1
|
Wang Y, You H, Kong YH, Sun C, Wu LH, Kim SG, Lee JS, Xu L, Xu XW. Genomic-based taxonomic classification of the order Sphingomonadales. Int J Syst Evol Microbiol 2025; 75. [PMID: 40372931 DOI: 10.1099/ijsem.0.006769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025] Open
Abstract
The order Sphingomonadales strains are globally distributed in various biomes and are renowned for their biodegradable and biosynthesis capabilities. At present, it consists of 4 families and 49 genera making it the third largest order within the class Alphaproteobacteria. However, their taxonomy remains complex, especially due to polyphyly in the family Sphingomonadaceae. In this study, we collected 429 Sphingomonadales type strain genomes, reconstructed robust phylogenomic relationships, and proposed delineation thresholds at the genus and family levels based on average amino acid identities (AAI) and evolutionary distances (ED). Based on the maximum-likelihood and Bayesian phylogenomic trees reconstructed by two molecular sets determined by orthologous sequence identity and the Genome Taxonomy Database, the consensus degree values were all higher than 90%, revealing that those phylogenomic trees had similar topological structures. By confirming monophyletic taxa and determining stable nodes, we reclassified the order Sphingomonadales into thirteen families including nine novel ones. AAI calculations indicated that the average intra-family AAI values ranged from 0.62 to 0.84, while inter-family ones were 0.51 to 0.60. ED summaries demonstrated that the average and median intra-family ED values were 0.16 to 0.57, and inter-family ones ranged from 0.50 to 1.22. Comparisons of AAI and ED values calculated by using genomic and phylogenetic analyses supported that those 13 families were significantly separated with p values < 2.2×10-16. Thus, it was speculated that the AAI and ED thresholds for distinguishing different families were <0.6 and >0.5, respectively. Additionally, we reclassified 163 species into new genera with their phylogenetic topologies, according to the previous genus AAI and ED boundaries of 0.7 and 0.4. Our study is the first genomic-based study of the order Sphingomonadales and will promote further insights into the evolution of this order.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
- School of Oceanography, Zhejiang University, Zhoushan 316021, PR China
| | - Hao You
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
- School of Oceanography, Zhejiang University, Zhoushan 316021, PR China
| | - Yan-Hui Kong
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Cong Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Lin-Huan Wu
- Institute of Microbiology Chinese Academy of Sciences, Beijing 100101, PR China
| | - Song-Gun Kim
- Korea Research Institute of Bioscience and Biotechnology, Korean Collection for Type Cultures, Jeongeup 56212, Republic of Korea
| | - Jung-Sook Lee
- Korea Research Institute of Bioscience and Biotechnology, Korean Collection for Type Cultures, Jeongeup 56212, Republic of Korea
| | - Lin Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xue-Wei Xu
- National Deep Sea Center, Ministry of Natural Resources, Qingdao 266237, PR China
| |
Collapse
|
2
|
He X, Lu H, Hu W, Deng T, Gong X, Yang X, Song D, He M, Xu M. Novosphingobium percolationis sp. nov. and Novosphingobium huizhouense sp. nov., isolated from landfill leachate of a domestic waste treatment plant. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two strains designated as c1T and c7T, were isolated from the landfill leachate of a domestic waste treatment plant in Huizhou City, Guangdong Province, PR China. The cells of both strains were aerobic, rod-shaped, non-motile and formed yellow colonies on Reasoner’s 2A agar plates. Strain c1T grew at 10–42 °C (optimum, 30 °C), pH 4.5–10.5 (optimum, pH 7.0) and 0–2.0 % (w/v) NaCl (optimum, 0–0.5 %). Strain c7T grew at 10–42 °C (optimum, 30 °C), pH 4.5–10.5 (optimum, pH 6.0) and 0–2.0 % (w/v) NaCl (optimum, 0–0.5 %). Phylogenetic analyses revealed that strains c1T and c7T belong to the genus
Novosphingobium
. The 16S rRNA gene sequence similarities of strains c1T and c7T to the type strains of
Novosphingobium
species were 94.5–98.2 % and 94.3–99.1 %, respectively. The calculated pairwise average nucleotide identity values among strains c1T, c7T and the reference strains were in the range of 75.2–85.9 % and the calculated pairwise average amino acid identity values among strains c1T, c7T and reference strains were in the range of 72.0–88.3 %. Their major respiratory quinone was Q-10, and the major cellular fatty acids were C18 : 1
ω7c, C18 : 0, C16 : 1
ω7c, C16 : 0 and C14 : 0 2OH. The major polar lipids of strains c1T and c7T were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, sphingoglycolipid, unidentified lipids and unidentified phospholipid. Based on phenotypic, chemotaxonomic, phylogenetic and genomic results from this study, strains c1T and c7T should represent two independent novel species of
Novosphingobium
, for which the names Novosphingobium percolationis sp. nov. (type strain c1T=GDMCC 1.2555T=KCTC 82826T) and Novosphingobium huizhouense sp. nov. (type strain c7T=GDMCC 1.2556T=KCTC 82827T) are proposed. The gene function annotation results of strains c1T and c7T suggest that they could play an important role in the degradation of organic pollutants.
