1
|
Danneels B, Blignaut M, Marti G, Sieber S, Vandamme P, Meyer M, Carlier A. Cyclitol metabolism is a central feature of Burkholderia leaf symbionts. Environ Microbiol 2023; 25:454-472. [PMID: 36451580 DOI: 10.1111/1462-2920.16292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
The symbioses between plants of the Rubiaceae and Primulaceae families with Burkholderia bacteria represent unique and intimate plant-bacterial relationships. Many of these interactions have been identified through PCR-dependent typing methods, but there is little information available about their functional and ecological roles. We assembled 17 new endophyte genomes representing endophytes from 13 plant species, including those of two previously unknown associations. Genomes of leaf endophytes belonging to Burkholderia s.l. show extensive signs of genome reduction, albeit to varying degrees. Except for one endophyte, none of the bacterial symbionts could be isolated on standard microbiological media. Despite their taxonomic diversity, all endophyte genomes contained gene clusters linked to the production of specialized metabolites, including genes linked to cyclitol sugar analog metabolism and in one instance non-ribosomal peptide synthesis. These genes and gene clusters are unique within Burkholderia s.l. and are likely horizontally acquired. We propose that the acquisition of secondary metabolite gene clusters through horizontal gene transfer is a prerequisite for the evolution of a stable association between these endophytes and their hosts.
Collapse
Affiliation(s)
- Bram Danneels
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
- Computational Biology Unit, Department of Informatics, University of Bergen, Norway
| | - Monique Blignaut
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Guillaume Marti
- Metatoul-AgromiX Platform, LRSV, Université de Toulouse, CNRS, UT3, INP, Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Simon Sieber
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Marion Meyer
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Aurélien Carlier
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| |
Collapse
|
2
|
Yang CJ, Hu JM. Molecular phylogeny of Asian Ardisia (Myrsinoideae, Primulaceae) and their leaf-nodulated endosymbionts, Burkholderia s.l. (Burkholderiaceae). PLoS One 2022; 17:e0261188. [PMID: 35045070 PMCID: PMC8769342 DOI: 10.1371/journal.pone.0261188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
The genus Ardisia (Myrsinoideae, Primulaceae) has 16 subgenera and over 700 accepted names, mainly distributed in tropical Asia and America. The circumscription of Ardisia is not well-defined and sometimes confounded with the separation of some small genera. A taxonomic revision focusing on Ardisia and allies is necessary. In the Ardisia subgenus Crispardisia, symbiotic association with leaf-nodule bacteria is a unique character within the genus. The endosymbionts are vertically transmitted, highly specific and highly dependent on the hosts, suggesting strict cospeciation may have occurred in the evolutionary history. In the present study, we aimed to establish a phylogenetic framework for further taxonomic revision. We also aimed to test the cospeciation hypothesis of the leaf-nodulate Ardisia and their endosymbiotic bacteria. Nuclear ITS and two chloroplast intergenic spaces were used to reconstruct the phylogeny of Asian Ardisia and relatives in Myrsinoideae, Primulaceae. The 16S-23S rRNA were used to reconstruct the bacterial symbionts' phylogeny. To understand the evolutionary association of the Ardisia and symbionts, topology tests and cophylogenetic analyses were conducted. The molecular phylogeny suggested Ardisia is not monophyletic, unless Sardiria, Hymenandra, Badula and Oncostemum are included. The results suggest the generic limit within Myrsinoideae (Primulaceae) needs to be further revised. The subgenera Crispardisia, Pimelandra, and Stylardisia were supported as monophyly, while the subgenus Bladhia was separated into two distant clades. We proposed to divide the subgenus Bladhia into subgenus Bladhia s.str. and subgenus Odontophylla. Both of the cophylogenetic analyses and topology tests rejected strict cospeciation hypothesis between Ardisia hosts and symbiotic Burkholderia. Cophylogenetic analyses showed general phylogenetic concordance of Ardisia and Burkholderia, and cospeciation events, host-switching events and loss events were all inferred.
Collapse
Affiliation(s)
- Chen-Jui Yang
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Jer-Ming Hu
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Simunović V. Genomic and molecular evidence reveals novel pathways associated with cell surface polysaccharides in bacteria. FEMS Microbiol Ecol 2021; 97:6355432. [PMID: 34415013 DOI: 10.1093/femsec/fiab119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Amino acid (acyl carrier protein) ligases (AALs) are a relatively new family of bacterial amino acid adenylating enzymes with unknown function(s). Here, genomic enzymology tools that employ sequence similarity networks and genome context analyses were used to hypothesize the metabolic function(s) of AALs. In over 50% of species, aal and its cognate acyl carrier protein (acp) genes, along with three more genes, formed a highly conserved AAL cassette. AAL cassettes were strongly associated with surface polysaccharide gene clusters in Proteobacteria and Actinobacteria, yet were prevalent among soil and rhizosphere-associated α- and β-Proteobacteria, including symbiotic α- and β-rhizobia and some Mycolata. Based on these associations, AAL cassettes were proposed to encode a noncanonical Acp-dependent polysaccharide modification route. Genomic-inferred predictions were substantiated by published experimental evidence, revealing a role for AAL cassettes in biosynthesis of biofilm-forming exopolysaccharide in pathogenic Burkholderia and expression of aal and acp genes in nitrogen-fixing Rhizobium bacteroids. Aal and acp genes were associated with dltBD-like homologs that modify cell wall teichoic acids with d-alanine, including in Paenibacillus and certain other bacteria. Characterization of pathways that involve AAL and Acp may lead to developing new plant and human disease-controlling agents as well as strains with improved nitrogen fixation capacity.
