1
|
Kim S, Lee SH, Kim KH, Yun M. Leuconostoc aquikimchii sp. nov., a Lactic Acid Bacterium Isolated from Cabbage Watery Kimchi. J Microbiol 2024; 62:1089-1097. [PMID: 39621249 DOI: 10.1007/s12275-024-00188-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 12/18/2024]
Abstract
Two Gram-stain-positive, facultatively anaerobic, non-hemolytic, coccoid-shaped bacterial strains, designated MS01T and MS02, were isolated from cabbage watery kimchi in the Republic of Korea. Cellular growth occurred at 5-25 ℃ (optimum, 20 ℃), pH 5-8 (optimum, pH 7) and in the presence of 0-5% (w/v) NaCl (optimum, 1%). Results of 16S rRNA gene-based phylogenetic analyses showed that strains MS01T and MS02 shared identical sequences, clustered within the Leuconostoc clade in phylogenetic trees, and were most closely related to Leuconostoc inhae IH003T and Leuconostoc gasicomitatum LMG 18811T with sequence similarities of 98.74%. The complete whole-genome sequences of strains MS01T and MS02 measured 2.04-2.06 Mbp and harbored a 50.6 kb plasmid, with DNA G + C contents of 37.7% for both. Based on average nucleotide identities (ANI) and digital DNA-DNA hybridization (dDDH) values, both strains were confirmed to belong to the same species but showed ≤ 85.9% ANI and ≤ 29.9% dDDH values to other Leuconostoc species, indicating that they represent a novel species. Metabolic pathway reconstruction revealed that both strains perform heterolactic acid fermentation, producing lactate, acetate, and ethanol. Chemotaxonomic analyses, including cellular fatty acids, polar lipids, and peptidoglycan amino acid, confirmed the inclusion of both strains within the genus Leuconostoc. Based on the phylogenetic, genomic, and phenotypic characterization, strains MS01T and MS02 were considered to represent a novel species within the genus Leuconostoc, for which the name Leuconostoc aquikimchii sp. nov. is proposed with MS01T (= KACC 23748T = JCM 37028T) as the type strain.
Collapse
Affiliation(s)
- Subin Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
- Division of Animal Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Se Hee Lee
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Ki Hyun Kim
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
| | - Misun Yun
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea.
| |
Collapse
|
2
|
Johansson P, Jääskeläinen E, Säde E, Björkroth J. Vagococcus proximus sp. nov. and Vagococcus intermedius sp. nov., originating from modified atmosphere packaged broiler meat. Int J Syst Evol Microbiol 2023; 73. [PMID: 37462470 DOI: 10.1099/ijsem.0.005963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
During our studies on spoilage microbiomes of modified atmosphere packaged broiler meat, we isolated three strains (PNs007T, STAA11T and STAA25) of unknown identity. In this present polyphasic taxonomy study, including genome-based analyses, we discovered that these isolates represent two novel species belonging to the genus Vagococcus. In all phylogenetic analyses, PNs007T was positioned very close to Vagococcus fessus but both the average nucleotide identity (ANI; 89.5 %) and digital DNA-DNA hybridization (dDDH; 38.3 %) values distinguished it as a novel vagococcal species. STAA11T and STAA25 were genetically highly similar (16S rRNA, ANI and dDDH 100 %). The phylogenetic position of STAA11T was adjacent to but out of the cluster containing V. fessus, Vagococcus coleopterorum and PNs007T. According to the ANI (76.2-76.4 %) and dDDH (<22.6 %) values it also represented a novel vagococcal species. Phenotypic characteristics and chemotaxonomic properties of both novel species were typical for vagococci and they contained C16 : 0 (25.5-30.1 %) and C18 : 1 ω9c (67.3-73.0 %) as the major cellular fatty acids. The streptomycin-resistant genotype of STAA11T and STAA25 allowing the growth on streptomycin thallous acetate actidione medium was considered to result from a modification in codon 104 of the rpsL gene leading to P104A substitution. The ability of STAA11T and STAA25 to produce ammonia from arginine separated them from PNs007T, which did not show arginine deiminase activity. We propose the names Vagococcus proximus sp. nov. (type strain PNs007T=DSM 115185T=CCUG 76696T) and Vagococcus intermedius sp. nov. (type strain STAA11T=DSM 115183T=CCUG 76697T) for these novel species.
