1
|
Lau NS, Heng WL, Miswan N, Azami NA, Furusawa G. Comparative Genomic Analyses of the Genus Photobacterium Illuminate Biosynthetic Gene Clusters Associated with Antagonism. Int J Mol Sci 2022; 23:ijms23179712. [PMID: 36077108 PMCID: PMC9456166 DOI: 10.3390/ijms23179712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The genus Photobacterium is known for its ecophysiological versatility encompassing free-living, symbiotic, and pathogenic lifestyles. Photobacterium sp. CCB-ST2H9 was isolated from estuarine sediment collected at Matang Mangrove, Malaysia. In this study, the genome of CCB-ST2H9 was sequenced, and the pan-genome of 37 Photobacterium strains was analysed. Phylogeny based on core genes showed that CCB-ST2H9 clustered with P. galatheae, forming a distinct clade with P. halotolerans, P. salinisoli, and P. arenosum. The core genome of Photobacterium was conserved in housekeeping functions, while the flexible genome was well represented by environmental genes related to energy production and carbohydrate metabolism. Genomic metrics including 16S rRNA sequence similarity, average nucleotide identity, and digital DNA–DNA hybridization values were below the cut-off for species delineation, implying that CCB-ST2H9 potentially represents a new species. Genome mining revealed that biosynthetic gene clusters (BGCs) involved in producing antimicrobial compounds such as holomycin in CCB-ST2H9 could contribute to the antagonistic potential. Furthermore, the EtOAc extract from the culture broth of CCB-ST2H9 exhibited antagonistic activity against Vibrio spp. Intriguingly, clustering based on BGCs profiles grouped P. galatheae, P. halotolerans, P. salinisoli, P. arenosum, and CCB-ST2H9 together in the heatmap by the presence of a large number of BGCs. These BGCs-rich Photobacterium strains represent great potential for bioactive secondary metabolites production and sources for novel compounds.
Collapse
|
2
|
Photobacterium lucens sp. nov., Isolated from a Cultured Shrimp Penaeus vannamei. Curr Microbiol 2020; 77:1111-1116. [DOI: 10.1007/s00284-020-01893-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/18/2020] [Indexed: 11/25/2022]
|
3
|
Abstract
Phylogenetic relationships between species in the genus Photobacterium have been poorly studied despite pathogenic and ecological relevance of some of its members. This is the first phylogenetic study that includes new species of Photobacterium (validated or not) that have not been included in any of the previously described clades, using 16S rRNA sequences and multilocus sequence analysis (MLSA) in concatenated sequences of gyrB, gapA, topA, ftsZ and mreB housekeeping genes. Sequence analysis has been implemented using Maximum-parsimony (MP), Neighbour-joining (NJ) and Maximum likelihood (ML) treeing methods and the predicted evolutionary relationship between the Photobacterium clades was established on the basis of bootstrap values of >75% for 16S rRNA sequences and MLSA. We have grouped 22 species of the genus Photobacterium into the following 5 clades: Phosphoreum (comprises P. aquimaris, “P. carnosum,” P. iliopiscarium, P. kishitanii, P. phosphoreum, “P. piscicola” and “P. toruni”); clade Profundum (composed of P. aestuarii, P. alginatilyticum, P. frigidiphilum, P. indicum, P. jeanii, P. lipolyticum, “P. marinum,” and P. profundum); clade Damselae (two subspecies of P. damselae, damselae and piscicida); and two new clades: clade Ganghwense (includes P. aphoticum, P. aquae, P. galatheae, P. ganghwense, P. halotolerans, P. panuliri and P. proteolyticum); and clade Leiognathi (composed by P. angustum, P. leiognathi subsp. leiognathi and “P. leiognathi subsp. mandapamensis”). Two additional clades, Rosenbergii and Swingsii, were formed using a phylogenetic method based on 16S rRNA gene, although they are not confirmed by any MLSA methods. Only P. aplysiae could not be included in none of the established clade, constituting an orphan clade.
