1
|
Weng Y, Xia J, Zhu X, Wang W. Vreelandella arctica sp. nov. and Vreelandella indica sp. nov., isolated from the Arctic Ocean and the Southwest Indian Ocean sediment. Int J Syst Evol Microbiol 2025; 75. [PMID: 40388214 DOI: 10.1099/ijsem.0.006791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025] Open
Abstract
Four Gram-stain-negative bacterial strains which can metabolize alkanes and polycyclic aromatic hydrocarbons were isolated. Strains R06ZXJ2T and R09ZXJ6 were isolated from sediments collected in the Arctic Ocean. Strains DY715-9T and DY716-13-1 were isolated from surface sediment samples collected by the deep-sea TV grab in the southwestern Indian Ocean. Phylogenomic analyses based on 16S rRNA gene sequences, average nt identity (ANI) and digital DNA-DNA hybridization (dDDH) revealed that the strains formed two distinct lineages within the genus Vreelandella. Their closest relative was Vreelandella maris QX-1T, with ANI values of 94.35% (R06ZXJ2T) and 95.54% (DY715-9T) and dDDH values of 57.00% and 61.80%, respectively. The pairwise ANI (95.47%) and dDDH (60.70%) between the two novel strains further supported their status as separate species. Phenotypic and chemotaxonomic analyses distinguished them from known Vreelandella species through differences in colony morphology, hydrocarbon degradation profiles and polar lipid compositions. The strains grew optimally at 28 °C and pH 7.0 and can degrade alkanes and polycyclic aromatic hydrocarbons. Based on these results, we propose two novel species: Vreelandella arctica sp. nov. (type strain R06ZXJ2T=MCCC 1A08467T=KCTC 92631T) and Vreelandella indica sp. nov. (type strain DY715-9T=MCCC 1A12469T=KCTC 92628T).
Collapse
Affiliation(s)
- Yuwei Weng
- School of Advanced Manufacturing, Fuzhou University, Quanzhou 362251, PR China
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China
| | - Jingyu Xia
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, 361102, PR China
| | - Xuying Zhu
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China
| | - Wanpeng Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China
| |
Collapse
|
2
|
Zheng Z, Wang Z, Zhang X, Zheng C, Xu B, Zhang J, Zhang C, Bie S, Peng F, Wu Y, Wang H, Zhang S, Lv L. Novel genomic and phenotypic traits of polyhydroxyalkanoate-producing bacterium ZZQ-149, the type strain of Halomonas qinghailakensis. BMC Microbiol 2024; 24:372. [PMID: 39342120 PMCID: PMC11438105 DOI: 10.1186/s12866-024-03532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Polyhydroxyalkanoates (PHAs) are optimal potential materials for industrial and medical uses, characterized by exceptional sustainability, biodegradability, and biocompatibility. These are primarily from various bacteria and archaea. Bacterial strains with effective PHA formation capabilities and minimal production cost form the foundation for PHA production. Detailed genomic analysis of these PHA-generating bacteria is vital to understand their PHA production pathways and enhance their synthesis capability. RESULTS ZZQ-149, a halophilic, PHA-producing bacterium, was isolated from the sediment of China's Qinghai Lake. Here, we decoded the full genome of ZZQ-149 using Single Molecule Real Time (SMRT) technology based on PacBio RS II platform, coupled with Illumina sequencing platforms. Physiological, chemotaxonomic traits, and phylogenetic analysis based on 16 S rRNA gene and single copy core genes of ninety-nine Halomonas type strains identified ZZQ-149 as the type strain of Halomonas qinghailakensis. Furthermore, a low average nucleotide identity (ANI, < 95%) delineated the genetic differences between ZZQ-149 and other Halomonas species. The ZZQ-149 genome, with a DNA G + C content of 52%, comprises a chromosome (3, 798, 069 bps) and a plasmid (6, 107 bps). The latter encodes the toxin-antitoxin system, BrnT/BrnA. Through comprehensive genome sequencing and analysis, we identified multiple PHA-synthesizing enzymes and an unprecedented combination of eight PHA-synthesizing pathways in ZZQ-149. CONCLUSIONS Being a halophilic, PHA-producing bacterium, ZZQ-149 exhibits potential as a high PHA producer for engineered bacteria via genome editing while ensuring low-cost PHA production through continuous, unsterilized fermentation.
Collapse
Affiliation(s)
- Ziqiang Zheng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China.
- Wuhan Qianmo Bio-agriculture Technology Co., Ltd., Medicine Garden, Miaoshan Development Zone, Jiangxia District, Wuhan, 430299, China.
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
| | - Zuoqian Wang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Xuerui Zhang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Chaofan Zheng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Bichao Xu
- Center for Instrumental Analysis and Metrology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jushuang Zhang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Chengjun Zhang
- Division of Animal Infectious Disease, Huazhong Agricultural University, Wuhan, 430070, China
| | - Siwei Bie
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Fang Peng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yuzhen Wu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hongxun Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shu Zhang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Liang Lv
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| |
Collapse
|
3
|
Das L, Kujur RRA, Debnath T, Das SK. Phylogeny and genomic analysis of Shewanella cutis sp. nov., isolated from freshwater pufferfish. Folia Microbiol (Praha) 2024; 69:723-731. [PMID: 37996658 DOI: 10.1007/s12223-023-01111-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
Three closely related, aerobic, Gram-stain-negative, motile, rod-shaped bacterial strains (PS-2T, PS-17, and PS-19) were isolated from the skin of freshwater pufferfish (Tetraodon cutcutia). Colonies are pinkish-colored. The optimum growth occurred at 28-30 °C, and the pH was 6.5-7. The major cellular fatty acids were C16:1 ω7c, iso-C15.0, C17:1 ω8c, C18:1 ω7c, and C16:0. The predominant polar lipids were phosphatidylglycerol, phosphatidylethanolamine, and amino lipids. The genome size of strain PS-2T is 4.8 Mbp, and the G + C content was 46.0%. The major fraction of genes were associated with biological processes (45.64%), followed by molecular function (29.86%) and cellular components (24.49%). The unique genes identified in strain PS-2T secreted cyanophycinase, UDP-N-acetylglucosamine 2-epimerase, methyltransferase, kynureninase, ADA regulatory protein, biphenyl degradation, thermostable carboxypeptidase 1, tetrathionate respiration, etc. In addition, alanine and glutamate racemases were present. The 16S rRNA gene sequences shared 98.83-99.24% similarity with the closely related type strains of Shewanella. The ANI and AAI of strain PS-2T with reference type strains of the genus Shewanella were below 95-96%, and the corresponding dDDH values were below 70%. A phylogenetic tree based on 16S rRNA gene sequences and genome-wide core genes revealed that strain PS-2T clustered with Shewanella oneidensis LMG 19005T in both phylogenetic trees. Based on the polyphasic analysis, the new isolates (PS-2T, PS-17, and PS-19) represent a novel species of Shewanella, for which Shewanella cutis sp. nov. is proposed. The type strain is PS-2T (= TBRC 15838T = NBRC 115342T).