Collapse
Affiliation(s)
- Per Johansson
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00014 Helsinki, Finland
| | - Elina Jääskeläinen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00014 Helsinki, Finland
| | - Elina Säde
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00014 Helsinki, Finland
| | - Johanna Björkroth
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00014 Helsinki, Finland
| |
Collapse
|
3
|
Johansson P, Säde E, Hultman J, Auvinen P, Björkroth J. Pangenome and genomic taxonomy analyses of Leuconostoc gelidum and Leuconostoc gasicomitatum. BMC Genomics 2022; 23:818. [PMID: 36494615 PMCID: PMC9733070 DOI: 10.1186/s12864-022-09032-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Leuconostoc gelidum and Leuconostoc gasicomitatum have dual roles in foods. They may spoil cold-stored packaged foods but can also be beneficial in kimchi fermentation. The impact in food science as well as the limited number of publicly available genomes prompted us to create pangenomes and perform genomic taxonomy analyses starting from de novo sequencing of the genomes of 37 L. gelidum/L. gasicomitatum strains from our culture collection. Our aim was also to evaluate the recently proposed change in taxonomy as well as to study the genomes of strains with different lifestyles in foods. METHODS We selected as diverse a set of strains as possible in terms of sources, previous genotyping results and geographical distribution, and included also 10 publicly available genomes in our analyses. We studied genomic taxonomy using pairwise average nucleotide identity (ANI) and calculation of digital DNA-DNA hybridisation (dDDH) scores. Phylogeny analyses were done using the core gene set of 1141 single-copy genes and a set of housekeeping genes commonly used for lactic acid bacteria. In addition, the pangenome and core genome sizes as well as some properties, such as acquired antimicrobial resistance (AMR), important due to the growth in foods, were analysed. RESULTS Genome relatedness indices and phylogenetic analyses supported the recently suggested classification that restores the taxonomic position of L. gelidum subsp. gasicomitatum back to the species level as L. gasicomitatum. Genome properties, such as size and coding potential, revealed limited intraspecies variation and showed no attribution to the source of isolation. The distribution of the unique genes between species and subspecies was not associated with the previously documented lifestyle in foods. None of the strains carried any acquired AMR genes or genes associated with any known form of virulence. CONCLUSION Genome-wide examination of strains confirms that the proposition to restore the taxonomic position of L. gasicomitatum is justified. It further confirms that the distribution and lifestyle of L. gelidum and L. gasicomitatum in foods have not been driven by the evolution of functional and phylogenetic diversification detectable at the genome level.
Collapse
Affiliation(s)
- Per Johansson
- grid.7737.40000 0004 0410 2071Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Elina Säde
- grid.7737.40000 0004 0410 2071Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Jenni Hultman
- grid.7737.40000 0004 0410 2071Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- grid.7737.40000 0004 0410 2071Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Johanna Björkroth
- grid.7737.40000 0004 0410 2071Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Konuspayeva G, Baubekova A, Akhmetsadykova S, Faye B. Traditional dairy fermented products in Central Asia. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Raimondi S, Candeliere F, Amaretti A, Costa S, Vertuani S, Spampinato G, Rossi M. Phylogenomic analysis of the genus Leuconostoc. Front Microbiol 2022; 13:897656. [PMID: 35958134 PMCID: PMC9358442 DOI: 10.3389/fmicb.2022.897656] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Leuconostoc is a genus of saccharolytic heterofermentative lactic acid bacteria that inhabit plant-derived matrices and a variety of fermented foods (dairy products, dough, milk, vegetables, and meats), contributing to desired fermentation processes or playing a role in food spoilage. At present, the genus encompasses 17 recognized species. In total, 216 deposited genome sequences of Leuconostoc were analyzed, to check the delineation of species and to infer their evolutive genealogy utilizing a minimum evolution tree of Average Nucleotide Identity (ANI) and the core genome alignment. Phylogenomic relationships were compared to those obtained from the analysis of 16S rRNA, pheS, and rpoA genes. All the