Collapse
|
4
|
Lozano MJ, Mogro EG, Draghi WO. Phylogenomic analysis supports the reclassification of Burkholderia novacaledonica as Caballeronia novacaledonica comb. nov. Int J Syst Evol Microbiol 2021; 71. [PMID: 34165423 DOI: 10.1099/ijsem.0.004843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Burkholderia novacaledonica is a Betaproteobacterial species isolated from ultramafic soils in New Caledonia. The characterization and classification of this species into the Burkholderia genus was done simultaneously with the proposal of the new genus Caballeronia, initially composed of closely related Burkholderia glathei-like species. Thereafter, some reports based on the use of phylogenetic marker genes suggested that B. novacaledonica forms part of Caballeronia genus. Lacking a formal validation, and with the availability of its genome sequence, a genome-based phylogeny of B. novacaledonica was obtained to unravel its taxonomic position in Burkholderia sensu lato. A partial gyrB gene phylogeny, extended multilocus sequence typing on homologous protein sequences, and genomic distance-based phylogeny, all support the placement of this species in the Caballeronia genus. Therefore, the reclassification of B. novacaledonica to Caballeronia novacaledonica comb. nov. is proposed.
Collapse
Affiliation(s)
- Mauricio Javier Lozano
- Instituto de Biotecnología y Biología Molecular. Facultad de Cs. Exactas. Universidad Nacional de La Plata. CONICET La Plata, Provincia de Buenos Aires, Argentina
| | - Ezequiel Gerdardo Mogro
- Instituto de Biotecnología y Biología Molecular. Facultad de Cs. Exactas. Universidad Nacional de La Plata. CONICET La Plata, Provincia de Buenos Aires, Argentina
| | - Walter Omar Draghi
- Instituto de Biotecnología y Biología Molecular. Facultad de Cs. Exactas. Universidad Nacional de La Plata. CONICET La Plata, Provincia de Buenos Aires, Argentina
| |
Collapse
|
5
|
Genome-Wide Metabolic Reconstruction of the Synthesis of Polyhydroxyalkanoates from Sugars and Fatty Acids by Burkholderia Sensu Lato Species. Microorganisms 2021; 9:microorganisms9061290. [PMID: 34204835 PMCID: PMC8231600 DOI: 10.3390/microorganisms9061290] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Burkholderia sensu lato (s.l.) species have a versatile metabolism. The aims of this review are the genomic reconstruction of the metabolic pathways involved in the synthesis of polyhydroxyalkanoates (PHAs) by Burkholderia s.l. genera, and the characterization of the PHA synthases and the pha genes organization. The reports of the PHA synthesis from different substrates by Burkholderia s.l. strains were reviewed. Genome-guided metabolic reconstruction involving the conversion of sugars and fatty acids into PHAs by 37 Burkholderia s.l. species was performed. Sugars are metabolized via the Entner-Doudoroff (ED), pentose-phosphate (PP), and lower Embden-Meyerhoff-Parnas (EMP) pathways, which produce reducing power through NAD(P)H synthesis and PHA precursors. Fatty acid substrates are metabolized via β-oxidation and de novo synthesis of fatty acids into PHAs. The analysis of 194 Burkholderia s.l. genomes revealed that all strains have the phaC, phaA, and phaB genes for PHA synthesis, wherein the phaC gene is generally present in ≥2 copies. PHA synthases were classified into four phylogenetic groups belonging to class I II and III PHA synthases and one outlier group. The reconstruction of PHAs synthesis revealed a high level of gene redundancy probably reflecting complex regulatory layers that provide fine tuning according to diverse substrates and physiological conditions.
Collapse
|
6
|
Wilhelm RC, DeRito CM, Shapleigh JP, Madsen EL, Buckley DH. Phenolic acid-degrading Paraburkholderia prime decomposition in forest soil. ISME COMMUNICATIONS 2021; 1:4. [PMID: 36717596 PMCID: PMC9723775 DOI: 10.1038/s43705-021-00009-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 02/03/2023]
Abstract
Plant-derived phenolic acids are catabolized by soil microorganisms whose activity may enhance the decomposition of soil organic carbon (SOC). We characterized whether phenolic acid-degrading bacteria enhance SOC mineralization in forest soils when primed with 13C-labeled p-hydroxybenzoic acid (pHB). We further tested whether pHB-induced priming could explain differences in SOC content among mono-specific tree plantations in a 70-year-old common garden experiment. pHB addition primed significant losses of SOC (3-13 µmols C g-1 dry wt soil over 7 days) compared to glucose, which reduced mineralization (-3 to -8 µmols C g-1 dry wt soil over 7 days). The principal degraders of pHB were Paraburkholderia and Caballeronia in all plantations regardless of tree species or soil type, with one predominant phylotype (RP11ASV) enriched 23-fold following peak pHB respiration. We isolated and confirmed the phenolic degrading activity of a strain matching this phylotype (RP11T), which encoded numerous oxidative enzymes, including secretion signal-bearing laccase, Dyp-type peroxidase and aryl-alcohol oxidase. Increased relative abundance of RP11ASV corresponded with higher pHB respiration and expression of pHB monooxygenase (pobA), which was inversely proportional to SOC content among plantations. pobA expression proved a responsive measure of priming activity. We found that stimulating phenolic-acid degrading bacteria can prime decomposition and that this activity, corresponding with differences in tree species, is a potential mechanism in SOC cycling in forests. Overall, this study highlights the ecology and function of Paraburkholderia whose associations with plant roots and capacity to degrade phenolics suggest a role for specialized bacteria in the priming effect.
