40 : 60). Growth occurred at 30-45 °C (optimum, 37 °C), pH 5.0-8.0 (optimum, pH 6.0), and with NaCl concentration of 1.0-3.0% (w/v). The G+C content of genomic DNA of strain BF125T was 37.8 mol% (whole-genome analysis). The major fatty acids were C16 : 0, C18 : 1 ω9c, C19 cyclopropane 9, 10, and summed feature 10. The 16S rRNA gene in strain BF125T showed high similarity to that of the type strain of Lactobacillus amylovorus (99.93%), and the other isolates were also identified as L. amylovorus based on these similarities. A phylogenetic tree based on the core genomes of L. amylovorus strains (n=54), including the seven isolates, showed that they could be divided into two clusters. Strains YK3, YK6, YK10, and NSK were in the first cluster, along with the type strain DSM 20531T, while the second cluster included isolates BF125T, BF186, TKL145, and other strains isolated from various animal origins. Phenotypic differences in fermentability were observed for lactose, salicin, and gentiobiose between these two groups. The intergroup digital DNA-DNA hybridization values (72.9-78.6%) and intergroup average nucleotide identity values (95.64-96.92%) were comparable to values calculated using datasets of other valid subspecies of the genus (ex-) Lactobacillus. In light of the physiological, genotypic, and phylogenetic evidence, we propose a novel subspecies of L. amylovorus, named Lactobacillus amylovorus subsp. animalis subsp. nov. (type strain BF125T=MAFF 212522T=DSM 115528T). Our findings also led to the automatic creation of Lactobacillus amylovorus subsp. amylovorus subsp. nov. and an emended description of the species L. amylovorus.
Collapse
Affiliation(s)
- Kenji Yamane
- Innovative Animal Production System, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
- Nihon Shokuhin Kako Co. LTD, 30, Tajima, Fuji, Shizuoka 417-8530, Japan
| | - Yasuhiro Tanizawa
- Department of Informatics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Hisami Kobayashi
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Nasushiobara, Tochigi 329-2793, Japan
| | - Tomomi Kamizono
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Nasushiobara, Tochigi 329-2793, Japan
| | - Yoichiro Kojima
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Nasushiobara, Tochigi 329-2793, Japan
| | - Hiroki Takagi
- Nihon Shokuhin Kako Co. LTD, 30, Tajima, Fuji, Shizuoka 417-8530, Japan
| | - Masanori Tohno
- Innovative Animal Production System, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Nasushiobara, Tochigi 329-2793, Japan
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
3
|
Jakaria Al-Mujahidy SM, Kryukov K, Ikeo K, Saito K, Uddin ME, Ibn Sina AA. Functional genomic analysis of the isolated potential probiotic Lactobacillus delbrueckii subsp. indicus TY-11 and its comparison with other Lactobacillus delbrueckii strains. Microbiol Spectr 2024; 12:e0347023. [PMID: 38771133 PMCID: PMC11218508 DOI: 10.1128/spectrum.03470-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Abstract
Probiotics refer to living microorganisms that exert a variety of beneficial effects on human health. On the contrary, they also can cause infection, produce toxins within the body, and transfer antibiotic-resistant genes to the other microorganisms in the digestive tract necessitating a comprehensive safety assessment. This study aimed to conduct functional genomic analysis and some relevant biochemical tests to uncover the probiotic potentials of Lactobacillus delbrueckii subsp. indicus TY-11 isolated from native yogurt in Bangladesh. We also performed transmission electron microscopic (TEM) analysis, comparative genomic study as well as phylogenetic tree construction with 332 core genes from 262 genomes. The strain TY-11 was identified as Lactobacillus delbrueckii subsp. indicus, whose genome (1,916,674 bp) contained 1911 CDS, and no gene was identified for either antibiotic resistance or toxic metabolites. It carried genes for the degradation of toxic metabolites, treatment of lactose intolerance, toll-like receptor 2-dependent innate immune response, heat and cold shock, bile salts tolerance, and acidic pH tolerance. Genes were annotated for inhibiting pathogenic bacteria by inhibitory substances [bacteriocin: Helveticin-J (331 bp) and Enterolysin-A (275 bp), hydrogen peroxide, and acid]; blockage of adhesion sites; and competition for nutrients. The genes involved in its metabolic pathway were detected as suitable for digesting indigestible nutrients in the human gut. The TY-11 genome possessed an additional 37 core genes of subspecies indicus which were deficient in the core genome of the most popular subsp. bulgaricus. During the phenotypic testing, the isolate TY-11 demonstrated high antagonistic activity (inhibition zone of 21.33 ± 1.53 mm) against Escherichia coli ATCC 8739 and was not sensitive to any of the 10 tested antibiotics. This study was the first study to explore the molecular insights into probiotic roles, including antimicrobial activities and antibiotic sensitivity, of a representative strain (TY-11) of Lactobacillus delbrueckii subsp. indicus. IMPORTANCE This study aimed to conduct functional genomic analysis to uncover the probiotic potential of Lactobacillus delbrueckii subsp. indicus TY-11 isolated from native yogurt in Bangladesh. We also performed transmission electron microscopic (TEM) analysis, comparative genomic study as well as phylogenetic tree construction with 332 core genes from 262 genomes. In our current investigation, we revealed a number of common and unique excellences of the probiotic Lactobacillus delbrueckii subsp. indicus TY-11 that are likely to be important to illustrate its intestinal residence and probiotic roles. This is the first study to explore the molecular insights into intestinal residence and probiotic roles, including antimicrobial activities and antibiotic sensitivity, of a representative strain (TY-11) of Lactobacillus delbrueckii subsp. indicus.