phylograms were subjected to split decomposition analysis and their topologies were compared to check the ambiguities in the inferred phylogenesis. The minimum evolution ANI tree exhibited the most similar topology with the core genome tree, while single gene trees were less adherent and provided a weaker phylogenetic signal. In particular, the 16S rRNA gene failed to resolve several bifurcations and Leuconostoc species. Based on an ANI threshold of 95%, the organization of the genus Leuconostoc could be amended, redefining the boundaries of the species L. inhae, L. falkenbergense, L. gelidum, L. lactis, L. mesenteroides, and L. pseudomesenteroides. Two strains currently recognized as L. mesenteroides were split into a separate lineage representing a putative species (G16), phylogenetically related to both L. mesenteroides (G18) and L. suionicum (G17). Differences among the four subspecies of L. mesenteroides were not pinpointed by ANI or by the conserved genes. The strains of L. pseudomesenteroides were ascribed to two putative species, G13 and G14, the former including also all the strains presently belonging to L. falkenbergense. L. lactis was split into two phylogenetically related lineages, G9 and G10, putatively corresponding to separate species and both including subgroups that may correspond to subspecies. The species L. gelidum and L. gasicomitatum were closely related but separated into different species, the latter including also L. inhae strains. These results, integrating information of ANI, core genome, and housekeeping genes, complemented the taxonomic delineation with solid information on the phylogenetic lineages evolved within the genus Leuconostoc.
Collapse
Affiliation(s)
- Stefano Raimondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Candeliere
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alberto Amaretti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Biogest Siteia, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Stefania Costa
- Department of Chemical, Pharmaceutical and Agricultural Sciences—DOCPAS, University of Ferrara, Ferrara, Italy
| | - Silvia Vertuani
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Gloria Spampinato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maddalena Rossi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Biogest Siteia, University of Modena and Reggio Emilia, Reggio Emilia, Italy
- *Correspondence: Maddalena Rossi
| |
Collapse
|
6
|
Kumar S, Bansal K, Sethi SK. Comparative genomics analysis of genus Leuconostoc resolves its taxonomy and elucidates its biotechnological importance. Food Microbiol 2022; 106:104039. [DOI: 10.1016/j.fm.2022.104039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 11/27/2022]
|
7
|
Ricciardi A, Storti LV, Giavalisco M, Parente E, Zotta T. The Effect of Respiration, pH, and Citrate Co-Metabolism on the Growth, Metabolite Production and Enzymatic Activities of Leuconostoc mesenteroides subsp. cremoris E30. Foods 2022; 11:foods11040535. [PMID: 35206012 PMCID: PMC8871477 DOI: 10.3390/foods11040535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 02/05/2023] Open
Abstract
Leuconostoc mesenteroides includes strains used as starter and/or adjunct cultures for the production of several fermented foods. In this study, the effect of anaerobic and respiratory cultivations, as well as of citrate supplementation and different pH values, was evaluated on growth, biomass, metabolite, and enzymatic activities (pyruvate oxidase, POX; NADH-dependent oxidase, NOX; NADH-dependent peroxidase, NPR) of Leuconostoc mesenteroides subsp. cremoris E30. We compared the respiration-increased growth rate and biomass production of Leuc. mesenteroides E30 to anaerobic cultivation. A supplementation of citrate impaired the growth rate of the respiratory cells. As expected, anaerobic cultures did not consume oxygen, and a similar trend in oxygen uptake was observed in respiratory cultures. The aerobic incubation caused changes in the metabolic pattern, reducing the production of ethanol in favour of acetic acid. Citrate was already exhausted in the exponential phase and did not affect the yields in acetic acid and ethanol. NOX activity increased in the presence of oxygen, while catalase was also detected in the absence of hemin. The absence of H2O2 suggested its degradation by NPR and catalase. Respiratory cultivation provided benefits (increase in growth rate, biomass, and activity in antioxidant enzymes) for Leuc. mesenteroides E30. Therefore, the exploitation of respiratory phenotypes may be useful for the formulation of competitive starter or adjunct cultures.