Collapse
Affiliation(s)
- Alejandro M Labella
- Department of Microbiology, Faculty of Sciences, Universidad de Malaga, 29071 Malaga, Spain.
| | - M Dolores Castro
- Department of Microbiology, Faculty of Sciences, Universidad de Malaga, 29071 Malaga, Spain.
| | - Manuel Manchado
- Puerto de Santa María, Junta de Andalucía, IFAPA Centro El Toruño, 11500 Cadiz, Spain.
| | - Juan J Borrego
- Department of Microbiology, Faculty of Sciences, Universidad de Malaga, 29071 Malaga, Spain.
| |
Collapse
|
4
|
Hilgarth M, Fuertes-Pèrez S, Ehrmann M, Vogel RF. An adapted isolation procedure reveals Photobacterium spp. as common spoilers on modified atmosphere packaged meats. Lett Appl Microbiol 2018; 66:262-267. [PMID: 29419881 DOI: 10.1111/lam.12860] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 11/27/2022]
Abstract
The genus Photobacterium comprises species of marine bacteria, commonly found in open-ocean and deep-sea environments. Some species (e.g. Photobacterium phosphoreum) are associated with fish spoilage. Recently, culture-independent studies have drawn attention to the presence of photobacteria on meat. This study employed a comparative isolation approach of Photobacterium spp. and aimed to develop an adapted isolation procedure for recovery from food samples, as demonstrated for different meats: Marine broth is used for resuspending and dilution of food samples, followed by aerobic cultivation on marine broth agar supplemented with meat extract and vancomycin at 15°C for 72 h. Identification of spoilage-associated microbiota was carried out via Matrix Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry using a database supplemented with additional mass spectrometry profiles of Photobacterium spp. This study provides evidence for the common abundance of multiple Photobacterium species in relevant quantities on various modified atmosphere packaged meats. Photobacterium carnosum was predominant on beef and chicken, while Photobacterium iliopiscarium represented the major species on pork and Photobacterium phosphoreum on salmon, respectively. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrates highly frequent isolation of multiple photobacteria (Photobacterium carnosum, Photobacterium phosphoreum, and Photobacterium iliopiscarium) from different modified-atmosphere packaged spoiled and unspoiled meats using an adapted isolation procedure. The abundance of photobacteria in high numbers provides evidence for the hitherto neglected importance and relevance of Photobacterium spp. to meat spoilage.
Collapse
Affiliation(s)
- M Hilgarth
- Lehrstuhl Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - S Fuertes-Pèrez
- Lehrstuhl Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - M Ehrmann
- Lehrstuhl Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - R F Vogel
- Lehrstuhl Technische Mikrobiologie, Technische Universität München, Freising, Germany
| |
Collapse
|
5
|
Labella AM, Arahal DR, Lucena T, Manchado M, Castro D, Borrego JJ. Photobacterium toruni sp. nov., a bacterium isolated from diseased farmed fish. Int J Syst Evol Microbiol 2017; 67:4518-4525. [DOI: 10.1099/ijsem.0.002325] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Alejandro M. Labella
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - David R. Arahal
- Departamento de Microbiología y Ecología, and Colección Española de Cultivos Tipo (CECT), Universitat de València, València, Spain
| | - Teresa Lucena
- Departamento de Microbiología y Ecología, and Colección Española de Cultivos Tipo (CECT), Universitat de València, València, Spain
| | - Manuel Manchado
- IFAPA Centro El Toruño, Junta de Andalucía, Puerto de Santa María, 11500 Cádiz, Spain
| | - Dolores Castro
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Juan J. Borrego
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
6
|
Machado H, Gram L. Comparative Genomics Reveals High Genomic Diversity in the Genus Photobacterium. Front Microbiol 2017; 8:1204. [PMID: 28706512 PMCID: PMC5489566 DOI: 10.3389/fmicb.2017.01204] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/13/2017] [Indexed: 11/13/2022] Open
Abstract
Vibrionaceae is a large marine bacterial family, which can constitute up to 50% of the prokaryotic population in marine waters. Photobacterium is the second largest genus in the family and we used comparative genomics on 35 strains representing 16 of the 28 species described so far, to understand the genomic diversity present in the Photobacterium genus. Such understanding is important for ecophysiology studies of the genus. We used whole genome sequences to evaluate phylogenetic relationships using several analyses (16S rRNA, MLSA, fur, amino-acid usage, ANI), which allowed us to identify two misidentified strains. Genome analyses also revealed occurrence of higher and lower GC content clades, correlating with phylogenetic clusters. Pan- and core-genome analysis revealed the conservation of 25% of the genome throughout the genus, with a large and open pan-genome. The major source of genomic diversity could be traced to the smaller chromosome and plasmids. Several of the physiological traits studied in the genus did not correlate with phylogenetic data. Since horizontal gene transfer (HGT) is often suggested as a source of genetic diversity and a potential driver of genomic evolution in bacterial species, we looked into evidence of such in Photobacterium genomes. Genomic islands were the source of genomic differences between strains of the same species. Also, we found transposase genes and CRISPR arrays that suggest multiple encounters with foreign DNA. Presence of genomic exchange traits was widespread and abundant in the genus, suggesting a role in genomic evolution. The high genetic variability and indications of genetic exchange make it difficult to elucidate genome evolutionary paths and raise the awareness of the roles of foreign DNA in the genomic evolution of environmental organisms.