Collapse
Affiliation(s)
- Lipika Das
- Department of Biotechnology, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, India
| | - Ritu Rani Archana Kujur
- Department of Biotechnology, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, India
| | - Tanmoy Debnath
- Department of Biotechnology, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, India
| | - Subrata K Das
- Department of Biotechnology, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, India.
| |
Collapse
|
4
|
Victor MP, Kujur RRA, Das L, Das SK. Genome analysis deciphered Chryseobacterium indicum is a distinct species associated with freshwater pufferfish. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105561. [PMID: 38280473 DOI: 10.1016/j.meegid.2024.105561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
A bacterium, strain PS-8T of the genus Chryseobacterium, was isolated from the skin of freshwater pufferfish (Tetraodon cutcutia). Strain PS-8T is a Gram-negative, aerobic, non-motile, and rod-shaped bacterium. Colonies appear in yellowish-orange colors. The major cellular fatty acids were C15:0 iso, C17:0 iso 3OH, C15:0 iso 3OH, and C11:0 anteiso. The predominant polar lipids were phosphatidylethanolamine and amino lipids. The genome size is 4.83 Mb. The G + C content was 35.6%. The in silico dDDH homology, ANI, and AAI were below the cutoff value, 70% and 95% to 96%, respectively, suggesting that strain PS-8T represents a defined species. The phylogenetic tree based on core and the non-recombinant genes showed the strain PS-8T clustered with Chryseobacterium gambrini DSM 18014T. Genome-wide analysis decodes several virulence factors of the genus Chryseobacterium, including genes for adherence, biofilm and stability, proliferation, resistance to immune response, and host-defense evasion system. The cladogram of the virulence genes showed a phylogenetic relationship among the Chryseobacterium species. Knowledge of the association of Chryseobacterium with freshwater pufferfish adds a new ecological niche to this bacterium.
Collapse
Affiliation(s)
- Manish Prakash Victor
- Institute of Life Sciences, Department of Biotechnology, Nalco Square, Bhubaneswar 751023, India
| | - Ritu Rani Archana Kujur
- Institute of Life Sciences, Department of Biotechnology, Nalco Square, Bhubaneswar 751023, India
| | - Lipika Das
- Institute of Life Sciences, Department of Biotechnology, Nalco Square, Bhubaneswar 751023, India
| | - Subrata K Das
- Institute of Life Sciences, Department of Biotechnology, Nalco Square, Bhubaneswar 751023, India.
| |
Collapse
|
5
|
de la Haba RR, Arahal DR, Sánchez-Porro C, Chuvochina M, Wittouck S, Hugenholtz P, Ventosa A. A long-awaited taxogenomic investigation of the family Halomonadaceae. Front Microbiol 2023; 14:1293707. [PMID: 38045027 PMCID: PMC10690426 DOI: 10.3389/fmicb.2023.1293707] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 12/05/2023] Open
Abstract
The family Halomonadaceae is the largest family composed of halophilic bacteria, with more than 160 species with validly published names as of July 2023. Several classifications to circumscribe this family are available in major resources, such as those provided by the List of Prokaryotic names with Standing in Nomenclature (LPSN), NCBI Taxonomy, Genome Taxonomy Database (GTDB), and Bergey's Manual of Systematics of Archaea and Bacteria (BMSAB), with some degree of disagreement between them. Moreover, regardless of the classification adopted, the genus Halomonas is not phylogenetically consistent, likely because it has been used as a catch-all for newly described species within the family Halomonadaceae that could not be clearly accommodated in other Halomonadaceae genera. In the past decade, some taxonomic rearrangements have been conducted on the Halomonadaceae based on ribosomal and alternative single-copy housekeeping gene sequence analysis. High-throughput technologies have enabled access to the genome sequences of many type strains belonging to the family Halomonadaceae; however, genome-based studies specifically addressing its taxonomic status have not been performed to date. In this study, we accomplished the genome sequencing of 17 missing type strains of Halomonadaceae species that, together with other publicly available genome sequences, allowed us to re-evaluate the genetic relationship, phylogeny, and taxonomy of the species and genera within this family. The approach followed included the estimate of the Overall Genome Relatedness Indexes (OGRIs) such as the average amino acid identity (AAI), phylogenomic reconstructions using amino acid substitution matrices customized for the family Halomonadaceae, and the analysis of clade-specific signature genes. Based on our results, we conclude that the genus Halovibrio is obviously out of place within the family Halomonadaceae, and, on the other hand, we propose a division of the genus Halomonas into seven separate genera and the transfer of seven species from Halomonas to the genus Modicisalibacter, together with the emendation of the latter. Additionally, data from this study demonstrate the existence of various synonym species names in this family.
Collapse
Affiliation(s)
- Rafael R. de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - David R. Arahal
- Departament of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Maria Chuvochina
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, Australia
| | - Stijn Wittouck
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, Australia
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| |
Collapse
|
6
|
Dragojević M, Stankovic N, Djokic L, Raičević V, Jovičić-Petrović J. Endorhizosphere of indigenous succulent halophytes: a valuable resource of plant growth promoting bacteria. ENVIRONMENTAL MICROBIOME 2023; 18:20. [PMID: 36934265 PMCID: PMC10024849 DOI: 10.1186/s40793-023-00477-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
The adaptability of halophytes to increased soil salinity is related to complex rhizosphere interactions. In this study, an integrative approach, combining culture-independent and culture-dependent techniques was used to analyze the bacterial communities in the endorizosphere of indigenous succulent halophytes Salicornia europaea, Suaeda maritima, and Camphorosma annua from the natural salt marshes of Slano Kopovo (Serbia). The 16 S rDNA analyses gave, for the first time, an insight into the composition of the endophytic bacterial communities of S. maritima and C. annua. We have found that the composition of endophyte microbiomes in the same habitat is to some extent influenced by plant species. A cultivable portion of the halophyte microbiota was tested at different NaCl concentrations for the set of plant growth promoting (PGP) traits. Through the mining of indigenous halotolerant endophytes, we obtained a collection representing a core endophyte microbiome conferring desirable PGP traits. The majority (65%) of the selected strains belonged to the common halotolerant/halophilic genera Halomonas, Kushneria, and Halobacillus, with representatives exhibiting multiple PGP traits, and retaining beneficial traits in conditions of the increased salinity. The results suggest that the root endosphere of halophytes is a valuable source of PGP bacteria supporting plant growth and fitness in salt-affected soils.