Collapse
|
8
|
Wu Y, Gu CT. Rejection of the reclassification of Leuconostoc gasicomitatum as Leuconostoc gelidum subsp. gasicomitatum based on whole genome analysis. Int J Syst Evol Microbiol 2021; 71. [PMID: 34550068 DOI: 10.1099/ijsem.0.005027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In 2014, Rahkila et al. transferred Leuconostoc gasicomitatum to Leuconostoc gelidum as L. gelidum subsp. gasicomitatum comb. nov. based on a 75 % DNA-DNA hybridization value. In the present study, the taxonomic status of L. gelidum subsp. gasicomitatum is re-evaluated by a polyphasic approach, including 16S rRNA, pheS, rpoA, recA, and atpA gene sequence analyses, phylogenomic treeing, analyses of ANI (average nucleotide identity) and dDDH (digital DNA-DNA hybridization), fatty acid methyl ester analysis and a phenotypic characterization. On the basis of the ANI and dDDH values, we propose to reject the proposal of Rahkila et al. to reclassify L. gasicomitatum as L. gelidum subsp. gasicomitatum.
Collapse
Affiliation(s)
- Yan Wu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Chun Tao Gu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
9
|
Mun SY, Seo YJ, Chang HC. Characterization of the Psychrotrophic Lactic Acid Bacterium Leuconostoc gelidum subsp. aenigmaticum LS4 Isolated from Kimchi Based on Comparative Analyses of Its Genomic and Phenotypic Properties. Foods 2021; 10:foods10081899. [PMID: 34441676 PMCID: PMC8391443 DOI: 10.3390/foods10081899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/30/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022] Open
Abstract
With the aim of developing a new food starter culture, twenty-three psychrotrophic lactic acid bacteria (LAB) were isolated from 16 kimchi samples. One strain, Leuconostoc gelidum subsp. aenigmaticum LS4, which had typical psychrotrophic characteristics, was selected, and its phenotypic and genomic properties as a starter culture were investigated. The complete genome of L. aenigmaticum LS4 consisted of one circular chromosome (1,988,425 bp) and two plasmids (19,308 bp and 11,283 bp), with a guanine–cytosine content of 36.8%. L. aenigmaticum LS4 could grow at 5 °C but not at 37 °C, and maximum cell growth was obtained at 15~25 °C. L. aenigmaticum LS4 did not show any harmful characteristics such as hemolysis, undesirable enzyme activities, biogenic amine production, or antibiotic resistance. L. aenigmaticum LS4 was investigated for its suitability for technological processes (pH, temperature and NaCl treatment). L. aenigmaticum LS4 exhibited strong antimicrobial activity caused by the production of organic acids and bacteriocin, and it produced an exopolysaccharide composed of glucose with a molecular weight of 3.7 × 106 Da. Furthermore, L. aenigmaticum LS4 improved the organoleptic qualities of kimchi juice. Our results indicate that L. aenigmaticum LS4 could be used as a functional starter culture for food (vegetable or fruit) fermentation at low temperatures.
Collapse
|
10
|
Salvetti E, Campedelli I, Larini I, Conedera G, Torriani S. Exploring Antibiotic Resistance Diversity in Leuconostoc spp. by a Genome-Based Approach: Focus on the lsaA Gene. Microorganisms 2021; 9:microorganisms9030491. [PMID: 33652718 PMCID: PMC7996808 DOI: 10.3390/microorganisms9030491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 01/29/2023] Open
Abstract
Leuconostoc spp. are environmental microorganisms commonly associated with fermented foods. Absence of antibiotic resistance (AR) in bacteria is a critical issue for global food safety. Herein, we updated the occurrence of AR genes in the Leuconostoc genus through in silico analyses of the genomes of 17 type strains. A total of 131 putative AR traits associated with the main clinically relevant antibiotics were detected. We found, for the first time, the lsaA gene in L. fallax ATCC 700006T and L. pseudomesenteroides NCDO 768T. Their amino acid sequences displayed high similarities (59.07% and 52.21%) with LsaA of Enterococcusfaecalis V583, involved in clindamycin (CLI) and quinupristin-dalfopristin (QUD) resistance. This trait has different distribution patterns in Leuconostoc nontype strains-i.e., L. pseudomesenteroides, L. lactis and L. falkenbergense isolates from fermented vegetables, cheeses, and starters. To better explore the role of lsaA, MIC for CLI and QUD were assessed in ATCC 700006T and NCDO 768T; both strains were resistant towards CLI, potentially linking lsaA to their resistant phenotype. Contrarily, NCDO 768T was sensitive towards QUD; however, expression of lsaA increased in presence of this antibiotic, indicating an active involvement of this trait and thus suggesting a revision of the QUD thresholds for this species.