Collapse
Affiliation(s)
- Sk. Md. Jakaria Al-Mujahidy
- DNA Data Analysis Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kirill Kryukov
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- Bioinformation and DDBJ Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kazuho Ikeo
- DNA Data Analysis Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kei Saito
- Laboratory of Physics and Cell Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Md. Ekhlas Uddin
- Department of Biochemistry and Molecular Biology, Gono Bishwabidyalay, Savar, Dhaka, Bangladesh
| | - Abu Ali Ibn Sina
- Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
4
|
Elean M, Albarracin L, Villena J, Kitazawa H, Saavedra L, Hebert EM. In Silico Comparative Genomic Analysis Revealed a Highly Conserved Proteolytic System in Lactobacillus delbrueckii. Int J Mol Sci 2023; 24:11309. [PMID: 37511069 PMCID: PMC10379286 DOI: 10.3390/ijms241411309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Lactobacillus delbrueckii, the type species of the genus Lactobacillus, is widely recognized as the primary starter culture in the dairy industry due to its proteolytic activity, which enables it to growth in milk. In this study, a comprehensive genomic analysis of the proteolytic system was conducted on L. delbrueckii strains. The analysis included 27 genomes of L. delbrueckii, with a specific focus on the key enzyme involved in this system, the cell envelope-associated proteinase (CEP). The amino acid sequences, as well as the protein-structure prediction of the CEPs, were compared. Additionally, syntenic analysis of the genomic locus related to the CEPs revealed high conservation in L. delbrueckii subsp. bulgaricus strains, while L. delbrueckii subsp. lactis strains exhibited greater variability, including the presence of insertion sequences, deletions, and rearrangements. Finally, the CEP promoter region and putative regulatory elements responsible for controlling the expression of the proteolytic system in lactobacilli were investigated. Our genomic analysis and in silico characterization of the CEPs contribute to our understanding of proteolytic activity and the potential applications of these lactic acid bacteria in the dairy industry. Further research in this area will expand our knowledge and potential practical uses of these findings.
Collapse
Affiliation(s)
- Mariano Elean
- Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán 4000, Argentina
| | | | - Julio Villena
- Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán 4000, Argentina
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Lucila Saavedra
- Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán 4000, Argentina
| | - Elvira M Hebert
- Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán 4000, Argentina
| |
Collapse
|
5
|
Subspecies-level genome comparison of Lactobacillus delbrueckii. Sci Rep 2023; 13:3171. [PMID: 36823299 PMCID: PMC9950072 DOI: 10.1038/s41598-023-29404-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Lactobacillus delbrueckii comprises six subspecies, L. delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, L. delbrueckii subsp. jakobsenii, L. delbrueckii subsp. delbrueckii, L. delbrueckii subsp. sunkii, and L. delbrueckii subsp. indicus. We investigated the evolution of the six subspecies of L. delbrueckii using comparative genomics. While the defining feature of the species was the gene number increment driven by mobile elements and gene fragmentation, the repertoire of subspecies-specific gene gains and losses differed among the six subspecies. The horizontal gene transfer analyses indicated that frequent gene transfers between different subspecies had occurred when the six subspecies first diverged from the common ancestor, but recent gene exchange was confined to a subspecies implying independent evolution of the six subspecies. The subspecies bulgaricus is a homogeneous group that diverged from the other subspecies a long time ago and underwent convergent evolution. The subspecies lactis, jakobsenii, delbrueckii, and sunkii were more closely related to each other than to other subspecies. The four subspecies commonly show increasing genetic variability with increasing genome size. However, the four subspecies were distinguished by specific gene contents. The subspecies indicus forms a branch distant from the other subspecies and shows an independent evolutionary trend. These results could explain the differences in the habitat and nutritional requirements of the subspecies of L. delbrueckii.