Collapse
Affiliation(s)
- Milica Dragojević
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Zemun, 11080 Serbia
| | - Nada Stankovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, Belgrade, Serbia
| | - Lidija Djokic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, Belgrade, Serbia
| | - Vera Raičević
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Zemun, 11080 Serbia
| | | |
Collapse
|
7
|
Moraxella tetraodonis sp. nov., isolated from freshwater pufferfish (Tetraodon cutcutia) skin. Arch Microbiol 2022; 204:389. [PMID: 35699830 DOI: 10.1007/s00203-022-03013-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/22/2022] [Indexed: 11/02/2022]
Abstract
A novel aerobic bacterium, strain PS-22 of the genus Moraxella, was isolated from the skin of freshwater pufferfish (Tetraodon cutcutia). Cells were Gram stain negative, aerobic, non-motile, and coccoid. Optimum growth occurred at 28-30 °C and pH 6.5-7.5. The major cellular fatty acids were C18:1 ω9c, C10:0, C16:0, and C12:0 anteiso. The predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phospholipid, amino lipid, and seven unknown lipids. The genome size is 2.68 Mbp, and the DNA G + C content was 43.3%. A gene ontology study revealed that the major fraction of genes were associated with biological processes (46.81%), followed by molecular function (34.27%) and cellular components (18.8%). Comparisons of 16S rRNA gene sequences revealed 99.11-90% sequence similarity with the closely related type strains of the genus Moraxella. The average nucleotide identity (ANI) and average amino acid identity (AAI) of strain PS-22 with reference type strains of the genus Moraxella were below 95-96%, and the corresponding in silico DNA-DNA hybridization (DDH) values were below 70%. A phylogenetic tree based on genome-wide core genes and 16S rRNA gene sequences revealed that strain PS-22 clustered with Moraxella osloensis CCUG350T in both the phylogenetic trees. Genotypic and phenotypic characteristics of strain PS-22 represent a novel species for which Moraxella tetraodonis sp. nov. is proposed. The type strain is PS-22T (= TBRC 15232T = NBRC 115236T).
Collapse
|
8
|
Xu L, Ying JJ, Fang YC, Zhang R, Hua J, Wu M, Han BN, Sun C. Halomonas populi sp. nov. isolated from Populus euphratica. Arch Microbiol 2021; 204:86. [DOI: 10.1007/s00203-021-02704-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/20/2021] [Accepted: 11/12/2021] [Indexed: 12/30/2022]
|
9
|
Das L, Deb S, Das SK. Description of Acinetobacter kanungonis sp. nov., based on phylogenomic analysis. Int J Syst Evol Microbiol 2021; 71. [PMID: 34128781 DOI: 10.1099/ijsem.0.004833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel strain of a member of the genus Acinetobacter, strain PS-1T, was isolated from the skin of fresh water pufferfish (Tetraodon cutcutia) collected from Mahanadi River, India. Cells were Gram-stain-negative, aerobic, coccoid and non-motile. The predominant polar lipids were diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE) and phospholipid (PL) and the cell wall sugars were glucose, galactose and ribose. The major cellular fatty acids of PS-1T were C18 : 1ω9c (30.67 %), C16 : 1ω7c (19.54 %), C16 : 0 (15.87 %), C12 : 0 (7.35 %) and C12 : 0 3-OH (6.77 %). The genome size was 3.5 Mbp and the DNA G+C content was 41.97 %. Gene ontology study revealed that the major fraction of genes were associated with biological processes (53.99 %) followed by molecular function (30.42 %) and cellular components (15.58 %). Comparisons of 16S rRNA gene sequences revealed 97.94-97.05 % sequence similarity with the closely related type strains of species of the genus Acinetobacter. The average nucleotide identity (ANI) and average amino acid identity (AAI) of PS-1T with reference strains of species of the genus Acinetobacter with validly published names were bellow 95-96 and the corresponding in-silico DNA-DNA hybridization (DDH) values were below 70 %. A phylogenomic tree based on core genome analysis supported these results. Genotypic and phenotypic characteristics of PS-1T indicate that the strain represents a novel species of the genus Acinetobacter and the name Acinetobacter kanungonis sp. nov. is proposed. The type strain is PS-1T (=JCM 34131T=NCIMB 15260T).
Collapse
Affiliation(s)
- Lipika Das
- Department of Biotechnology, Institute of Life Sciences, Nalco Square, Bhubaneswar - 751023, India.,Regional Center of Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana (NCR Delhi), India
| | - Sushanta Deb
- Department of Biotechnology, Institute of Life Sciences, Nalco Square, Bhubaneswar - 751023, India
| | - Subrata K Das
- Department of Biotechnology, Institute of Life Sciences, Nalco Square, Bhubaneswar - 751023, India.,Regional Center of Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana (NCR Delhi), India
| |
Collapse
|
10
|
Wenting R, Montazersaheb S, Khan SA, Kim HM, Tarhriz V, Hejazi MA, Hejazi MS, Jeon CO. Halomonas azerica sp. nov., Isolated from Urmia Lake in Iran. Curr Microbiol 2021; 78:3299-3306. [PMID: 34132870 DOI: 10.1007/s00284-021-02482-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/26/2021] [Indexed: 11/26/2022]
Abstract
A novel moderately halophilic, Gram-staining negative and facultative aerobic bacterium, designated as TBZ9T, was isolated from water of Urmia Lake in Azerbaijan region of Iran. The cells were found to be rod-shaped and motile, growing in the form of creamy, convex and shiny colonies. The strain could grow in the presence of NaCl at concentrations 1-17% (w/v) (optimum, 3%), temperatures 10-40 °C (optimum, 30 °C) and pH 6.0-11.0 (optimum, pH 7.0) on marine agar. Strain TBZ9T 16S rRNA gene sequence was related to the genus Halomonas showing highest similarities to Halomonas arcis AJ282T (98.4%), Halomonas songnenensis NEAU-ST10-39T (98.0%) and Halomonas lutescens Q1UT (97.8%). In the phylogenetic trees, strain TBZ9T formed a distinct branch closely related to a subclade inside the Halomonas genus. Digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between strain TBZ9T and H. arcis AJ282T (20.0%, 74.0%) and H. songnenensis NEAU-ST10-39T (19.8%, 75.2%) indicated that TBZ9T represents a distinct species. Evaluation of fatty acid contents determined C10:0, C16:0, C12:0 3-OH, summed feature 3 (C16:1 ω7c and/or C16:1 ω6c) and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c) as major cellular fatty acids. The major quinone of strain TBZ9T was Q-9. Polar lipid patterns consisted of phosphatidylglycerol (PG), phosphatidylethanolamine (PE), two unidentified phospholipids (PL) and four unidentified polar lipids (L). The average DNA G + C content of strain TBZ9T is 55.4 mol%. Results from phenotypic, chemotaxonomic and molecular analysis suggest that the strain TBZ9T represents a novel species within the genus Halomonas for which the name Halomonas azerica sp. nov. is proposed. The type strain is TBZ9T (= KACC 21783T = LMG 25775T).