Collapse
Affiliation(s)
- Xiaoling He
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, PR China
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Huibin Lu
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Wenzhe Hu
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Tongchu Deng
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Xiaofan Gong
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Xunan Yang
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Da Song
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Mei He
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, PR China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
| |
Collapse
|
3
|
Chaudhary DK, Dahal RH, Kim DU, Kim J. Novosphingobium olei sp. nov., with the ability to degrade diesel oil, isolated from oil-contaminated soil and proposal to reclassify Novosphingobium stygium as a later heterotypic synonym of Novosphingobium aromaticivorans. Int J Syst Evol Microbiol 2021; 71. [PMID: 33411666 DOI: 10.1099/ijsem.0.004628] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two yellow-pigmented, non-motile, Gram-stain-negative, and rod-shaped bacteria, designated TW-4T and TNP-2 were obtained from oil-contaminated soil. Both strains degrade diesel oil, hydrolyse aesculin, DNA, Tween 40 and Tween 60. A phylogenetic analysis based on its 16S rRNA gene sequence revealed that strain TW-4T formed a lineage within the family Erythrobacteraceae and clustered as members of the genus Novosphingobium. The closest members of strain TW-4T were Novosphingobium subterraneum DSM 12447T (97.9 %, sequence similarity), Novosphingobium lubricantis KSS165-70T (97.8 %), Novosphingobium taihuense T3-B9T (97.8 %), Novosphingobium aromaticivorans DSM 12444T (97.7 %), Novosphingobium flavum UCT-28T (97.7 %), and Novosphingobium bradum STM-24T (97.6 %). The sequence similarity for other members was ≤97.6 %. The genome of strain TW-4T was 4 683 467 bp long with 44 scaffolds and 4280 protein-coding genes. The sole respiratory quinone was Q-10. The major cellular fatty acids were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0 and C14 : 0 2-OH. The major polar lipids were phosphatidylethanolamine (PE), phosphatidylglycerol (PG), diphosphatidylglycerol (DPG), phosphatidylcholine (PC), phosphatidyl-n-methylethanolamine (PME) and sphingoglycolipid (SGL). The DNA G+C content of the type strain was 65.0 %. The average nucleotide identity (ANIu) and in silico DNA-DNA hybridization (dDDH) relatedness values between strain TW-4T and closest members were below the threshold value for species delineation. Based on polyphasic taxonomic analyses, strain TW-4T represents novel species in the genus Novosphingobium, for which the name Novosphingobium olei sp. nov. is proposed. The type strain is TW-4T (=KACC 21628T=NBRC 114364T) and strain TNP-2 (=KACC 21629=NBRC 114365) represents an additional strain. Based on new data obtained in this study, it is also proposed to reclassify Novosphingobium stygium as a later heterotypic synonym of Novosphingobium aromaticivorans.