Collapse
Affiliation(s)
- Henrique Machado
- Department of Biotechnology and Biomedicine, Technical University of Denmark, MatematiktorvetKgs Lyngby, Denmark.,Novo Nordisk Foundation Center for Biosustainability, Technical University of DenmarkHørsholm, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, MatematiktorvetKgs Lyngby, Denmark
| |
Collapse
|
7
|
Moi IM, Roslan NN, Leow ATC, Ali MSM, Rahman RNZRA, Rahimpour A, Sabri S. The biology and the importance of Photobacterium species. Appl Microbiol Biotechnol 2017; 101:4371-4385. [PMID: 28497204 DOI: 10.1007/s00253-017-8300-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
Abstract
Photobacterium species are Gram-negative coccobacilli which are distributed in marine habitats worldwide. Some species are unique because of their capability to produce luminescence. Taxonomically, about 23 species and 2 subspecies are validated to date. Genomes from a few Photobacterium spp. have been sequenced and studied. They are considered a special group of bacteria because some species are capable of producing essential polyunsaturated fatty acids, antibacterial compounds, lipases, esterases and asparaginases. They are also used as biosensors in food and environmental monitoring and detectors of drown victim, as well as an important symbiont.
Collapse
Affiliation(s)
- Ibrahim Musa Moi
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Microbiology, Bauchi State University Gadau, P.M.B. O65, Bauchi, Bauchi State, Nigeria
| | - Noordiyanah Nadhirah Roslan
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Adam Thean Chor Leow
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Azam Rahimpour
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
8
|
Amaral GRS, Campeão ME, Swings J, Thompson FL, Thompson CC. Finding diagnostic phenotypic features of Photobacterium in the genome sequences. Antonie van Leeuwenhoek 2015; 107:1351-8. [PMID: 25724129 DOI: 10.1007/s10482-015-0414-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/23/2015] [Indexed: 01/14/2023]
Abstract
Photobacterium species are ubiquitous in the aquatic environment and can be found in association with animal hosts including pathogenic and mutualistic associations. The traditional phenotypic characterization of Photobacterium is expensive, time-consuming and restricted to a limited number of features. An alternative is to infer phenotypic information directly from whole genome sequences. The present study evaluates the usefulness of whole genome sequences as a source of phenotypic information and compares diagnostic phenotypes of the Photobacterium species from the literature with the predicted phenotypes obtained from whole genome sequences. All genes coding for the specific proteins involved in metabolic pathways responsible for positive phenotypes of the seventeen diagnostic features were found in the majority of the Photobacterium genomes. In the Photobacterium species that were negative for a given phenotype, at least one or several genes involved in the respective biochemical pathways were absent.