Collapse
Affiliation(s)
- Ruan Wenting
- Department of Life Science, Chung Ang University, 84, HeukSeok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shehzad Abid Khan
- Department of Life Science, Chung Ang University, 84, HeukSeok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Hyung Min Kim
- Department of Life Science, Chung Ang University, 84, HeukSeok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amin Hejazi
- Branch for the Northwest and West Region, Agriculture Biotechnology Research Institute of Iran (ABRII), Tabriz, Iran
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Che Ok Jeon
- Department of Life Science, Chung Ang University, 84, HeukSeok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
11
|
Qiu X, Cao X, Xu G, Wu H, Tang X. Halomonas maris sp. nov., a moderately halophilic bacterium isolated from sediment in the southwest Indian Ocean. Arch Microbiol 2021; 203:3279-3285. [PMID: 33860341 DOI: 10.1007/s00203-021-02317-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/14/2021] [Accepted: 03/30/2021] [Indexed: 11/30/2022]
Abstract
A halophilic, Gram-staining-negative, rod-shaped, flagellated and motile bacterium, strain QX-1 T, was isolated from deep-sea sediment at a depth of 3332 m in the southwestern Indian Ocean. Strain QX-1 T growth was observed at 4-50 °C (optimum 37 °C), pH 5.0-11.0 (optimum pH 7.0), 3-25% NaCl (w/v; optimum 7%), and it did not grow without NaCl. A phylogenetic analysis based on the 16S rRNA gene placed strain QX-1 T in the genus Halomonas and most closely related to Halomonas sulfidaeris (97.9%), Halomonas zhaodongensis (97.8%), Halomonas songnenensis (97.6%), Halomonas hydrothermalis (97.4%), Halomonas subterranea (97.3%), Halomonas salicampi (97.1%), and Halomonas arcis (97.0%). DNA-DNA hybridization (< 26.5%) and average nucleotide identity values (< 83.5%) between strain QX-1 T and the related type strains meet the accepted criteria for a new species. The principal fatty acids (> 10%) of strain QX-1 T are C16:0 (25.5%), C17:0 cyclo (14.0%), C19:0 cyclo ω8c (18.7%), and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c, 18.1%). The polar lipids of strain QX-1 T are mainly diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, unidentified phospholipid, unidentified aminophospholipid, and five unidentified lipids. The main respiratory quinone is Q-9. The G + C content of its chromosomal DNA is 54.4 mol%. Its fatty acid profile, respiratory quinones, and G + C content also support the placement of QX-1 T in the genus Halomonas. These phylogenetic, phenotypic, and chemotaxonomic analyses indicate that QX-1 T is a novel species, for which the name Halomonas maris is proposed. The type strain is QX-1 T (= MCCC 1A17875T = KCTC 82198 T = NBRC 114670 T).
Collapse
Affiliation(s)
- Xu Qiu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.,School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Xiaorong Cao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Guangxin Xu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Huangming Wu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Xixiang Tang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| |
Collapse
|
12
|
Mukhtar S, Mehnaz S, Malik KA. Comparative Study of the Rhizosphere and Root Endosphere Microbiomes of Cholistan Desert Plants. Front Microbiol 2021; 12:618742. [PMID: 33841349 PMCID: PMC8032897 DOI: 10.3389/fmicb.2021.618742] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/04/2021] [Indexed: 02/01/2023] Open
Abstract
Microbial communities associated with the rhizosphere and roots of desert halophytes play an important role in plants’ growth and development. Very limited information has been available on the microbial diversity of arid environments of Pakistan. Hence in the current study, the microbial diversity of rhizosphere and root endosphere of desert halophytes, Zygophyllum simplex, Haloxylon salicoricum, Aerva javanica, and Capparis decidua was evaluated. The rhizosphere and root endosphere samples of desert halophytes collected from the three geographic sites of Cholistan desert, Punjab, Pakistan were analyzed by using 16S rRNA based Illumina sequencing. The results showed that Proteobacteria were more abundant in the rhizospheric soils while Actinobacteria were more dominant in the root endosphere of halophytes. Bacteroidetes, Firmicutes, and Deinococcus-Thermus were identified from all rhizospheric soils and roots across the three sites, with variable percentage. Bacillus, Kocuria, Pseudomonas, Halomonas, and Flavobacterium were commonly identified from the rhizosphere and root endosphere of halophytes across all the three sites. At the genus level, microbial diversity from Haloxylon showed the greatest variations between the rhizosphere and root endosphere from the site 2. This study revealed that microbial diversity analysis can be used to study how changes in abiotic factors such as soil moisture content and salinity affect the microbial communities associated with the rhizospheric soils and root endosphere of halophytes across the three sites. This study will also help in the discovery of potential inoculants for crops growing in arid and semi-arid regions of Pakistan.