Collapse
Affiliation(s)
- Dhiraj Kumar Chaudhary
- Department of Environmental Engineering, College of Science and Technology, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, 30019, Republic of Korea.,Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Kyonggi-Do 16227, Republic of Korea
| | - Ram Hari Dahal
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Kyonggi-Do 16227, Republic of Korea
| | - Dong-Uk Kim
- Department of Biological Science, College of Science and Engineering, Sangji University, Wonju, Republic of Korea
| | - Jaisoo Kim
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Kyonggi-Do 16227, Republic of Korea
| |
Collapse
|
4
|
Sheu SY, Liu LP, Young CC, Chen WM. Novosphingobium fontis sp. nov., isolated from a spring. Int J Syst Evol Microbiol 2017; 67:2423-2429. [PMID: 28741990 DOI: 10.1099/ijsem.0.001973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A bacterial strain designated STM-14T was isolated from a spring in Taiwan and characterized using a polyphasic taxonomic approach. Strain STM-14T was a Gram-stain-negative, aerobic, poly-β-hydroxybutyrate-accumulating, non-motile, rod-shaped bacterium and formed cream-coloured colonies. Strain STM-14T grew at 15-37 °C (optimum, 30 °C), at pH 5.0-9.0 (optimum, pH 6.0) and with 0-0.5 % (w/v) NaCl (optimum, 0 %). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain STM-14T belonged to the genus Novosphingobium and showed the highest levels of sequence similarity to Novosphingobium naphthae D39T (98.5 %) and Novosphingobium mathurense SM117T (97.6 %). The major fatty acids (>10 %) of strain STM-14T were C17 : 1ω6c, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C18 : 1ω7c, C15 : 0 2-OH and C17 : 1ω8c. The polar lipid profile consisted of phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidyldimethylethanolamine, sphingoglycolipid, phosphatidylcholine and several uncharacterized lipids. The major polyamine was spermidine. The major isoprenoid quinone was Q-10. The DNA G+C content was 66.6 mol%. The DNA-DNA hybridization value for strain STM-14T with N. naphthae JCM 31158T and N. mathurense DSM 23374T was less than 49 %. Differential phenotypic properties, together with the phylogenetic inference, demonstrate that strain STM-14T should be classified as representing a novel species of the genus Novosphingobium, for which the name Novosphingobium fontis sp. nov. is proposed. The type strain is STM-14T (=BCRC 80924T=LMG 29290T=KCTC 42983T).
Collapse
Affiliation(s)
- Shih-Yi Sheu
- Department of Marine Biotechnology, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd. Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| | - Li-Ping Liu
- Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd. Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| | - Chiu-Chung Young
- College of Agriculture and Natural Resources, Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - Wen-Ming Chen
- Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd. Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| |
Collapse
|
5
|
Sha S, Zhong J, Chen B, Lin L, Luan T. Novosphingobium guangzhouense sp. nov., with the ability to degrade 1-methylphenanthrene. Int J Syst Evol Microbiol 2017; 67:489-497. [PMID: 27902280 DOI: 10.1099/ijsem.0.001669] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-negative, flagellated, rod-shaped, yellow-pigmented aerobic bacterium, strain SA925T, that is capable of degrading 1-methylphenanthrene was isolated from oil-polluted soil collected from a refinery located in Guangzhou, China. Phylogenetic analysis based on the 16S rRNA gene sequence demonstrated that strain SA925T belongs to the genus Novosphingobium and is evolutionarily close to the type strains of Novosphingobium gossypii (98.5 % similarity), Novosphingobium panipatense (98.2 %), Novosphingobium mathurense (98.0 %) and Novosphingobium pentaromativorans (96.5 %). The G+C content of the genomic DNA was 60.2 mol%. DNA-DNA hybridization experiments between strain SA925T and the closest strain, Novosphingobium gossypii JM-1396T, revealed a low level of relatedness (35.5 %). Strain SA925T grew at 10-35 °C, at pH 6.0-8.0 and in the presence of 0-4 % (w/v) NaCl. The major fatty acids were C18 : 1ω7c, C16 : 0 and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c). The polar lipid profiles mainly consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidyldimethylethanolamine, phosphatidylethanolamine and sphingoglycolipid (the characteristic polar lipid). The predominant ubiquinone was Q-10. The major polyamine was spermidine. Based on the phylogenetic, phenotypic and physiological characteristics, strain SA925T was considered to represent a novel species of the genus Novosphingobium, for which the name Novosphingobium guangzhouense sp. nov. is proposed. The type strain is SA925T (=DSM 32207T=GDMCC 1.1110T).