Collapse
|
6
|
Tsuchihashi H, Ichikawa A, Takeda M, Koizumi A, Mizoguchi C, Ishida T, Kimura K. Genetic diversity of Lactobacillus delbrueckii isolated from raw milk in Hokkaido, Japan. J Dairy Sci 2021; 105:2082-2093. [PMID: 34955279 DOI: 10.3168/jds.2021-21135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/03/2021] [Indexed: 11/19/2022]
Abstract
Lactic acid bacteria (LAB) play important roles in acid production and flavor formation in fermented dairy products. Lactic acid bacteria strains with distinct characteristics confer unique features to products. Diverse LAB have been identified in raw milk and traditional fermented milk prepared from raw milk. However, little is known about LAB in raw milk in Japan. To preserve diverse LAB as potential starters or probiotics for future use, we have isolated and identified various kinds of LAB from raw milk produced in Japan. In this study, we focused on Lactobacillus delbrueckii, one of the most important species in the dairy industry. We identified L. delbrueckii subspecies isolated from raw milk in Hokkaido, Japan, by analyzing intraspecific diversity using 4 distinct methods, hsp60 cluster analysis, multilocus sequence analysis, core-genome analysis, and whole-genome analysis based on average nucleotide identity. The subspecies distribution and a new dominant subset of L. delbrueckii from raw milk in Japan were revealed. The discovery of new strains with different genotypes is important for understanding the geographic distribution and characteristics of the bacteria and further their use as a microbial resource with the potential to express unconventional flavors and functionalities. The strains identified in this study may have practical applications in the development of fermented dairy products.
Collapse
Affiliation(s)
- H Tsuchihashi
- Basic Microbiology Research Department, Food Microbiology Research Laboratories, R&D Division, Meiji Co. Ltd., Hachioji, Tokyo 192-0919, Japan.
| | - A Ichikawa
- Basic Microbiology Research Department, Food Microbiology Research Laboratories, R&D Division, Meiji Co. Ltd., Hachioji, Tokyo 192-0919, Japan
| | - M Takeda
- Basic Microbiology Research Department, Food Microbiology Research Laboratories, R&D Division, Meiji Co. Ltd., Hachioji, Tokyo 192-0919, Japan
| | - A Koizumi
- Basic Microbiology Research Department, Food Microbiology Research Laboratories, R&D Division, Meiji Co. Ltd., Hachioji, Tokyo 192-0919, Japan
| | - C Mizoguchi
- Applied Microbiology Research Department, Food Microbiology Research Laboratories, R&D Division, Meiji Co. Ltd., Hachioji, Tokyo 192-0919, Japan
| | - T Ishida
- Basic Microbiology Research Department, Food Microbiology Research Laboratories, R&D Division, Meiji Co. Ltd., Hachioji, Tokyo 192-0919, Japan
| | - K Kimura
- Basic Microbiology Research Department, Food Microbiology Research Laboratories, R&D Division, Meiji Co. Ltd., Hachioji, Tokyo 192-0919, Japan
| |
Collapse
|
7
|
Sawadogo-Lingani H, Owusu-Kwarteng J, Glover R, Diawara B, Jakobsen M, Jespersen L. Sustainable Production of African Traditional Beers With Focus on Dolo, a West African Sorghum-Based Alcoholic Beverage. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.672410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spontaneously fermented sorghum beers remain by far the most popular traditional cereal-based alcoholic beverages in Africa. Known under various common names (traditional beers, sorghum beers, opaque, native or indigenous beers) they are also recognized under various local names depending on the region or ethnic group. Dolo and pito are two similar traditional beers popular in West African countries including Burkina Faso, Mali, Ghana, Benin, Togo, Nigeria and Ivory Coast. These low-alcoholic beers are nutritious and contribute to the nutritional balance of local populations, as well as to their socio-cultural and economic well-being. The production of African traditional beers remains one of the major economic activities, creating employment and generating substantial income that contributes to livelihoods as well as the countries' economic systems. Their processing (malting and brewing) is still artisanal, based on traditional family know-how. The brewing process involves either an acidification and an alcoholic fermentation phases, or a mixed fermentation combining LAB and yeasts. Saccharomyces cerevisiae has been identified as the dominant yeast species involved in the alcoholic fermentation, with a biodiversity at strain level. LAB involved in the processing belong to the genera of Limosilactobacillus, Lactobacillus, Pediococcus, Leuconostoc, Lactococcus, Streptococcus, and Enterococcus. Molds (Aspergillus, Penicillium, Rhizopus, Geotrichum), and acetic bacteria are often associated with the malting and brewing processes. Challenges for sustainable production of African sorghum beer include inconsistent supply of raw materials, variability in product quality and safety, high energy consumption and its impact on the environment, poor packaging and short shelf-life. For sustainable and environmentally-friendly production of African sorghum beers, there is the need to assess the processing methods and address sustainability challenges. Strategies should promote wider distribution and adoption of improved sorghum varieties among farmers, prevent losses through the adoption of good storage practices of raw material, promote the adoption of improved cook stoves by the brewers, develop and adopt starter cultures for controlled fermentation, regulate the production through the establishment of quality standards and better valorize by-products and wastes to increase the competitiveness of the value chain. Appropriate packaging and stabilization processes should be developed to extend the shelf-life and diversify the channels for sustainable distribution of African cereal-based alcoholic beverages.