Collapse
Affiliation(s)
- Roland C Wilhelm
- School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, NY, USA.
| | | | - James P Shapleigh
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY, USA
| | - Eugene L Madsen
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY, USA
| | - Daniel H Buckley
- School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, NY, USA
| |
Collapse
|
7
|
Wilhelm RC, Cyle KT, Martinez CE, Karasz DC, Newman JD, Buckley DH. Paraburkholderia solitsugae sp. nov. and Paraburkholderia elongata sp. nov., phenolic acid-degrading bacteria isolated from forest soil and emended description of Paraburkholderia madseniana. Int J Syst Evol Microbiol 2020; 70:5093-5105. [PMID: 32809929 DOI: 10.1099/ijsem.0.004387] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Two bacterial strains, 1NT and 5NT, were isolated from hemlock forest soil using a soluble organic matter enrichment. Cells of 1NT (0.65×1.85 µm) and 5NT (0.6×1.85 µm) are Gram-stain-negative, aerobic, motile, non-sporulating and exist as single rods, diplobacilli or in chains of varying length. During growth in dilute media (≤0.1× tryptic soy broth; TSB), cells are primarily motile with flagella. At higher concentrations (≥0.3× TSB), cells of both strains increasingly form non-motile chains, and cells of 5NT elongate (0.57×~7 µm) and form especially long filaments. Optimum growth of 1NT and 5NT occurred at 25-30 °C, pH 6.5-7.0 and <0.5% salinity. Results of comparative chemotaxonomic, genomic and phylogenetic analyses revealed that 1NT and 5NT were distinct from one another and their closest related type strains: Paraburkholderia madseniana RP11T, Paraburkholderia aspalathi LMG 27731T and Paraburkholderia caffeinilytica CF1T. The genomes of 1NT and 5NT had an average nucleotide identity (91.6 and 91.3%) and in silico DNA-DNA hybridization values (45.8%±2.6 and 45.5%±2.5) and differed in functional gene content from their closest related type strains. The composition of fatty acids and patterns of substrate use, including the catabolism of phenolic acids, also differentiated strains 1NT and 5NT from each other and their closest relatives. The only ubiquinone present in strains 1NT and 5NT was Q-8. The major cellular fatty acids were C16 : 0, 3OH-C16 : 0, C17 : 0 cyclo, C19 : 0 cyclo ω8c and summed features 2 (3OH-C14 : 0 / C16 : 1 iso I), 3 (C16 : 1 ω6c/ω7c) and 8 (C18 : 1 ω7c/ω6c). A third bacterium, strain RL16-012-BIC-B, was isolated from soil associated with shallow roots and was determined to be a strain of P. madseniana (ANI, 98.8%; 16S rRNA gene similarity, 100%). Characterizations of strain RL16-012-BIC-B (DSM 110723=LMG 31706) led to proposed emendments to the species description of P. madseniana. Our polyphasic approach demonstrated that strains 1NT and 5NT represent novel species from the genus Paraburkholderia for which the names Paraburkholderia solitsugae sp. nov. (type strain 1NT=DSM 110721T=LMG 31704T) and Paraburkholderia elongata sp. nov. (type strain 5NT=DSM 110722T=LMG 31705T) are proposed.
Collapse
Affiliation(s)
- Roland C Wilhelm
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| | - K Taylor Cyle
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Carmen Enid Martinez
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| | - David C Karasz
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| | | | - Daniel H Buckley
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
8
|
Munson E, Carroll KC. An Update on the Novel Genera and Species and Revised Taxonomic Status of Bacterial Organisms Described in 2016 and 2017. J Clin Microbiol 2019; 57:e01181-18. [PMID: 30257907 PMCID: PMC6355528 DOI: 10.1128/jcm.01181-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recognition and acknowledgment of novel bacterial taxonomy and nomenclature revisions can impact clinical practice, disease epidemiology, and routine clinical microbiology laboratory operations. The Journal of Clinical Microbiology (JCM) herein presents its biannual report summarizing such changes published in the years 2016 and 2017, as published and added by the International Journal of Systematic and Evolutionary Microbiology Noteworthy discussion centers around descriptions of novel Corynebacteriaceae and an anaerobic mycolic acid-producing bacterium in the suborder Corynebacterineae; revisions within the Propionibacterium, Clostridium, Borrelia, and Enterobacter genera; and a major reorganization of the family Enterobacteriaceae. JCM intends to sustain this series of reports as advancements in molecular genetics, whole-genome sequencing, and studies of the human microbiome continue to produce novel taxa and clearer understandings of bacterial relatedness.
Collapse
Affiliation(s)
- Erik Munson
- College of Health Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Karen C Carroll
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Caballeronia ginsengisoli sp. nov., isolated from ginseng cultivating soil. Arch Microbiol 2018; 201:443-449. [PMID: 30288561 DOI: 10.1007/s00203-018-1577-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/15/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
A Gram-stain-negative, strictly aerobic, non-motile, ivory colored and rod-shaped bacterium (designated Gsoil 652T) isolated from ginseng cultivating soil, was characterized using a polyphasic approach to clarify its taxonomic position. Strain Gsoil 652T was observed to grow optimally at 30 °C and at pH 7.0 on R2A agar medium. Phylogenetic analysis, based on 16S rRNA gene sequences similarities, indicated that Gsoil 652T belongs to the genus Caballeronia of the family Burkholderiaceae and was most closely related to Caballeronia choica LMG 22940T (98.9%), Caballeronia udeis LMG 27134T (98.9%), Caballeronia sordidicola LMG 22029T (98.2%) and Caballeronia humi LMG 22934T (98.1%). The DNA G+C content was 62.1 mol% and Q-8 was the major isoprenoid quinone. The main polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, unidentified aminophospholipid, and unidentified phospholipid. The predominant fatty acids were C16:0, C17:0 cyclo and C19:0 cyclo ω8c. The DNA-DNA relatedness value between strain Gsoil 652T and closely related type strains of Caballeronia species were less than 36.0%. Moreover, strain Gsoil 652T could be distinguished phenotypically from the recognized species of the genus Caballeronia. The novel isolate, therefore, represents a novel species, for which the name Caballeronia ginsengisoli sp. nov. is proposed, with the type strain Gsoil 652T (= KACC 19441T = LMG 30326T).