Collapse
Affiliation(s)
- Salma Mukhtar
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Samina Mehnaz
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Kauser Abdulla Malik
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| |
Collapse
|
13
|
Qiu X, Yu L, Cao X, Wu H, Xu G, Tang X. Halomonas sedimenti sp. nov., a Halotolerant Bacterium Isolated from Deep-Sea Sediment of the Southwest Indian Ocean. Curr Microbiol 2021; 78:1662-1669. [PMID: 33651187 DOI: 10.1007/s00284-021-02425-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
A Gram-staining-negative, aerobic, flagellated, motile, rod-shaped, halophilic bacterium QX-2T was isolated from the deep-sea sediment of the Southwest Indian Ocean at a depth of 2699 m. Growth of the QX-2T bacteria was observed at 4-50 °C (optimum 30 °C), pH 5.0-12.0 (optimum pH 6.0) and 0%-30% NaCl (w/v) [optimum 4% (w/v)]. 16S rRNA gene sequencing revealed that strain QX-2T has the closest relationship with Halomonas titanicae DSM 22872T (98.2%). Phylogeny analysis classified the strain QX-2T into the genus Halomonas. The average nucleotide identity and DNA-DNA hybridization values between strain QX-2T and related type strains were lower than the currently accepted new species definition standards. Principal fatty acids (> 10%) determined were C16:0 (12.41%), C12:0-3OH (25.15%), summed feature 3 (C16:1 ω7c and/or C16:1 ω6c, 11.55%) and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c, 16.06%). Identified polar lipids in strain QX-2T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, unidentified phospholipid, unidentified aminophospholipid and five unidentified lipids (L1-L5). The main respiratory quinone was Q-9. The content of DNA G+C was determined to be 54.34 mol%. The results of phylogenetic analysis, phenotypic analysis and chemotaxonomic studies showed that strain QX-2T represents a novel species within the genus Halomonas, for which the name Halomonas sedimenti sp. nov. is proposed, with the type strain QX-2T (MCCC 1A17876T = KCTC 82199T).
Collapse
Affiliation(s)
- Xu Qiu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.,School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Libo Yu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Xiaorong Cao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Huangming Wu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Guangxin Xu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Xixiang Tang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| |
Collapse
|
14
|
Kazemi E, Tarhriz V, Amoozegar MA, Hejazi MS. Halomonas azerbaijanica sp. nov., a halophilic bacterium isolated from Urmia Lake after the 2015 drought. Int J Syst Evol Microbiol 2020; 71. [PMID: 33269997 DOI: 10.1099/ijsem.0.004578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel, slightly halophilic bacterium, designated TBZ202T, was isolated from water of Urmia Lake, in the Azerbaijan region of north-west Iran. The strain was facultatively anaerobic, Gram-stain-negative, rod-shaped and motile. Colonies were creamy, circular, convex and shiny. It grew at NaCl concentrations of 0-12 % (w/v) (optimum 3-5 % w/v), at temperatures of 20-45 °C (optimum 30 °C) and at pH 5.0-10.0 (optimum pH 7.0). Based on the 16S rRNA gene sequence, strain TBZ202T belongs to the genus Halomonas in the Halomonadaceae and the most closely related species are Halomonas gudaonensis CGMCC 1.6133T (98.6 % similarity), Halomonas ventosae Al12T (96.8 %) and Halomonas rambilicola RS-16T (96.6%). The G+C content was 67.9 % and the digital DNA-DNA hybridization and average nucleotide identity values with H. gudaonensis were 35.8 and 83.8 %, respectively, indicating that the isolate differs from all species described. The major fatty acids were C18 : 1 ω7c, C16 : 0 and C16 : 1 ω7c. The only respiratory quinone detected was Q-9 and polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, aminophospholipid and three unknown phospholipids. On the basis of a polyphasic taxonomic analysis, the isolate is considered to represent a novel species of the genus Halomonas, for which the name Halomonas azerbaijanica sp. nov. is proposed. The type strain is TBZ202T (=KCTC 62817T=CECT 9693T).
Collapse
Affiliation(s)
- Elham Kazemi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Saeid Hejazi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Li X, Gan L, Hu M, Wang S, Tian Y, Shi B. Halomonas pellis sp. nov., a moderately halophilic bacterium isolated from wetsalted hides. Int J Syst Evol Microbiol 2020; 70:5417-5424. [DOI: 10.1099/ijsem.0.004426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A Gram-stain-negative, moderately halophilic strain, designated strain L5T, was isolated from wetsalted hides collected from Chengdu, south-west PR China. The cells were motile, facultative aerobic, short rod-shaped and non-endospore-forming. Growth of strain L5T occurred at pH 6–10 (optimum, pH 8), 10–45 °C (optimum, 30 °C) and in the presence of 1–17 % (w/v) NaCl (optimum, 10 %). Results of phylogenetic analyses based on 16S rRNA, gyrB and rpoD gene sequences and its genome revealed that strain L5T belonged to the genus
Halomonas
. Strain L5T was found to be most closely related to the type strains of
Halomonas saliphila
,
Halomonas lactosivorans
,
Halomonas kenyensis
,
Halomonas daqingensis
and
Halomonas desiderata
(98.8, 98.6, 98.3, 97.9 and 97.4 % 16S rRNA gene sequence similarity, respectively). The draft genome was approximately 4.2 Mb in size with a G+C content of 63.5 mol%. The average nucleotide identity (ANI) and digital DNA–DNA hybridization values among strain L5T and the selected
Halomonas
species were 83.3–88.9 % (ANIm), 71.1–87.3 % (ANIb) and 20.2–34.6 %, which are below the recommended cutoff values. Major fatty acids were C16 : 0, C16 : 1
ω7c, C18 : 1
ω7c and C19 : 0 cyclo ω8c and the predominant ubiquinone was Q-9, with minor ubiquinone Q-8 also present. The phospholipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, four unidentified aminophospholipids and three unidentified phospholipids. Based on the mentioned polyphasic taxonomic evidence, strain L5T represents a novel species within the genus
Halomonas
, for which Halomonas pellis sp. nov. is proposed. The type strain is L5T (=CGMCC 1.17335T=KCTC 72573T).