Collapse
|
8
|
Kim E, Cho EJ, Yang SM, Kim HY. Identification and Monitoring of Lactobacillus delbrueckii Subspecies Using Pangenomic-Based Novel Genetic Markers. J Microbiol Biotechnol 2021; 31:280-289. [PMID: 33144553 PMCID: PMC9705890 DOI: 10.4014/jmb.2009.09034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022]
Abstract
Genetic markers currently used for the discrimination of Lactobacillus delbrueckii subspecies have low efficiency for identification at subspecies level. Therefore, our objective in this study was to select novel genetic markers for accurate identification and discrimination of six L. delbrueckii subspecies based on pangenome analysis. We evaluated L. delbrueckii genomes to avoid making incorrect conclusions in the process of selecting genetic markers due to mislabeled genomes. Genome analysis showed that two genomes of L. delbrueckii subspecies deposited at NCBI were misidentified. Based on these results, subspecies-specific genetic markers were selected by comparing the core and pangenomes. Genetic markers were confirmed to be specific for 59,196,562 genome sequences via in silico analysis. They were found in all strains of the same subspecies, but not in other subspecies or bacterial strains. These genetic markers also could be used to accurately identify genomes at the subspecies level for genomes known at the species level. A real-time PCR method for detecting three main subspecies (L. delbrueckii subsp. delbrueckii, lactis, and bulgaricus) was developed to cost-effectively identify them using genetic markers. Results showed 100% specificity for each subspecies. These genetic markers could differentiate each subspecies from 44 other lactic acid bacteria. This real-time PCR method was then applied to monitor 26 probiotics and dairy products. It was also used to identify 64 unknown strains isolated from raw milk samples and dairy products. Results confirmed that unknown isolates and subspecies contained in the product could be accurately identified using this real-time PCR method.
Collapse
Affiliation(s)
- Eiseul Kim
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eun-Ji Cho
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Seung-Min Yang
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea,Corresponding author Phone: +82-31-201-2123 Fax: +82-31-204-8116 E-mail:
| |
Collapse
|
9
|
Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P, O'Toole PW, Pot B, Vandamme P, Walter J, Watanabe K, Wuyts S, Felis GE, Gänzle MG, Lebeer S. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 2020; 70:2782-2858. [PMID: 32293557 DOI: 10.1099/ijsem.0.004107] [Citation(s) in RCA: 1741] [Impact Index Per Article: 348.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The genus Lactobacillus comprises 261 species (at March 2020) that are extremely diverse at phenotypic, ecological and genotypic levels. This study evaluated the taxonomy of Lactobacillaceae and Leuconostocaceae on the basis of whole genome sequences. Parameters that were evaluated included core genome phylogeny, (conserved) pairwise average amino acid identity, clade-specific signature genes, physiological criteria and the ecology of the organisms. Based on this polyphasic approach, we propose reclassification of the genus Lactobacillus into 25 genera including the emended genus Lactobacillus, which includes host-adapted organisms that have been referred to as the Lactobacillus delbrueckii group, Paralactobacillus and 23 novel genera for which the names Holzapfelia, Amylolactobacillus, Bombilactobacillus, Companilactobacillus, Lapidilactobacillus, Agrilactobacillus, Schleiferilactobacillus, Loigolactobacilus, Lacticaseibacillus, Latilactobacillus, Dellaglioa, Liquorilactobacillus, Ligilactobacillus, Lactiplantibacillus, Furfurilactobacillus, Paucilactobacillus, Limosilactobacillus, Fructilactobacillus, Acetilactobacillus, Apilactobacillus, Levilactobacillus, Secundilactobacillus and Lentilactobacillus are proposed. We also propose to emend the description of the family Lactobacillaceae to include all genera that were previously included in families Lactobacillaceae and Leuconostocaceae. The generic term 'lactobacilli' will remain useful to designate all organisms that were classified as Lactobacillaceae until 2020. This reclassification reflects the phylogenetic position of the micro-organisms, and groups lactobacilli into robust clades with shared ecological and metabolic properties, as exemplified for the emended genus Lactobacillus encompassing species adapted to vertebrates (such as Lactobacillus delbrueckii, Lactobacillus iners, Lactobacillus crispatus, Lactobacillus jensensii, Lactobacillus johnsonii and Lactobacillus acidophilus) or invertebrates (such as Lactobacillus apis and Lactobacillus bombicola).