Collapse
|
10
|
Burkholderia insecticola sp. nov., a gut symbiotic bacterium of the bean bug Riptortus pedestris. Int J Syst Evol Microbiol 2018; 68:2370-2374. [DOI: 10.1099/ijsem.0.002848] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
11
|
Lee JW, Kim YE, Park SJ. Burkholderia alba sp. nov., isolated from a soil sample on Halla mountain in Jeju island. J Microbiol 2018; 56:312-316. [PMID: 29721827 DOI: 10.1007/s12275-018-8034-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/23/2018] [Accepted: 02/27/2018] [Indexed: 11/29/2022]
Abstract
A rod-shaped, round and white colony-forming strain AD18T was isolated from the soil on Halla mountain in Jeju Island, Republic of Korea. Comparative analysis of 16S rRNA gene sequence revealed that this strain was closely related to Burkholderia oklahomensis C6786T (98.8%), Burkholderia thailandensis KCTC 23190T (98.5%). DNA-DNA relatedness (14.6%) indicated that the strain AD18T represents a distinct species that is separate from B. oklahomensis C6786T. The isolate grew at pH 5.0-9.0 (optimum, pH 7.0), 0-3% (w/v) NaCl (optimum, 0%), and temperature 10-40°C (optimum 35°C). The sole quinone of the strain was Q-8, and the predominant fatty acids were C16:0, C17:0 cyclo, and C19:0 cyclo ω8c. The genomic DNA G + C content of AD18T was 65.6 mol%. Based on these findings, strain AD18T is proposed to be a novel species in the genus Burkholderia, for which the name Burkholderia alba sp. nov. is proposed (= KCCM 43268T = JCM 32403T). The type strain is AD18T.
Collapse
Affiliation(s)
- Jae-Won Lee
- Department of Biology, Jeju National University, Jeju, 63243, Republic of Korea
| | - Ye-Eun Kim
- Department of Biology, Jeju National University, Jeju, 63243, Republic of Korea
| | - Soo-Je Park
- Department of Biology, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
12
|
Lee Y, Jeon CO. Paraburkholderia aromaticivorans sp. nov., an aromatic hydrocarbon-degrading bacterium, isolated from gasoline-contaminated soil. Int J Syst Evol Microbiol 2018; 68:1251-1257. [PMID: 29461181 DOI: 10.1099/ijsem.0.002661] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, facultatively aerobic, aromatic hydrocarbon-degrading bacterium, designated strain BN5T, was isolated from gasoline-contaminated soil. Cells were motile and slightly curved rods with a single flagellum showing catalase and oxidase activities. Growth was observed at 20-37 °C (optimum, 25-30 °C), pH 3-7 (optimum, pH 5-6) and 0-2 % NaCl (optimum, 0 %). Ubiquinone-8 was the predominant respiratory quinone. The major fatty acids were C16 : 0, cyclo-C19 : 0ω8c and summed feature 8 (comprising C18 : 1ω7c and/or C18 : 1ω6c). Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified phosphoamino lipid, three unidentified amino lipids and eight unidentified lipids were the identified polar lipids. The DNA G+C content was 62.93 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain BN5T formed a phylogenic lineage with members of the genus Paraburkholderia and showed the highest 16S rRNA gene sequence similarities to Paraburkholderia phytofirmans PsJNT (99.4 %), Paraburkholderia dipogonis DL7T (98.8 %) and Paraburkholderia insulsa PNG-AprilT (98.8 %). The average nucleotide identity and in silico DNA-DNA hybridization (DDH) values between strain BN5T and P. phytofirmans PsJNT were 88.5 and 36.5 %, respectively. The DDH values for strain BN5T with P. dipogonis LMG 28415T and P. insulsa DSM 28142T were 41.0±4.9 % (reciprocal, 33.0±4.3 %) and 47.1±6.6 % (reciprocal, 51.7±5.4 %), respectively. Based on its physiological, chemotaxonomic and phylogenetic features, we conclude that strain BN5T is a novel species of the genus Paraburkholderia, for which the name Paraburkholderia aromaticivorans sp. nov. is proposed. The type strain is BN5T (=KACC 19419T=JCM 32303T).