Collapse
Affiliation(s)
- Elisa Salvetti
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.S.); (I.L.); (G.C.)
| | | | - Ilaria Larini
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.S.); (I.L.); (G.C.)
| | - Giada Conedera
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.S.); (I.L.); (G.C.)
| | - Sandra Torriani
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.S.); (I.L.); (G.C.)
- Correspondence:
| |
Collapse
|
11
|
Unraveling microbial fermentation features in kimchi: from classical to meta-omics approaches. Appl Microbiol Biotechnol 2020; 104:7731-7744. [PMID: 32749526 DOI: 10.1007/s00253-020-10804-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 12/31/2022]
Abstract
Kimchi is a traditional Korean fermented food prepared via spontaneous fermentation by various microorganisms originating from vegetables such as kimchi cabbage, radishes, and garlic. Recent advances in meta-omics approaches that integrate metataxonomics, metagenomics, metatranscriptomics, and metabolomics have contributed to explaining and understanding food fermentation processes. Kimchi microbial communities are composed of majorly lactic acid bacteria such as Leuconostoc, Lactobacillus, and Weissella and fewer eukaryotic microorganisms and kimchi fermentation are accomplished by complex microbial metabolisms to produce diverse metabolites such as lactate, acetate, CO2, ethanol, mannitol, amino acids, formate, malate, diacetyl, acetoin, and 2, 3-butanediol, which determine taste, quality, health benefit, and safety of fermented kimchi products. Therefore, in the future, kimchi researches should be systematically performed using the meta-omics approaches to understand complex microbial metabolisms during kimchi fermentation. KEY POINTS: • Spontaneous fermentation by raw material microbes gives kimchi its unique flavor. • The kimchi microbiome is altered by environmental factors and raw materials. • Through the multi-omics approaches, it is possible to accurately analyze the diversity and metabolic characteristics of kimchi microbiome and discover potential functionalities.
Collapse
|
12
|
Nel S, Davis SB, Endo A, Dicks LMT. Phylogenetic analysis of Leuconostoc and Lactobacillus species isolated from sugarcane processing streams. Microbiologyopen 2020; 9:e1065. [PMID: 32496663 PMCID: PMC7424246 DOI: 10.1002/mbo3.1065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/17/2020] [Accepted: 05/11/2020] [Indexed: 11/17/2022] Open
Abstract
High levels of gums such as dextran, produced by Leuconostoc and Lactobacillus spp., have a severe impact on factory throughput and sugar quality. This study aimed to determine the phylogenetic relationships between gum‐producing Leuconostoc and Lactobacillus bacteria which were isolated from various locations in a sugarcane processing factory at times when low‐ and high‐dextran raw sugar, respectively, were produced. Phylogenetic analysis of 16S rRNA gene sequences grouped 81 isolates with the type strains of Leuconostoc mesenteroides (subspp. mesenteroides, dextranicum, and cremoris), Leuconostoc pseudomesenteroides, Leuconostoc lactis, and Leuconostoc citreum, respectively. Forty‐three isolates clustered with the type strain of Lactobacillus fermentum. The phylogenetic relatedness of the isolates was determined by sequencing and analysis of the housekeeping genes rpoA and dnaA for Leuconostoc spp. and the pheS and tuf genes for the Lactobacillus spp. The rpoA gene proved discriminatory for the phylogenetic resolution of all of the isolated Leuconostoc spp. and the dnaA housekeeping gene was shown to be effective for isolates clustering with the type strains of Leuc. mesenteroides and Leuc. citreum. None of the loci examined permitted differentiation at the subspecies level of Leuc. mesenteroides. Single‐locus analysis, as well as the concatenation of the pheS and tuf housekeeping gene sequences, yielded identical phylogenies for the Lactobacillus isolates corresponding to L. fermentum.