Collapse
Affiliation(s)
- Jinshui Zheng
- Huazhong Agricultural University, State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Agricultural Bioinformatics, Wuhan, Hubei, PR China
| | - Stijn Wittouck
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Elisa Salvetti
- Dept. of Biotechnology, University of Verona, Verona, Italy
| | - Charles M A P Franz
- Max Rubner-Institut, Department of Microbiology and Biotechnology, Kiel, Germany
| | - Hugh M B Harris
- School of Microbiology & APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - Paola Mattarelli
- University of Bologna, Dept. of Agricultural and Food Sciences, Bologna, Italy
| | - Paul W O'Toole
- School of Microbiology & APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - Bruno Pot
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Jens Walter
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| | - Koichi Watanabe
- Food Industry Research and Development Institute, Bioresource Collection and Research Center, Hsinchu, Taiwan, ROC.,National Taiwan University, Dept. of Animal Science and Technology, Taipei, Taiwan, ROC
| | - Sander Wuyts
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | | | - Michael G Gänzle
- Hubei University of Technology, College of Bioengineering and Food Science, Wuhan, Hubei, PR China.,Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| | - Sarah Lebeer
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
10
|
Identification and probiotic properties of lactobacilli isolated from two different fermented beverages. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01540-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Abstract
Purpose
Scientific information regarding the microbial content and functional aspects of fermented beverages traditionally produced in certain parts of Europe are scarce. However, such products are believed to have some health benefits and might contain functional bacterial strains, such as probiotics. The aim of the study was to identify such lactic acid bacteria strains isolated from water kefir and, for the first time, from braga, a Romanian fermented beverage made of cereals.
Methods
Lactic acid bacteria (LAB) were identified to species level based on (GTG)5-PCR fingerprinting and 16S rRNA gene sequencing. Selected strains were screened for their antibacterial activity and probiotic potential.
Results
Eight isolates belonging to seven Lactobacillus species were recovered from the two drinks. The identification of LAB involved in the fermentation of braga (Lactobacillus plantarum, Lactobacillus fermentum, and Lactobacillus delbrueckii) is firstly reported here. Five of the Lactobacillus isolates showed antibacterial activity against pathogenic bacteria, including Listeria monocytogenes, Escherichia coli, Staphylococcus aureus, and Salmonella enterica. Moreover, most of them showed a good resistance to pH 2.5 and some survived at high concentrations of bile salts (up to 2%). Two L. plantarum isolates were able to inhibit all the indicator strains, and showed the best viability (about 70%) after a sequential treatment simulating the passage through the gastrointestinal tract.
Conclusion
Based on the results, the most promising candidates for designing new probiotic products are: L. plantarum BR9 from braga and L. plantarum CR1 from water kefir.
Collapse
|
11
|
Alexandraki V, Kazou M, Pot B, Tsakalidou E, Papadimitriou K. Whole-genome sequence data and analysis of Lactobacillus delbrueckii subsp. lactis ACA-DC 178 isolated from Greek Kasseri cheese. Data Brief 2019; 25:104282. [PMID: 31388525 PMCID: PMC6676233 DOI: 10.1016/j.dib.2019.104282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/10/2019] [Indexed: 11/17/2022] Open
Abstract
Lactobacillus delbrueckii subsp. lactis is employed in the production of various types of cheese. Here, we report the complete genome sequence of L. lactis ACA-DC 178 isolated from Greek Kasseri cheese. The chromosome of ACA-DC 178 contains 2,050,316 bp with a GC content of 49.6%. A total of 2,112 genes were identified in the genome sequence including 1,752 protein-coding genes, 239 putative pseudogenes, 94 tRNA and 27 rRNA genes. According to the COG annotation, about 80% of the protein-coding genes (1,417 proteins) were assigned to at least one functional category. Approximately the 1/3 of these proteins were distributed among three categories, namely replication, recombination and repair (category L: 10.6%), translation, ribosomal structure and biogenesis (category J: 7.5%) and amino acid transport and metabolism (category E: 7.2%). Fourteen integrated GIs with a total of 159 genes were found in ACA-DC 178 genome. Several of these genes encode proteins associated with exopolysaccharide biosynthesis, amino acid transport and subunits of restriction-modification systems. One large CRISPR array of 3,197 bp containing 52 spacers, several of which are identical to phage sequences having hosts in the genus Lactobacillus, was also identified. The annotated genome sequence of L. lactis ACA-DC 178 is deposited at the European Nucleotide Archive under the accession number LS991409. Raw reads are deposited in the Sequence Read Archive (SRR8866601-3).