Collapse
Affiliation(s)
- Yunho Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
13
|
Dobritsa AP, Linardopoulou EV, Samadpour M. Transfer of 13 species of the genus Burkholderia to the genus Caballeronia and reclassification of Burkholderia jirisanensis as Paraburkholderia jirisanensis comb. nov. Int J Syst Evol Microbiol 2017; 67:3846-3853. [DOI: 10.1099/ijsem.0.002202] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Anatoly P. Dobritsa
- Institute for Environmental Health, Inc., 15300 Bothell Way NE, Lake Forest Park, WA 98155, USA
| | - Elena V. Linardopoulou
- Institute for Environmental Health, Inc., 15300 Bothell Way NE, Lake Forest Park, WA 98155, USA
| | - Mansour Samadpour
- Institute for Environmental Health, Inc., 15300 Bothell Way NE, Lake Forest Park, WA 98155, USA
| |
Collapse
|
14
|
Uroz S, Oger P. Caballeronia mineralivorans sp. nov., isolated from oak- Scleroderma citrinum mycorrhizosphere. Syst Appl Microbiol 2017; 40:345-351. [DOI: 10.1016/j.syapm.2017.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 10/19/2022]
|
15
|
Peeters C, Meier-Kolthoff JP, Verheyde B, De Brandt E, Cooper VS, Vandamme P. Phylogenomic Study of Burkholderia glathei-like Organisms, Proposal of 13 Novel Burkholderia Species and Emended Descriptions of Burkholderia sordidicola, Burkholderia zhejiangensis, and Burkholderia grimmiae. Front Microbiol 2016; 7:877. [PMID: 27375597 PMCID: PMC4896955 DOI: 10.3389/fmicb.2016.00877] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/24/2016] [Indexed: 11/14/2022] Open
Abstract
Partial gyrB gene sequence analysis of 17 isolates from human and environmental sources revealed 13 clusters of strains and identified them as Burkholderia glathei clade (BGC) bacteria. The taxonomic status of these clusters was examined by whole-genome sequence analysis, determination of the G+C content, whole-cell fatty acid analysis and biochemical characterization. The whole-genome sequence-based phylogeny was assessed using the Genome Blast Distance Phylogeny (GBDP) method and an extended multilocus sequence analysis (MLSA) approach. The results demonstrated that these 17 BGC isolates represented 13 novel Burkholderia species that could be distinguished by both genotypic and phenotypic characteristics. BGC strains exhibited a broad metabolic versatility and developed beneficial, symbiotic, and pathogenic interactions with different hosts. Our data also confirmed that there is no phylogenetic subdivision in the genus Burkholderia that distinguishes beneficial from pathogenic strains. We therefore propose to formally classify the 13 novel BGC Burkholderia species as Burkholderia arvi sp. nov. (type strain LMG 29317T = CCUG 68412T), Burkholderia hypogeia sp. nov. (type strain LMG 29322T = CCUG 68407T), Burkholderia ptereochthonis sp. nov. (type strain LMG 29326T = CCUG 68403T), Burkholderia glebae sp. nov. (type strain LMG 29325T = CCUG 68404T), Burkholderia pedi sp. nov. (type strain LMG 29323T = CCUG 68406T), Burkholderia arationis sp. nov. (type strain LMG 29324T = CCUG 68405T), Burkholderia fortuita sp. nov. (type strain LMG 29320T = CCUG 68409T), Burkholderia temeraria sp. nov. (type strain LMG 29319T = CCUG 68410T), Burkholderia calidae sp. nov. (type strain LMG 29321T = CCUG 68408T), Burkholderia concitans sp. nov. (type strain LMG 29315T = CCUG 68414T), Burkholderia turbans sp. nov. (type strain LMG 29316T = CCUG 68413T), Burkholderia catudaia sp. nov. (type strain LMG 29318T = CCUG 68411T) and Burkholderia peredens sp. nov. (type strain LMG 29314T = CCUG 68415T). Furthermore, we present emended descriptions of the species Burkholderia sordidicola, Burkholderia zhejiangensis and Burkholderia grimmiae. The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA and gyrB gene sequences determined in this study are LT158612-LT158624 and LT158625-LT158641, respectively.
Collapse
Affiliation(s)
- Charlotte Peeters
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Jan P Meier-Kolthoff
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH Braunschweig, Germany
| | - Bart Verheyde
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Evie De Brandt
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent UniversityGhent, Belgium; BCCM/LMG Bacteria Collection, Department of Biochemistry and Microbiology, Ghent UniversityGhent, Belgium
| |
Collapse
|
16
|
Kuechler SM, Matsuura Y, Dettner K, Kikuchi Y. Phylogenetically Diverse Burkholderia Associated with Midgut Crypts of Spurge Bugs, Dicranocephalus spp. (Heteroptera: Stenocephalidae). Microbes Environ 2016; 31:145-53. [PMID: 27265344 PMCID: PMC4912149 DOI: 10.1264/jsme2.me16042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Diverse phytophagous heteropteran insects, commonly known as stinkbugs, are associated with specific gut symbiotic bacteria, which have been found in midgut cryptic spaces. Recent studies have revealed that members of the stinkbug families Coreidae and Alydidae of the superfamily Coreoidea are consistently associated with a specific group of the betaproteobacterial genus Burkholderia, called the "stinkbug-associated beneficial and environmental (SBE)" group, and horizontally acquire specific symbionts from the environment every generation. However, the symbiotic system of another coreoid family, Stenocephalidae remains undetermined. We herein investigated four species of the stenocephalid genus Dicranocephalus. Examinations via fluorescence in situ hybridization (FISH) and transmission electron microscopy (TEM) revealed the typical arrangement and ultrastructures of midgut crypts and gut symbionts. Cloning and molecular phylogenetic analyses of bacterial genes showed that the midgut crypts of all species are colonized by Burkholderia strains, which were further assigned to different subgroups of the genus Burkholderia. In addition to the SBE-group Burkholderia, a number of stenocephalid symbionts belonged to a novel clade containing B. sordidicola and B. udeis, suggesting a specific symbiont clade for the Stenocephalidae. The symbiotic systems of stenocephalid bugs may provide a unique opportunity to study the ongoing evolution of symbiont associations in the stinkbug-Burkholderia interaction.