Collapse
Affiliation(s)
- Sanet Nel
- Sugar Milling Research Institute NPC, c/o University of KwaZulu-Natal, Durban, South Africa.,Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Stephen B Davis
- Sugar Milling Research Institute NPC, c/o University of KwaZulu-Natal, Durban, South Africa
| | - Akihito Endo
- Department of Food, Aroma and Cosmetic Chemistry, Tokyo University of Agriculture, Hokkaido, Japan
| | - Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
13
|
Ricciardi A, Storti LV, Zotta T, Felis GE, Parente E. Analysis of rpoB polymorphism and PCR-based approaches for the identification of Leuconostoc mesenteroides at the species and subspecies level. Int J Food Microbiol 2020; 318:108474. [PMID: 31841785 DOI: 10.1016/j.ijfoodmicro.2019.108474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 11/21/2019] [Accepted: 12/07/2019] [Indexed: 10/25/2022]
Abstract
Leuconostoc mesenteroides includes the subsp. cremoris, subsp. dextranicum, subsp. mesenteroides and subsp. jonggajibkimchii, but the identification at the subspecies level using current phenotypic and/or genotypic methods is still difficult. In this study, a polyphasic approach based on the analysis of rpoB gene polymorphism, Multiplex-PCR and phenotypic tests was optimised and used to identify a collection of Leuc. mesenteroides strains at the species and subspecies levels. The annotation of published Leuc. mesenteroides genomes was also revised. A polymorphic region of rpoB gene was effective in separating Leuc. mesenteroides strains at the species (rpoB-species-specific-PCR) and subspecies (phylogenetic comparison) levels. Multiplex-PCR discriminated the subsp. mesenteroides from subsp. cremoris, but strains of uncertain attribution were found among subsp. dextranicum and subsp. jonggajibkimchii. Most of phenotypic features were not suitable for subspecies discrimination. Our assays may provide a rapid and reliable identification of subsp. mesenteroides and subsp. cremoris strains in fermented foods. The discrimination of subsp. dextranicum and subsp. jonggajibkimchii suffered from several limitations (e.g. low number of available strains and genomes, phenotypic profile close to subsp. mesenteroides, discrepancy between genotypic and phenotypic traits) and further investigations are needed to clarify their delineation and taxonomical position.
Collapse
Affiliation(s)
- Annamaria Ricciardi
- Scuola di Scienze Agrarie, Alimentari, Forestali ed Ambientali (SAFE), Università degli Studi della Basilicata, 85100 Potenza, Italy
| | - Livia V Storti
- Scuola di Scienze Agrarie, Alimentari, Forestali ed Ambientali (SAFE), Università degli Studi della Basilicata, 85100 Potenza, Italy
| | - Teresa Zotta
- Istituto di Scienze dell'Alimentazione-CNR, 83100 Avellino, Italy.