Collapse
Affiliation(s)
- Voula Alexandraki
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Maria Kazou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Bruno Pot
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences (DBIT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Effie Tsakalidou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Konstantinos Papadimitriou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
- Corresponding author.
| |
Collapse
|
12
|
Du X, Cao K, Tan M, Pan Q. Lactobacillus futsaii subsp. chongqingii subsp. nov., Isolated from a Traditional Chinese Pickle. Curr Microbiol 2018; 76:153-158. [DOI: 10.1007/s00284-018-1601-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/20/2018] [Indexed: 11/30/2022]
|
13
|
Kim JS, Choe H, Kim KM, Lee YR, Rhee MS, Park DS. Lactobacillus porci sp. nov., isolated from small intestine of a swine. Int J Syst Evol Microbiol 2018; 68:3118-3124. [DOI: 10.1099/ijsem.0.002949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Ji-Sun Kim
- 1Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Hanna Choe
- 1Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Kyung Mo Kim
- 1Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
- 2Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Yu-Ri Lee
- 1Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Moon-Soo Rhee
- 1Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Doo-Sang Park
- 1Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| |
Collapse
|
14
|
Bottari B, Felis GE, Salvetti E, Castioni A, Campedelli I, Torriani S, Bernini V, Gatti M. Effective identification of Lactobacillus casei group species: genome-based selection of the gene mutL as the target of a novel multiplex PCR assay. MICROBIOLOGY-SGM 2017; 163:950-960. [PMID: 28721852 DOI: 10.1099/mic.0.000497] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lactobacillus casei,Lactobacillus paracasei and Lactobacillusrhamnosus form a closely related taxonomic group (the L. casei group) within the facultatively heterofermentative lactobacilli. Strains of these species have been used for a long time as probiotics in a wide range of products, and they represent the dominant species of nonstarter lactic acid bacteria in ripened cheeses, where they contribute to flavour development. The close genetic relationship among those species, as well as the similarity of biochemical properties of the strains, hinders the development of an adequate selective method to identify these bacteria. Despite this being a hot topic, as demonstrated by the large amount of literature about it, the results of different proposed identification methods are often ambiguous and unsatisfactory. The aim of this study was to develop a more robust species-specific identification assay for differentiating the species of the L. casei group. A taxonomy-driven comparative genomic analysis was carried out to select the potential target genes whose similarity could better reflect genome-wide diversity. The gene mutL appeared to be the most promising one and, therefore, a novel species-specific multiplex PCR assay was developed to rapidly and effectively distinguish L. casei, L. paracasei and L. rhamnosus strains. The analysis of a collection of 76 wild dairy isolates, previously identified as members of the L. casei group combining the results of multiple approaches, revealed that the novel designed primers, especially in combination with already existing ones, were able to improve the discrimination power at the species level and reveal previously undiscovered intraspecific biodiversity.
Collapse
Affiliation(s)
- Benedetta Bottari
- Department of Food and Drug Science, University of Parma, Viale delle Scienze 49/A, 43124 Parma, Italy.,Multidisciplinary Interdepartmental Dairy Center - MILC, University of Parma, Parma, Italy
| | - Giovanna E Felis
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Elisa Salvetti
- School of Microbiology and APC Microbiome Institute, University College Cork, Western Road, Cork, Ireland
| | - Anna Castioni
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.,Present address: Panificio Zorzi S.r.l., Loc. Brà 1, 37020 Brentino Belluno, Verona, Italy
| | - Ilenia Campedelli
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Sandra Torriani
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Valentina Bernini
- Department of Food and Drug Science, University of Parma, Viale delle Scienze 49/A, 43124 Parma, Italy
| | - Monica Gatti
- Department of Food and Drug Science, University of Parma, Viale delle Scienze 49/A, 43124 Parma, Italy.,Multidisciplinary Interdepartmental Dairy Center - MILC, University of Parma, Parma, Italy
| |
Collapse
|
15
|
Tanizawa Y, Fujisawa T, Kaminuma E, Nakamura Y, Arita M. DFAST and DAGA: web-based integrated genome annotation tools and resources. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2016; 35:173-184. [PMID: 27867804 PMCID: PMC5107635 DOI: 10.12938/bmfh.16-003] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/27/2016] [Indexed: 12/15/2022]
Abstract
Quality assurance and correct taxonomic affiliation of data submitted to public sequence databases have been an everlasting problem. The DDBJ Fast Annotation and Submission Tool (DFAST) is a newly developed genome annotation pipeline with quality and taxonomy assessment tools. To enable annotation of ready-to-submit quality, we also constructed curated reference protein databases tailored for lactic acid bacteria. DFAST was developed so that all the procedures required for DDBJ submission could be done seamlessly online. The online workspace would be especially useful for users not familiar with bioinformatics skills. In addition, we have developed a genome repository, DFAST Archive of Genome Annotation (DAGA), which currently includes 1,421 genomes covering 179 species and 18 subspecies of two genera, Lactobacillus and Pediococcus, obtained from both DDBJ/ENA/GenBank and Sequence Read Archive (SRA). All the genomes deposited in DAGA were annotated consistently and assessed using DFAST. To assess the taxonomic position based on genomic sequence information, we used the average nucleotide identity (ANI), which showed high discriminative power to determine whether two given genomes belong to the same species. We corrected mislabeled or misidentified genomes in the public database and deposited the curated information in DAGA. The repository will improve the accessibility and reusability of genome resources for lactic acid bacteria. By exploiting the data deposited in DAGA, we found intraspecific subgroups in Lactobacillus gasseri and Lactobacillus jensenii, whose variation between subgroups is larger than the well-accepted ANI threshold of 95% to differentiate species. DFAST and DAGA are freely accessible at https://dfast.nig.ac.jp.