Collapse
|
17
|
Burkholderia: an update on taxonomy and biotechnological potential as antibiotic producers. Appl Microbiol Biotechnol 2016; 100:5215-29. [PMID: 27115756 DOI: 10.1007/s00253-016-7520-x] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 02/02/2023]
Abstract
Burkholderia is an incredibly diverse and versatile Gram-negative genus, within which over 80 species have been formally named and multiple other genotypic groups likely represent new species. Phylogenetic analysis based on the 16S rRNA gene sequence and core genome ribosomal multilocus sequence typing analysis indicates the presence of at least three major clades within the genus. Biotechnologically, Burkholderia are well-known for their bioremediation and biopesticidal properties. Within this review, we explore the ability of Burkholderia to synthesise a wide range of antimicrobial compounds ranging from historically characterised antifungals to recently described antibacterial antibiotics with activity against multiresistant clinical pathogens. The production of multiple Burkholderia antibiotics is controlled by quorum sensing and examples of quorum sensing pathways found across the genus are discussed. The capacity for antibiotic biosynthesis and secondary metabolism encoded within Burkholderia genomes is also evaluated. Overall, Burkholderia demonstrate significant biotechnological potential as a source of novel antibiotics and bioactive secondary metabolites.
Collapse
|
18
|
Dobritsa AP, Samadpour M. Transfer of eleven species of the genus Burkholderia to the genus Paraburkholderia and proposal of Caballeronia gen. nov. to accommodate twelve species of the genera Burkholderia and Paraburkholderia. Int J Syst Evol Microbiol 2016; 66:2836-2846. [PMID: 27054671 DOI: 10.1099/ijsem.0.001065] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been proposed to split the genus Burkholderia into two genera according to phylogenetic clustering: (1) a genus retaining this name and consisting mainly of animal and plant pathogens and (2) the genus Paraburkholderia including so-called environmental bacteria. The latter genus name has been validly published recently. During the period between the effective and valid publications of the genus name Paraburkholderia, 16 novel species of the genus Burkholderiawere described, but only two of them can be classified as members of this genus based on the emended genus description. Analysis of traits and phylogenetic positions of the other 11 species shows that they belong to the genus Paraburkholderia, and we propose to transfer them to this genus. The reclassified species names are proposed as Paraburkholderia dipogonis comb. nov., Paraburkholderia ginsengiterrae comb. nov., Paraburkholderia humisilvae comb. nov., Paraburkholderia insulsa comb. nov., Paraburkholderia kirstenboschensis comb. nov., Paraburkholderia metalliresistens comb. nov., Paraburkholderia monticola comb. nov., Paraburkholderia panaciterrae comb. nov., Paraburkholderia rhizosphaerae comb. nov., Paraburkholderia solisilvae comb. nov. and Paraburkholderia susongensis comb. nov. The remaining three species are transferred to the new genus Caballeronia gen. nov. proposed to accommodate twelve species of the genera Burkholderia and Paraburkholderia forming a distinctive clade in phylogenetic trees. The new genus members are Caballeronia choica comb. nov., Caballeronia cordobensis comb. nov., Caballeronia glathei comb. nov., Caballeronia grimmiae comb. nov., Caballeronia humi comb. nov., Caballeronia megalochromosomata comb. nov., Caballeronia jiangsuensis comb. nov., Caballeronia sordidicola comb. nov., Caballeronia telluris comb. nov., Caballeronia terrestris comb. nov., Caballeronia udeis comb. nov., and Caballeronia zhejiangensis comb. nov.
Collapse
Affiliation(s)
- Anatoly P Dobritsa
- Institute for Environmental Health, Inc, 15300 Bothell Way NE, Lake Forest Park, WA 98155, USA
| | - Mansour Samadpour
- Institute for Environmental Health, Inc, 15300 Bothell Way NE, Lake Forest Park, WA 98155, USA
| |
Collapse
|
19
|
|
20
|
Lee JC, Whang KS. Burkholderia humisilvae sp. nov., Burkholderia solisilvae sp. nov. and Burkholderia rhizosphaerae sp. nov., isolated from forest soil and rhizosphere soil. Int J Syst Evol Microbiol 2015; 65:2986-2992. [DOI: 10.1099/ijs.0.000368] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strains Y-12T and Y-47T were isolated from mountain forest soil and strain WR43T was isolated from rhizosphere soil, at Daejeon, Korea. The three strains grew at 10–55 °C (optimal growth at 28–30 °C), at pH 3.0–8.0 (optimal growth at pH 6.0) and in the presence of 0–4.0 % (w/v) NaCl, growing optimally in the absence of added NaCl. On the basis of 16S rRNA gene sequence analysis, the three strains were found to belong to the genus Burkholderia, showing the closest phylogenetic similarity to Burkholderia diazotrophica JPY461T (97.2–97.7 %); the similarity between the three sequences ranged from 98.3 to 98.7 %. Additionally, the three strains formed a distinct group in phylogenetic trees based on the housekeeping genes recA and gyrB. The predominant ubiquinone was Q-8, the major fatty acids were C16 : 0 and C17 : 0 cyclo and the DNA G+C content of the novel isolates was 61.6–64.4 mol%. DNA–DNA relatedness among the three strains and the type strains of the closest species of the genus Burkholderia was less than 50 %. On the basis of 16S rRNA, recA and gyrB gene sequence similarities, chemotaxonomic and phenotypic data, the three strains represent three novel species within the genus Burkholderia, for which the names Burkholderia humisilvae sp. nov. (type strain Y-12T = KACC 17601T = NBRC 109933T = NCAIM B 02543T), Burkholderia solisilvae sp. nov. (type strain Y-47T = KACC 17602T = NBRC 109934T = NCAIM B 02539T) and Burkholderia rhizosphaerae sp. nov. (type strain WR43T = KACC 17603T = NBRC 109935T = NCAIM B 02541T) are proposed.