Collapse
Affiliation(s)
- Xiaoguang Li
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, PR China
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Longzhan Gan
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, PR China
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Mengyao Hu
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, PR China
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Shiting Wang
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, PR China
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yongqiang Tian
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, PR China
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Bi Shi
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, PR China
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
16
|
Deb S, Das L, Das SK. Phylogenomic Analysis Reveals That Arthrobacter mysorens Nand and Rao 1972 (Approved Lists 1980) and Glutamicibacter mysorens Busse 2016 are Later Heterotypic Synonyms of Arthrobacter nicotianae Giovannozzi-Sermanni 1959 (Approved Lists 1980) and Glutamicibacter nicotianae Busse 2016. Curr Microbiol 2020; 77:3793-3798. [DOI: 10.1007/s00284-020-02176-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
|
17
|
Glutamicibacter mishrai sp. nov., isolated from the coral Favia veroni from Andaman Sea. Arch Microbiol 2019; 202:733-745. [PMID: 31796989 DOI: 10.1007/s00203-019-01783-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/21/2019] [Accepted: 11/25/2019] [Indexed: 10/25/2022]
Abstract
A novel aerobic marine actinobacterium (strain S5-52T) belonging to the genus Glutamicibacter was isolated from the coral Favia veroni sampled from the Andaman Sea, India. Cells are Gram stain positive and rod shaped. The DNA G+C content was 58.7 mol%. The major quinones were MK-8 and MK-9. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, glycolipid, trimannosyldiacylglycerol, phospholipid and dimannosylglyceride. The peptidoglycan type was A4α. Strain S5-52T showed a maximum 16S rRNA similarity of 99.36% with Glutamicibacter halophytocola DSM 101718T. The genome of strain S5-52T was 3.57 Mb that contains 3274 protein coding sequences (CDS). DNA-DNA similarity and ANI values between S5-52T and the reference strains were below 70% and 95-96%, respectively. Analysis of genomic reduction events in the evolutionary path from the LUCA (last universal common ancestor) to G. mishrai LMG 29155T and G. halophytocola DSM 101718T exhibit a number of genes involved in amino acid metabolism, cell wall biogenesis and replication, recombination and repair mechanism that reduced in both the species. Based on phenotypic, chemotaxonomic properties and comparative genomic studies, the strain S5-52T is considered a novel species of the genus Glutamicibacter, for which the name Glutamicibacter mishrai sp. nov. is proposed. The type strain is S5-52T (= KCTC 39846T = LMG 29155T).
Collapse
|
18
|
Bachran M, Kluge S, Lopez-Fernandez M, Cherkouk A. Microbial Diversity in an Arid, Naturally Saline Environment. MICROBIAL ECOLOGY 2019; 78:494-505. [PMID: 30593603 DOI: 10.1007/s00248-018-1301-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
The Arava Valley in is a rock desert within the Great African Rift valley. Soil from this area is covered with a salt crust. Here, we report microbial diversity from arid, naturally saline samples collected near Ein Yahav from the Arava Valley by culture-independent as well as culture-dependent analysis. High-throughput sequencing of the hypervariable region V4 of the 16S rRNA gene revealed that the microbial community consists of halophiles from the domain Bacteria as well as Archaea. Bacterial diversity was mainly represented by the genus Salinimicrobium of the order Flavobacteriales within the phylum Bacteroidetes, from the gammaproteobacterial orders Alteromonadales and Oceanospirillales as well as representatives from the order Bacillales of the phylum Firmicutes. Archaeal diversity was dominated by euryarchaeal Halobacteria from the orders Halobacteriales, Haloferacales, and Natrialbales. But more than 40% of the sequences affiliated with Archaea were assigned to unknown or unclassified archaea. Even if taxonomic resolution of the 16S rRNA gene V4 region for Archaea is limited, this study indicates the need of further and more detailed studies of Archaea. By using culture-dependent analysis, bacteria of the order Bacillales as well as archaea from all three halobacterial orders Halobacteriales, Haloferacales, and Natrialbales including potentially novel species from the genera Halorubrum and Haloparvum were isolated.
Collapse
Affiliation(s)
- Madlen Bachran
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Sindy Kluge
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Margarita Lopez-Fernandez
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany.
| | - Andrea Cherkouk
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany.
| |
Collapse
|
19
|
Xu X, Zarecki R, Medina S, Ofaim S, Liu X, Chen C, Hu S, Brom D, Gat D, Porob S, Eizenberg H, Ronen Z, Jiang J, Freilich S. Modeling microbial communities from atrazine contaminated soils promotes the development of biostimulation solutions. ISME JOURNAL 2018; 13:494-508. [PMID: 30291327 DOI: 10.1038/s41396-018-0288-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 12/26/2022]
Abstract
Microbial communities play a vital role in biogeochemical cycles, allowing the biodegradation of a wide range of pollutants. The composition of the community and the interactions between its members affect degradation rate and determine the identity of the final products. Here, we demonstrate the application of sequencing technologies and metabolic modeling approaches towards enhancing biodegradation of atrazine-a herbicide causing environmental pollution. Treatment of agriculture soil with atrazine is shown to induce significant changes in community structure and functional performances. Genome-scale metabolic models were constructed for Arthrobacter, the atrazine degrader, and four other non-atrazine degrading species whose relative abundance in soil was changed following exposure to the herbicide. By modeling community function we show that consortia including the direct degrader and non-degrader differentially abundant species perform better than Arthrobacter alone. Simulations predict that growth/degradation enhancement is derived by metabolic exchanges between community members. Based on simulations we designed endogenous consortia optimized for enhanced degradation whose performances were validated in vitro and biostimulation strategies that were tested in pot experiments. Overall, our analysis demonstrates that understanding community function in its wider context, beyond the single direct degrader perspective, promotes the design of biostimulation strategies.
Collapse
Affiliation(s)
- Xihui Xu
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.,Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Raphy Zarecki
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Shlomit Medina
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Shany Ofaim
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel.,Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Xiaowei Liu
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chen Chen
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shunli Hu
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dan Brom
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Daniella Gat
- Department of Environmental Hydrology and Microbiology, The Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Sede-Boqer, 8499000, Israel
| | - Seema Porob
- Department of Environmental Hydrology and Microbiology, The Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Sede-Boqer, 8499000, Israel
| | - Hanan Eizenberg
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Zeev Ronen
- Department of Environmental Hydrology and Microbiology, The Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Sede-Boqer, 8499000, Israel
| | - Jiandong Jiang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shiri Freilich
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel.