Collapse
Affiliation(s)
- Yasuhiro Tanizawa
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan; Center for Information Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Takatomo Fujisawa
- Center for Information Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Eli Kaminuma
- Center for Information Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Yasukazu Nakamura
- Center for Information Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Masanori Arita
- Center for Information Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
16
|
Song Y, Sun Z, Guo C, Wu Y, Liu W, Yu J, Menghe B, Yang R, Zhang H. Genetic diversity and population structure of Lactobacillus delbrueckii subspecies bulgaricus isolated from naturally fermented dairy foods. Sci Rep 2016; 6:22704. [PMID: 26940047 PMCID: PMC4778129 DOI: 10.1038/srep22704] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/18/2016] [Indexed: 11/30/2022] Open
Abstract
Lactobacillus delbrueckii subsp. bulgaricus is one of the most widely used starter culture strains in industrial fermented dairy manufacture. It is also common in naturally fermented dairy foods made using traditional methods. The subsp. bulgaricus strains found in naturally fermented foods may be useful for improving current industrial starter cultures; however, little is known regarding its genetic diversity and population structure. Here, a collection of 298 L. delbrueckii strains from naturally fermented products in Mongolia, Russia, and West China was analyzed by multi-locus sequence typing based on eight conserved genes. The 251 confirmed subsp. bulgaricus strains produced 106 unique sequence types, the majority of which were assigned to five clonal complexes (CCs). The geographical distribution of CCs was uneven, with CC1 dominated by Mongolian and Russian isolates, and CC2–CC5 isolates exclusively from Xinjiang, China. Population structure analysis suggested six lineages, L1–L6, with various homologous recombination rates. Although L2–L5 were mainly restricted within specific regions, strains belonging to L1 and L6 were observed in diverse regions, suggesting historical transmission events. These results greatly enhance our knowledge of the population diversity of subsp. bulgaricus strains, and suggest that strains from CC1 and L4 may be useful as starter strains in industrial fermentation.
Collapse
Affiliation(s)
- Yuqin Song
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Chenyi Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Jie Yu
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Bilige Menghe
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| |
Collapse
|
17
|
Abriouel H, Casado Muñoz MDC, Lavilla Lerma L, Pérez Montoro B, Bockelmann W, Pichner R, Kabisch J, Cho GS, Franz CMAP, Gálvez A, Benomar N. New insights in antibiotic resistance of Lactobacillus species from fermented foods. Food Res Int 2015; 78:465-481. [PMID: 28433315 DOI: 10.1016/j.foodres.2015.09.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 11/17/2022]
Affiliation(s)
- Hikmate Abriouel
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain.
| | - María Del Carmen Casado Muñoz
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| | - Leyre Lavilla Lerma
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| | - Beatriz Pérez Montoro
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| | - Wilhelm Bockelmann
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Microbiology and Biotechnology, Haid-und-Neu-Str. 9, D-76131 Karlsruhe, Germany
| | - Rohtraud Pichner
- Hochschule Fulda, University of Applied Sciences, Department of Nutritional, Food and Consumer Sciences, Leipziger Straße 123, 36037 Fulda, Germany
| | - Jan Kabisch
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Microbiology and Biotechnology, Haid-und-Neu-Str. 9, D-76131 Karlsruhe, Germany
| | - Gyu-Sung Cho
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Microbiology and Biotechnology, Haid-und-Neu-Str. 9, D-76131 Karlsruhe, Germany
| | - Charles M A P Franz
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Microbiology and Biotechnology, Haid-und-Neu-Str. 9, D-76131 Karlsruhe, Germany
| | - Antonio Gálvez
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| | - Nabil Benomar
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| |
Collapse
|
18
|
Miyashita M, Yukphan P, Chaipitakchonlatarn W, Malimas T, Sugimoto M, Yoshino M, Kamakura Y, Potacharoen W, Tanasupawat S, Tanaka N, Nakagawa Y, Suzuki KI. Lactobacillus plajomi sp. nov. and Lactobacillus modestisalitolerans sp. nov., isolated from traditional fermented foods. Int J Syst Evol Microbiol 2015; 65:2485-2490. [DOI: 10.1099/ijs.0.000290] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three Lactobacillus-like strains, NB53T, NB446T and NB702, were isolated from traditional fermented food in Thailand. Comparative 16S rRNA gene sequence analysis indicated that these strains belong to the Lactobacillus plantarum group. Phylogenetic analysis based on the dnaK, rpoA, pheS and recA gene sequences indicated that these three strains were distantly related to known species present in the L. plantarum group. DNA–DNA hybridization with closely related strains demonstrated that these strains represented two novel species; the novel strains could be differentiated based on chemotaxonomic and phenotypic characteristics. Therefore, two novel species of the genus Lactobacillus, Lactobacillus plajomi sp. nov. (NB53T) and Lactobacillus modestisalitolerans sp. nov. (NB446T and NB702), are proposed with the type strains NB53T ( = NBRC 107333T = BCC 38054T) and NB446T ( = NBRC 107235T = BCC 38191T), respectively.