Collapse
Affiliation(s)
- Jae-Chan Lee
- Institute of Microbial Ecology and Resources, Mokwon University, 88 Doanbuk-ro, Seo-gu, Daejeon 302-318, Republic of Korea
| | - Kyung-Sook Whang
- Department of Microbial & Nano Materials, College of Science & Technology, Mokwon University, 88 Doanbuk-ro, Seo-gu, Daejeon 302-318, Republic of Korea
- Institute of Microbial Ecology and Resources, Mokwon University, 88 Doanbuk-ro, Seo-gu, Daejeon 302-318, Republic of Korea
| |
Collapse
|
21
|
Sawana A, Adeolu M, Gupta RS. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 2014; 5:429. [PMID: 25566316 PMCID: PMC4271702 DOI: 10.3389/fgene.2014.00429] [Citation(s) in RCA: 306] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/21/2014] [Indexed: 01/22/2023] Open
Abstract
The genus Burkholderia contains large number of diverse species which include many clinically important organisms, phytopathogens, as well as environmental species. However, currently, there is a paucity of biochemical or molecular characteristics which can reliably distinguish different groups of Burkholderia species. We report here the results of detailed phylogenetic and comparative genomic analyses of 45 sequenced species of the genus Burkholderia. In phylogenetic trees based upon concatenated sequences for 21 conserved proteins as well as 16S rRNA gene sequence based trees, members of the genus Burkholderia grouped into two major clades. Within these main clades a number of smaller clades including those corresponding to the clinically important Burkholderia cepacia complex (BCC) and the Burkholderia pseudomallei groups were also clearly distinguished. Our comparative analysis of protein sequences from Burkholderia spp. has identified 42 highly specific molecular markers in the form of conserved sequence indels (CSIs) that are uniquely found in a number of well-defined groups of Burkholderia spp. Six of these CSIs are specific for a group of Burkholderia spp. (referred to as Clade I in this work) which contains all clinically relevant members of the genus (viz. the BCC and the B. pseudomallei group) as well as the phytopathogenic Burkholderia spp. The second main clade (Clade II), which is composed of environmental Burkholderia species, is also distinguished by 2 identified CSIs that are specific for this group. Additionally, our work has also identified multiple CSIs that serve to clearly demarcate a number of smaller groups of Burkholderia spp. including 3 CSIs that are specific for the B. cepacia complex, 4 CSIs that are uniquely found in the B. pseudomallei group, 5 CSIs that are specific for the phytopathogenic Burkholderia spp. and 22 other CSI that distinguish two groups within Clade II. The described molecular markers provide highly specific means for the demarcation of different groups of Burkholderia spp. and they also offer novel and useful targets for the development of diagnostic assays for the clinically important members of the BCC or the pseudomallei groups. Based upon the results of phylogenetic analyses, the identified CSIs and the pathogenicity profile of Burkholderia species, we are proposing a division of the genus Burkholderia into two genera. In this new proposal, the emended genus Burkholderia will correspond to the Clade I and it will contain only the clinically relevant and phytopathogenic Burkholderia species. All other Burkholderia spp., which are primarily environmental, will be transferred to a new genus Paraburkholderia gen. nov.
Collapse
Affiliation(s)
| | | | - Radhey S. Gupta
- Department of Biochemistry and Biomedical Sciences, Health Sciences Center, McMaster UniversityHamilton, ON, Canada
| |
Collapse
|
22
|
Rusch A, Islam S, Savalia P, Amend JP. Burkholderia insulsa sp. nov., a facultatively chemolithotrophic bacterium isolated from an arsenic-rich shallow marine hydrothermal system. Int J Syst Evol Microbiol 2014; 65:189-194. [PMID: 25323596 DOI: 10.1099/ijs.0.064477-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enrichment cultures inoculated with hydrothermally influenced nearshore sediment from Papua New Guinea led to the isolation of an arsenic-tolerant, acidophilic, facultatively aerobic bacterial strain designated PNG-April(T). Cells of this strain were Gram-stain-negative, rod-shaped, motile and did not form spores. Strain PNG-April(T) grew at temperatures between 4 °C and 40 °C (optimum 30-37 °C), at pH 3.5 to 8.3 (optimum pH 5-6) and in the presence of up to 2.7% NaCl (optimum 0-1.0%). Both arsenate and arsenite were tolerated up to concentrations of at least 0.5 mM. Metabolism in strain PNG-April(T) was strictly respiratory. Heterotrophic growth occurred with O2 or nitrate as electron acceptors, and aerobic lithoautotrophic growth was observed with thiosulfate or nitrite as electron donors. The novel isolate was capable of N2-fixation. The respiratory quinones were Q-8 and Q-7. Phylogenetically, strain PNG-April(T) belongs to the genus Burkholderia and shares the highest 16S rRNA gene sequence similarity with the type strains of Burkholderia fungorum (99.8%), Burkholderia phytofirmans (98.8%), Burkholderia caledonica (98.4%) and Burkholderia sediminicola (98.4%). Differences from these related species in several physiological characteristics (lipid composition, carbohydrate utilization, enzyme profiles) and DNA-DNA hybridization suggested the isolate represents a novel species of the genus Burkholderia, for which we propose the name Burkholderia insulsa sp. nov. The type strain is PNG-April(T) ( = DSM 28142(T) = LMG 28183(T)).