Collapse
Affiliation(s)
- Gilda Rose S Amaral
- Laboratory for Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
9
|
Deep K, Poddar A, Das SK. Photobacterium panuliri sp. nov., an alkalitolerant marine bacterium isolated from eggs of spiny lobster, Panulirus penicillatus from Andaman Sea. Curr Microbiol 2014; 69:660-8. [PMID: 24962598 DOI: 10.1007/s00284-014-0638-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 05/07/2014] [Indexed: 10/25/2022]
Abstract
A facultative anaerobe, alkalitolerant, gram-negative marine bacterium strain LBS5(T), was isolated from eggs carried on the pleopods of female spiny lobster (Panulirus penicillatus) in Andaman Sea from a depth of 3.5 m. Heterotrophic growth was observed at 15-38 °C and pH 5.5-11. Optimum growth occurred at 28 °C and pH 7.5. It can grow in the presence of 0.5-7 % NaCl (w/v), and the optimal NaCl required for growth was 2-4 %. 16S rRNA gene sequence analysis revealed the strain LBS5(T) belongs to the genus Photobacterium and showed 99.6 % similarity with P. aquae AE6(T), 98.2 % with P. aphoticum M46(T), 97 % with P. rosenbergii CC1(T), 96.9 % with P. lutimaris DF-42(T), and 96.6 % with P. halotolerans MACL01(T). The DNA-DNA similarities between strains LBS5(T) with other closely related strains were well below 70 %. The DNA G + C content was 50.52 (±0.9) mol%. The major fatty acids were C16:1w7c/w6c, C18:1w6c/w7c, C16:0, C15:0 iso, C16:0 10-methyl/17:1 iso w9c, C17:0 iso. Polar lipids included a phosphatidylglycerol, a diphosphatidylglycerol, a phosphatidylethanolamine, and one unidentified lipid. Based on the polyphasic evidences, strain LBS5(T) represents a novel species of the genus Photobacterium for which Photobacterium panuliri sp. nov. is proposed. The type strain is LBS5(T) (=DSM 27646(T) = LMG 27617(T) = JCM 19199(T)).
Collapse
Affiliation(s)
- Kamal Deep
- Department of Biotechnology, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751 023, India
| | | | | |
Collapse
|
10
|
Moreira APB, Duytschaever G, Chimetto Tonon LA, Fróes AM, de Oliveira LS, Amado-Filho GM, Francini-Filho RB, De Vos P, Swings J, Thompson CC, Thompson FL. Photobacterium sanctipauli sp. nov. isolated from bleached Madracis decactis (Scleractinia) in the St Peter & St Paul Archipelago, Mid-Atlantic Ridge, Brazil. PeerJ 2014; 2:e427. [PMID: 25024905 PMCID: PMC4081156 DOI: 10.7717/peerj.427] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/22/2014] [Indexed: 11/20/2022] Open
Abstract
Five novel strains of Photobacterium (A-394T, A-373, A-379, A-397 and A-398) were isolated from bleached coral Madracis decactis (scleractinian) in the remote St Peter & St Archipelago (SPSPA), Mid-Atlantic Ridge, Brazil. Healthy M. decactis specimens were also surveyed, but no strains were related to them. The novel isolates formed a distinct lineage based on the 16S rRNA, recA, and rpoA gene sequences analysis. Their closest phylogenetic neighbours were Photobacterium rosenbergii, P. gaetbulicola, and P. lutimaris, sharing 96.6 to 95.8% 16S rRNA gene sequence similarity. The novel species can be differentiated from the closest neighbours by several phenotypic and chemotaxonomic markers. It grows at pH 11, produces tryptophane deaminase, presents the fatty acid C18:0, but lacks C16:0 iso. The whole cell protein profile, based in MALDI-TOF MS, distinguished the strains of the novel species among each other and from the closest neighbors. In addition, we are releasing the whole genome sequence of the type strain. The name Photobacterium sanctipauli sp. nov. is proposed for this taxon. The G + C content of the type strain A-394(T) (= LMG27910(T) = CAIM1892(T)) is 48.2 mol%.
Collapse
Affiliation(s)
- Ana Paula B Moreira
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ) , Rio de Janeiro , Brazil
| | - Gwen Duytschaever
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ) , Rio de Janeiro , Brazil
| | | | - Adriana M Fróes
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ) , Rio de Janeiro , Brazil
| | - Louisi S de Oliveira
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ) , Rio de Janeiro , Brazil
| | | | | | - Paul De Vos
- BCCM/LMG Bacteria Collection, Ghent University , Ghent , Belgium ; Laboratory of Microbiology, Faculty of Sciences, Ghent University , Ghent , Belgium
| | - Jean Swings
- BCCM/LMG Bacteria Collection, Ghent University , Ghent , Belgium ; Laboratory of Microbiology, Faculty of Sciences, Ghent University , Ghent , Belgium
| | - Cristiane C Thompson
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ) , Rio de Janeiro , Brazil
| | - Fabiano L Thompson
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ) , Rio de Janeiro , Brazil ; Laboratório de Sistemas Avançados de Gestão de Produção - SAGE - COPPE, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| |
Collapse
|