Collapse
Affiliation(s)
- Sha Sha
- MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jianan Zhong
- MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Li Lin
- MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Tiangang Luan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.,MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| |
Collapse
|
6
|
Chaudhary DK, Kim J. Novosphingobium naphthae sp. nov., from oil-contaminated soil. Int J Syst Evol Microbiol 2016; 66:3170-3176. [DOI: 10.1099/ijsem.0.001164] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Dhiraj Kumar Chaudhary
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Kyonggi-Do 16227, Republic of Korea
| | - Jaisoo Kim
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Kyonggi-Do 16227, Republic of Korea
| |
Collapse
|
7
|
Kämpfer P, Martin K, McInroy JA, Glaeser SP. Novosphingobium gossypii sp. nov., isolated from Gossypium hirsutum. Int J Syst Evol Microbiol 2015; 65:2831-2837. [DOI: 10.1099/ijs.0.000339] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, rod-shaped, non-spore-forming bacterium (strain JM-1396T) producing a yellow pigment, was isolated from the healthy internal stem tissue of post-harvest cotton (Gossypium hirsutum, cultivar ‘DES-119’) grown at the Plant Breeding Unit at the E. V. Smith Research Center in Tallassee (Macon county), AL, USA. 16S rRNA gene sequence analysis of strain JM-1396T showed high sequence similarity values to the type strains of Novosphingobium mathurense, Novosphingobium panipatense (both 98.6 %) and Novosphingobium barchaimii (98.5 %); sequence similarities to all other type strains of species of the genus Novosphingobium were below 98.3 %. DNA–DNA pairing experiments of the DNA of strain JM-1396T and N. mathurense SM117T, N. panipatense SM16T and N. barchaimii DSM 25411T showed low relatedness values of 8 % (reciprocal 7 %), 24 % (reciprocal 26 %) and 19 % (reciprocal 25 %), respectively. Ubiquinone Q-10 was detected as the dominant quinone; the fatty acids C18 : 1ω7c (71.0 %) and the typical 2-hydroxy fatty acid, C14 : 0 2-OH (11.7 %), were detected as typical components. The polar lipid profile contained the diagnostic lipids diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid and phosphatidylcholine. The polyamine pattern contained the major compound spermidine and only minor amounts of other polyamines. All these data revealed that strain JM-1396T represents a novel species of the genus Novosphingobium. For this reason we propose the name Novosphingobium gossypii sp. nov. with the type strain JM-1396T ( = LMG 28605T = CCM 8569T = CIP 110884T).
Collapse
Affiliation(s)
- Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - Karin Martin
- Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie e. V., Hans-Knöll-Institut., D-07745 Jena, Germany
| | - John A. McInroy
- Department of Entomology and Plant Pathology, Auburn University, Alabama 36849, USA
| | - Stefanie P. Glaeser
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| |
Collapse
|
8
|
Li YQ, Li L, Chen W, Duan YQ, Nimaichand S, Guo JW, Gao R, Li WJ. Novosphingobium endophyticum sp. nov. isolated from roots of Glycyrrhiza uralensis. Arch Microbiol 2015; 197:911-8. [DOI: 10.1007/s00203-015-1124-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/07/2015] [Accepted: 05/19/2015] [Indexed: 10/23/2022]
|
9
|
Novosphingobium tardum sp. nov., isolated from sediment of a freshwater lake. Antonie van Leeuwenhoek 2015; 108:51-7. [DOI: 10.1007/s10482-015-0463-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/19/2015] [Indexed: 10/23/2022]
|
10
|
Kämpfer P, Martin K, McInroy JA, Glaeser SP. Proposal of Novosphingobium rhizosphaerae sp. nov., isolated from the rhizosphere. Int J Syst Evol Microbiol 2015; 65:195-200. [DOI: 10.1099/ijs.0.070375-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A yellow, Gram-stain-negative, rod-shaped, non-spore-forming bacterium (strain JM-1T) was isolated from the rhizosphere of a field-grown Zea mays plant in Auburn, AL, USA. 16S rRNA gene sequence analysis of strain JM-1T showed high sequence similarity to the type strains of
Novosphingobium capsulatum
(98.9 %),
Novosphingobium aromaticivorans
(97.4 %),
Novosphingobium subterraneum
(97.3 %) and
Novosphingobium taihuense
(97.1 %); sequence similarities to all other type strains of species of the genus
Novosphingobium
were below 97.0 %. DNA–DNA hybridizations of strain JM-1T and
N. capsulatum
DSM 30196T,
N. aromaticivorans
SMCC F199T and
N. subterraneum
SMCC B0478T showed low similarity values of 33 % (reciprocal: 21 %), 14 % (reciprocal 16 %) and 36 % (reciprocal 38 %), respectively. Ubiquinone Q-10 was detected as the major respiratory quinone. The predominant fatty acid was C18 : 1ω7c (71.0 %) and the typical 2-hydroxy fatty acid C14 : 0 2-OH (11.7 %) was detected. The polar lipid profile contained the diagnostic lipids diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid and phosphatidylcholine. Characterization by 16S rRNA gene sequence analysis, physiological parameters, pigment analysis, and ubiquinone, polar lipid and fatty acid composition revealed that strain JM-1T represents a novel species of the genus
Novosphingobium
. For this species we propose the name Novosphingobium rhizosphaerae sp. nov. with the type strain JM-1T ( = LMG 28479T = CCM 8547T).
Collapse
Affiliation(s)
- Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - Karin Martin
- Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie e. V., Hans-Knöll-Institut., D-07745 Jena, Germany
| | - John A. McInroy
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Stefanie P. Glaeser
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| |
Collapse
|