Collapse
Affiliation(s)
- Antje Rusch
- Center for Ecology, Southern Illinois University Carbondale, 1125 Lincoln Drive, Carbondale, IL 62901, USA.,Department of Microbiology, Southern Illinois University Carbondale, 1125 Lincoln Drive, Carbondale, IL 62901, USA
| | - Shaer Islam
- Department of Microbiology, Southern Illinois University Carbondale, 1125 Lincoln Drive, Carbondale, IL 62901, USA
| | - Pratixa Savalia
- Department of Earth Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA
| | - Jan P Amend
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA.,Department of Earth Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA
| |
Collapse
|
23
|
Liu XY, Li CX, Luo XJ, Lai QL, Xu JH. Burkholderia jiangsuensis sp. nov., a methyl parathion degrading bacterium, isolated from methyl parathion contaminated soil. Int J Syst Evol Microbiol 2014; 64:3247-3253. [PMID: 24981326 DOI: 10.1099/ijs.0.064444-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A methyl parathion (MP) degrading bacterial strain, designated MP-1(T), was isolated from a waste land where pesticides were formerly manufactured in Jiangsu province, China. Polyphasic taxonomic studies showed that MP-1(T) is a Gram-stain-negative, non-spore-forming, rod-shaped and motile bacterium. The bacterium could grow at salinities of 0-1 % (w/v) and temperatures of 15-40 °C. Strain MP-1(T) could reduce nitrate to nitrite, utilize d-glucose and l-arabinose, but not produce indole, or hydrolyse gelatin. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that MP-1(T) belongs to the genus Burkholderia, showing highest sequence similarity to Burkholderia grimmiae DSM 25160(T) (98.5 %), and similar strains including Burkholderia zhejiangensis OP-1(T) (98.2 %), Burkholderia choica LMG 22940(T) (97.5 %), Burkholderia glathei DSM 50014(T) (97.4 %), Burkholderia terrestris LMG 22937(T) (97.2 %) and Burkholderia telluris LMG 22936(T) (97.0 %). In addition, the gyrB and recA gene segments of strain MP-1(T) exhibited less than 89.0 % and 95.1 % similarities with the most highly-related type strains indicated above. The G+C content of strain MP-1(T) was 62.6 mol%. The major isoprenoid quinone was ubiquinone Q-8. The predominant polar lipids comprised phosphatidyl ethanolamine, phosphatidyl glycerol, aminolipid and phospholipid. The principal fatty acids in strain MP-1(T) were C18 : 1ω7c/C18 : 1ω6c (23.3 %), C16 : 0 (16.8 %), cyclo-C17 : 0 (15.0 %), C16 : 1ω7c/C16 : 1ω6 (8.5 %), cyclo-C19 : 0ω8c (8.1 %), C16 : 1 iso I/C14 : 0 3-OH (5.7 %), C16 : 0 3-OH (5.6 %) and C16 : 02-OH (5.1 %). The DNA-DNA relatedness values between strain MP-1(T) and the three type strains (B. grimmiae DSM 25160(T), B. zhejiangensis OP-1(T) and B. glathei DSM 50014(T)) ranged from 24.6 % to 37.4 %. In accordance with phenotypic and genotypic characteristics, strain MP-1(T) represents a novel species of the genus Burkholderia, for which the name Burkholderia jiangsuensis sp. nov. is proposed, the type strain is MP-1(T) (LMG 27927(T) = MCCC 1K00250(T)).
Collapse
Affiliation(s)
- Xu-Yun Liu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Chun-Xiu Li
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xiao-Jing Luo
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Qi-Liang Lai
- State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Jian-He Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
24
|
Draghi WO, Peeters C, Cnockaert M, Snauwaert C, Wall LG, Zorreguieta A, Vandamme P. Burkholderia cordobensis sp. nov., from agricultural soils. Int J Syst Evol Microbiol 2014; 64:2003-2008. [PMID: 24623656 DOI: 10.1099/ijs.0.059667-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two Gram-negative, rod-shaped bacteria were isolated from agricultural soils in Córdoba province in central Argentina. Their 16S rRNA gene sequences demonstrated that they belong to the genus Burkholderia, with Burkholderia zhejiangensis as most closely related formally named species; this relationship was confirmed through comparative gyrB sequence analysis. Whole-cell fatty acid analysis supported their assignment to the genus Burkholderia. Burkholderia sp. strain YI23, for which a whole-genome sequence is available, represents the same taxon, as demonstrated by its highly similar 16S rRNA (100% similarity) and gyrB (99.1-99.7%) gene sequences. The results of DNA-DNA hybridization experiments and physiological and biochemical characterization further substantiated the genotypic and phenotypic distinctiveness of the Argentinian soil isolates, for which the name Burkholderia cordobensis sp. nov. is proposed, with strain MMP81(T) ( = LMG 27620(T) = CCUG 64368(T)) as the type strain.
Collapse
Affiliation(s)
- Walter O Draghi
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
- Fundación Instituto Leloir and IIBA - Consejo Nacional de Investigaciones Científicas y Tecnológicas, Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - Charlotte Peeters
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Margo Cnockaert
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Cindy Snauwaert
- BCCM/LMG Bacteria Collection, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Luis G Wall
- Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD Buenos Aires, Argentina
| | - Angeles Zorreguieta
- Fundación Instituto Leloir and IIBA - Consejo Nacional de Investigaciones Científicas y Tecnológicas, Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| |
Collapse
|