| |
Collapse
|
20
|
Kämpfer P, Rekha PD, Busse HJ, Arun AB, Priyanka P, Glaeser SP. Halomonas malpeensis sp. nov., isolated from rhizosphere sand of a coastal sand dune plant. Int J Syst Evol Microbiol 2018; 68:1037-1046. [PMID: 29458496 DOI: 10.1099/ijsem.0.002616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, aerobic, non-endospore-forming organism, isolated from the rhizosphere sand of a coastal sand dune plant was studied for its taxonomic position. On the basis of 16S rRNA gene sequence similarity comparisons, strain YU-PRIM-29T was grouped within the genus Halomonas and was most closely related to Halomonas johnsoniae (97.5 %). The 16S rRNA gene sequence similarity to other Halomonas species was <97.5 %. Strain YU-PRIM-29T grew optimally at 28 °C (growth range, 10-36 °C), at a pH of 7-9 (growth range, pH 5.5-12.0) and in the presence of 0.5 to 5 % (w/v) NaCl (growth up to 20 % NaCl). The fatty acid profile from whole-cell hydrolysates supported the allocation of the strain to the genus Halomonas. The fatty acids C18 : 1ω7c and C16 : 0 were found as major compounds, followed by the hydroxylated fatty acid C12 : 0 3-OH. The quinone system consisted predominantly of ubiquinone Q-9. The polar lipid profile was composed of the major lipids diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. In the polyamine pattern, spermidine was the predominant compound. The DNA G+C content was 64.8 mol%. In addition, the results of physiological and biochemical tests also allowed phenotypic differentiation of strain YU-PRIM-29T from its closest-related species. Hence, YU-PRIM-29T represents a new species of the genus Halomonas, for which we propose the name Halomonas malpeensis sp. nov., with YU-PRIM-29T (=LMG 28855T=CCM 8737T) as the type strain.
Collapse
Affiliation(s)
- Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - P D Rekha
- Yenepoya Research Center, Yenepoya University, Mangalore 18, Karnataka State, India
| | - Hans-Jürgen Busse
- Institut für Mikrobiologie, Veterinärmedizinische Universität, Wien, Austria
| | - A B Arun
- Yenepoya Research Center, Yenepoya University, Mangalore 18, Karnataka State, India
| | - P Priyanka
- Yenepoya Research Center, Yenepoya University, Mangalore 18, Karnataka State, India
| | - Stefanie P Glaeser
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| |
Collapse
|
21
|
Wang Y, Song N, Yang L, Abdel-motaal H, Zhang R, Zhang Z, Meng F, Jiang J. A novel NhaD-type Na+/H+ antiporter from the moderate halophile and alkaliphile Halomonas alkaliphila. Can J Microbiol 2017; 63:596-607. [DOI: 10.1139/cjm-2017-0104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this study, a NhaD-type Na+/H+ antiporter gene designated Ha-nhaD was obtained by selection of genomic DNA from the moderate halophile and alkaliphile Halomonas alkaliphila in Escherichia coli KNabc lacking 3 major Na+/H+ antiporters. The presence of Ha-NhaD conferred tolerance of E. coli KNabc to NaCl up to 0.6 mol·L–1 and to LiCl up to 0.2 mol·L–1 and to an alkaline pH. pH-dependent Na+(Li+)/H+ antiport activity was detected from everted membrane vesicles prepared from E. coli KNabc/pUC-nhaD but not those of KNabc/pUC18. Ha-NhaD exhibited Na+(Li+)/H+ antiport activity over a wide pH range from 7.0 to 9.5, with the highest activity at pH 9.0. Protein sequence alignment and phylogenetic analysis revealed that Ha-NhaD is significantly different from the 7 known NhaD-type Na+/H+ antiporters, including Dw-NhaD, Dl-NhaD, Vp-NhaD, Vc-NhaD, Aa-NhaD, He-NhaD, and Ha-NhaD1. Although Ha-NhaD showed a closer phylogenetic relationship with Ha-NhaD2, a significant difference in pH-dependent activity profile exists between Ha-NhaD and Ha-NhaD2. Taken together, Ha-nhaD encodes a novel pH-dependent NhaD-type Na+/H+ antiporter.
Collapse
Affiliation(s)
- Yanhong Wang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, People’s Republic of China
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People’s Republic of China
| | - Na Song
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, People’s Republic of China
| | - Lina Yang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, People’s Republic of China
| | - Heba Abdel-motaal
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, People’s Republic of China
- Department of Microbiology, Soils, Water & Environment Research Institute, Agriculture Research Center, Egypt
| | - Rui Zhang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, People’s Republic of China
| | - Zhenglai Zhang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, People’s Republic of China
| | - Fankui Meng
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, People’s Republic of China
| | - Juquan Jiang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, People’s Republic of China
| |
Collapse
|
22
|
Zachariah S, Kumari P, Das SK. Psychrobacter pocilloporae sp. nov., isolated from a coral, Pocillopora eydouxi. Int J Syst Evol Microbiol 2016; 66:5091-5098. [DOI: 10.1099/ijsem.0.001476] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sherin Zachariah
- Institute of Life Sciences, Department of Biotechnology, Nalco Square, Bhubaneswar-751 023, India
| | - Prabla Kumari
- Institute of Life Sciences, Department of Biotechnology, Nalco Square, Bhubaneswar-751 023, India
| | - Subrata K. Das
- Institute of Life Sciences, Department of Biotechnology, Nalco Square, Bhubaneswar-751 023, India
| |
Collapse
|
23
|
Lee JC, Kim SJ, Whang KS. Halomonas sediminicola sp. nov., a moderately halophilic bacterium isolated from a solar saltern sediment. Int J Syst Evol Microbiol 2016; 66:3865-3872. [DOI: 10.1099/ijsem.0.001278] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jae-Chan Lee
- Department of Microbial & Nano Materials, Mokwon University, 88 Doanbuk-ro, Seo-gu, Daejeon 302-318, Republic of Korea
- Institute of Microbial Ecology and Resources, Mokwon University, 88 Doanbuk-ro, Seo-gu, Daejeon 302-318, Republic of Korea
| | - Su-Jin Kim
- Department of Microbial & Nano Materials, Mokwon University, 88 Doanbuk-ro, Seo-gu, Daejeon 302-318, Republic of Korea
| | - Kyung-Sook Whang
- Institute of Microbial Ecology and Resources, Mokwon University, 88 Doanbuk-ro, Seo-gu, Daejeon 302-318, Republic of Korea
- Department of Microbial & Nano Materials, Mokwon University, 88 Doanbuk-ro, Seo-gu, Daejeon 302-318, Republic of Korea
| |
Collapse
|
24
|
Wang T, Wei X, Xin Y, Zhuang J, Shan S, Zhang J. Halomonas lutescens sp. nov., a halophilic bacterium isolated from a lake sediment. Int J Syst Evol Microbiol 2016; 66:4697-4704. [PMID: 27514670 DOI: 10.1099/ijsem.0.001413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel, Gram-stain-negative, facultatively anaerobic, halophilic bacterium, designated strain Q1UT, was isolated from a sediment sample collected from Qinghai Lake, PR China. The cells of the strain were short rod-shaped (0.2-0.3×0.6-2.5 µm) and non-motile. Strain Q1UT formed yellowish colonies and grew at temperatures of 2-37 °C (optimum 30-33 °C), at pH 6.0-9.0 (optimum pH 7.0) and in the presence of 0-20 % (w/v) NaCl (optimum 7.5 %). The major cellular fatty acids were C18 : 1ω7c (58.6 %), C16 : 1ω7c and/or C16 : 1ω6c (14.8 %) and C16 : 0 (10.1 %). The polar lipids were identified as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, unknown phospholipid and unknown lipids. The genomic DNA G+C content was 61.5 mol%, and the predominant respiratory ubiquinone Q-9. Based on phylogenetic analysis of the 16S rRNA gene sequences and concatenated 16S rRNA, gyrB and rpoD gene sequences, the isolate was found to belong to the genus Halomonas in the class Gammaproteobacteria. The most closely related species were Halomonas venusta DSM 4743T (98.3 % 16S rRNA sequence similarity), Halomonas songnenensis DSM 25870T (98.2 %) and Halomonas hydrothermalis DSM 15725T (98.2 %). DNA-DNA relatedness values between strain Q1UT and the type strains of eight other species of the genus Halomonas ranged from 21.3 % to 10.1 %. On the basis of phenotypic, phylogenetic and chemotaxonomic analyses, and DNA-DNA hybridization relatedness values, strain Q1UT is considered to represent a novel species of the genus Halomonas; the name Halomonas lutescens sp. nov. is proposed. The type strain is Q1UT (=CGMCC 1.15122T=KCTC 42517T).