Collapse
Affiliation(s)
- Mika Miyashita
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Pattaraporn Yukphan
- BIOTEC Culture Collection (BCC), National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani 12120, Thailand
| | - Winai Chaipitakchonlatarn
- BIOTEC Culture Collection (BCC), National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani 12120, Thailand
| | - Taweesak Malimas
- BIOTEC Culture Collection (BCC), National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani 12120, Thailand
| | - Masako Sugimoto
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Mayumi Yoshino
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Yuki Kamakura
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Wanchern Potacharoen
- BIOTEC Culture Collection (BCC), National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani 12120, Thailand
| | - Somboon Tanasupawat
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Naoto Tanaka
- NODAI Culture Collection Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Yasuyoshi Nakagawa
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Ken-ichiro Suzuki
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| |
Collapse
|
19
|
Moon C, Jang S, Yun YM, Lee MK, Kim DH, Kang WS, Kwak SS, Kim MS. Effect of the accuracy of pH control on hydrogen fermentation. BIORESOURCE TECHNOLOGY 2015; 179:595-601. [PMID: 25541321 DOI: 10.1016/j.biortech.2014.10.128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/23/2014] [Accepted: 10/26/2014] [Indexed: 06/04/2023]
Abstract
pH, known as the most important parameter in H2 fermentation, cannot be precisely controlled in a scaled-up fermenter as in a lab fermenter. In the preset work, to assess the effect of pH control accuracy on H2 fermentation, the pH was controlled at 6.0±0.1, 6.0±0.3, 6.0±0.5, 6.0±0.7, and 6.0±0.9 during batch fermentation of food waste. Up to deviation of ±0.3, a high H2 yield of 1.67-1.73 mol H2/mol hexose(added) was attained with producing butyrate as a major metabolite (>70% of total organic acids produced). A huge drop of H2 production, however, was observed at deviation >±0.5 with lowered substrate utilization and increased production of lactate. Next generation sequencing results showed that Clostridium was found to be the dominant genus (76.4% of total number of sequences) at deviation of ±0.1, whereas the dominant genus was changed to lactic acid bacteria such as Streptococcus and Lactobacillus with increase of deviation value.
Collapse
Affiliation(s)
- Chungman Moon
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343, Republic of Korea
| | - Sujin Jang
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343, Republic of Korea; Division of Renewable Energy Engineering, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 305-350, Republic of Korea
| | - Yeo-Myeong Yun
- Department of Civil and Environmental Engineering, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Mo-Kwon Lee
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343, Republic of Korea
| | - Dong-Hoon Kim
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343, Republic of Korea
| | - Won-Seok Kang
- New Technology Research Team, Korea District Heating Corp. R&D Institute, 781 Yangjae-daero, Gangnam-gu, Seoul 135-220, Republic of Korea
| | - Seung-Shin Kwak
- New Technology Research Team, Korea District Heating Corp. R&D Institute, 781 Yangjae-daero, Gangnam-gu, Seoul 135-220, Republic of Korea
| | - Mi-Sun Kim
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343, Republic of Korea; Division of Renewable Energy Engineering, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 305-350, Republic of Korea.
| |
Collapse
|
20
|
Herbel SR, Vahjen W, Wieler LH, Guenther S. Timely approaches to identify probiotic species of the genus Lactobacillus. Gut Pathog 2013; 5:27. [PMID: 24063519 PMCID: PMC3848994 DOI: 10.1186/1757-4749-5-27] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 09/14/2013] [Indexed: 12/23/2022] Open
Abstract
Over the past decades the use of probiotics in food has increased largely due to the manufacturer’s interest in placing “healthy” food on the market based on the consumer’s ambitions to live healthy. Due to this trend, health benefits of products containing probiotic strains such as lactobacilli are promoted and probiotic strains have been established in many different products with their numbers increasing steadily. Probiotics are used as starter cultures in dairy products such as cheese or yoghurts and in addition they are also utilized in non-dairy products such as fermented vegetables, fermented meat and pharmaceuticals, thereby, covering a large variety of products. To assure quality management, several pheno-, physico- and genotyping methods have been established to unambiguously identify probiotic lactobacilli. These methods are often specific enough to identify the probiotic strains at genus and species levels. However, the probiotic ability is often strain dependent and it is impossible to distinguish strains by basic microbiological methods. Therefore, this review aims to critically summarize and evaluate conventional identification methods for the genus Lactobacillus, complemented by techniques that are currently being developed.
Collapse
Affiliation(s)
- Stefan R Herbel
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str, 7-13, Berlin, 14163, Germany.
| | | | | | | |
Collapse
|