Collapse
Affiliation(s)
- Tianying Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Xuexin Wei
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yuhua Xin
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Junli Zhuang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Shuangquan Shan
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jianli Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| |
Collapse
|
25
|
Zepeda VK, Busse HJ, Golke J, Saw JHW, Alam M, Donachie SP. Terasakiispira papahanaumokuakeensis gen. nov., sp. nov., a gammaproteobacterium from Pearl and Hermes Atoll, Northwestern Hawaiian Islands. Int J Syst Evol Microbiol 2015; 65:3609-3617. [PMID: 26297573 DOI: 10.1099/ijsem.0.000438] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, helical bacterium designated PH27AT was cultivated from an anchialine pool on Pearl and Hermes Atoll, Northwestern Hawaiian Islands. The obligately halophilic strain was motile by bipolar tufts of flagella and grew optimally at pH 7, and microaerobically or aerobically. Closest neighbours based on 16S rRNA gene nucleotide sequence identity are Marinospirillum celere v1c_Sn-redT (93.31 %) and M. alkaliphilum Z4T (92.10 %) in the family Oceanospirillaceae, class Gammaproteobacteria. PH27AT is distinguished phenotypically from members of the genus Marinospirillum by its hydrolysis of gelatin, the absence of growth in media containing ≤ 1 % (w/v) NaCl and the ranges of temperature (12–40 °C) and pH (5–8) for growth. The major compound ubiquinone Q-9 distinguishes the quinone system of strain PH27AT from those in members of the genus Marinospirillum and other members of the Oceanospirillaceae, in which the major quinone is Q-8. Major polar lipids in PH27AT were phosphatidylethanolamine and phosphatidylglycerol, with moderate amounts of diphosphatidylglycerol and phosphatidylserine. Spermidine and cadaverine dominated the polyamine pattern; large proportions of cadaverine have not been reported in members of the genus Marinospirillum. Genotypic and chemotaxonomic data show that PH27AT does not belong in the genus Marinospirillum or other genera of the family Oceanospirillaceae or the Halomonadaceae. We propose a new genus, Terasakiispira gen. nov., be created to accommodate Terasakiispira papahanaumokuakeensis gen. nov., sp. nov. as the type species, with PH27AT ( = ATCC BAA-995T = DSM 16455T = DSM 23961T) as the type strain.
Collapse
Affiliation(s)
- Vanessa K Zepeda
- Department of Microbiology, University of Hawai'i at Ma¯noa, Snyder Hall, 2538 McCarthy Mall, Honolulu, HI 96822, USA
| | - Hans-Jürgen Busse
- Institut für Mikrobiologie, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210 Wien, Austria
| | - Jan Golke
- Institut für Mikrobiologie, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210 Wien, Austria
| | - Jimmy H W Saw
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Maqsudul Alam
- Department of Microbiology, University of Hawai'i at Ma¯noa, Snyder Hall, 2538 McCarthy Mall, Honolulu, HI 96822, USA
| | - Stuart P Donachie
- Department of Microbiology, University of Hawai'i at Ma¯noa, Snyder Hall, 2538 McCarthy Mall, Honolulu, HI 96822, USA
| |
Collapse
|
26
|
Comparative 16S rRNA signatures and multilocus sequence analysis for the genus Salinicola and description of Salinicola acroporae sp. nov., isolated from coral Acropora digitifera. Antonie van Leeuwenhoek 2015; 108:59-73. [PMID: 25944083 DOI: 10.1007/s10482-015-0464-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
Abstract
A novel Gram-negative, aerobic, motile marine bacterium, strain S4-41(T), was isolated from mucus of the coral Acropora digitifera from the Andaman Sea. Heterotrophic growth was observed in 0-25 % NaCl, at 15-45 °C and pH 4.5-9. In phylogenetic trees, strain S4-41(T) was grouped within the genus Salinicola but formed a separate branch distant from a cluster composed of Salinicola salarius M27(T) and Salinicola socius SMB35(T). DNA-DNA relatedness between strain S4-41(T) and these reference strains were well below 70 %. Q-9 was the sole respiratory quinone. The DNA G+C content was determined to be 63.6 mol%. Based on a polyphasic analysis, strain S4-41(T) is concluded to represent a novel species in the genus Salinicola for which the name Salinicola acroporae sp. nov. is proposed. The type strain is S4-41(T) (=JCM 30412(T) = LMG 28587(T)). Comparative 16S rRNA analysis of the genera Salinicola, Kushneria, Chromohalobacter and Cobetia revealed the presence of genus specific sequence signatures. Multilocus sequence analysis based on concatenated sequences of rRNAs (16S and 23S) and four protein coding housekeeping genes (atpA, gyrB, secA, rpoD) was found to be unnecessary for phylogenetic studies of the genus Salinicola.
Collapse
|