| | - Giovanna E Felis
- Dipartimento di Biotecnologie, Università degli Studi di Verona, 37100 Verona, Italy
| | - Eugenio Parente
- Dipartimento di Scienze, Università degli Studi della Basilicata, 85100 Potenza, Italy
| |
Collapse
|
14
|
Kolbeck S, Reetz L, Hilgarth M, Vogel RF. Quantitative Oxygen Consumption and Respiratory Activity of Meat Spoiling Bacteria Upon High Oxygen Modified Atmosphere. Front Microbiol 2019; 10:2398. [PMID: 31781049 PMCID: PMC6857183 DOI: 10.3389/fmicb.2019.02398] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/03/2019] [Indexed: 11/26/2022] Open
Abstract
High oxygen modified atmosphere packaging is a commonly applied method to prolong the minimum shelf life of fresh (red) meats. Upon spoilage, changes of the initial oxygen concentration and microbiome composition can be observed. Thus, we classified the typical representative meat spoiling bacteria Brochothrix (B.) thermosphacta TMW2.2101 and the four lactic acid bacteria (LAB) Carnobacterium (C.) divergens TMW2.1577, C. maltaromaticum TMW2.1581, Leuconostoc (L.) gelidum subsp. gelidum TMW2.1618, and L. gelidum subsp. gasicomitatum TMW2.1619 along their oxygen consuming capacity, which can indicate the timeline of microbiome and sensorial changes. All bacteria were grown in a model system employing gas tight glass bottles containing meat simulation media and under modified atmosphere (70% O2 and 30% CO2). Oxygen concentrations of media and headspaces were monitored over time and the oxygen uptake rate (OUR) was calculated for all species. All bacteria were able to consume dissolved oxygen, with B. thermosphacta TMW2.2101 exhibiting a 31-times higher OUR per single cell in 60 h. Furthermore, all strains showed significant growth enhancement in the presence of heme indicating respiratory activity. Comparative genomic and physiological analyses predict the activity of a respiratory chain for all species upon high oxygen atmosphere. An additional cytochrome aa3 oxidase is suggested to be responsible for the increased OUR of B. thermosphacta TMW2.2101. Furthermore, B. thermosphacta TMW2.2101 revealed highest oxidative stress tolerance compared to the other bacteria, facilitating a higher respiratory activity. Coupling of respiration and fermentation via regeneration of NADH can be a competitive advantage for meat spoiling bacteria resulting in a higher cell count and possibly accelerated spoilage. The exhibited highest capacity for oxygen consumption of B. thermosphacta compared to LAB in vitro also suggests a higher contribution of this bacterium to the change in the atmosphere upon spoilage of MAP meats in situ.
Collapse
Affiliation(s)
| | | | - Maik Hilgarth
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | | |
Collapse
|
15
|
Hilgarth M, Lehner E, Behr J, Vogel R. Diversity and anaerobic growth ofPseudomonasspp. isolated from modified atmosphere packaged minced beef. J Appl Microbiol 2019; 127:159-174. [DOI: 10.1111/jam.14249] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 11/29/2022]
Affiliation(s)
- M. Hilgarth
- Lehrstuhl für Technische Mikrobiologie Technische Universität München Freising Germany
| | - E.M. Lehner
- Lehrstuhl für Technische Mikrobiologie Technische Universität München Freising Germany
| | - J. Behr
- Lehrstuhl für Technische Mikrobiologie Technische Universität München Freising Germany
| | - R.F. Vogel
- Lehrstuhl für Technische Mikrobiologie Technische Universität München Freising Germany
| |
Collapse
|
16
|
Poirier S, Rué O, Peguilhan R, Coeuret G, Zagorec M, Champomier-Vergès MC, Loux V, Chaillou S. Deciphering intra-species bacterial diversity of meat and seafood spoilage microbiota using gyrB amplicon sequencing: A comparative analysis with 16S rDNA V3-V4 amplicon sequencing. PLoS One 2018; 13:e0204629. [PMID: 30252901 PMCID: PMC6155546 DOI: 10.1371/journal.pone.0204629] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/11/2018] [Indexed: 12/21/2022] Open
Abstract
Meat and seafood spoilage ecosystems harbor extensive bacterial genomic diversity that is mainly found within a small number of species but within a large number of strains with different spoilage metabolic potential. To decipher the intraspecies diversity of such microbiota, traditional metagenetic analysis using the 16S rRNA gene is inadequate. We therefore assessed the potential benefit of an alternative genetic marker, gyrB, which encodes the subunit B of DNA gyrase, a type II DNA topoisomerase. A comparison between 16S rDNA-based (V3-V4) amplicon sequencing and gyrB-based amplicon sequencing was carried out in five types of meat and seafood products, with five mock communities serving as quality controls. Our results revealed that bacterial richness in these mock communities and food samples was estimated with higher accuracy using gyrB than using16S rDNA. However, for Firmicutes species, 35% of putative gyrB reads were actually identified as sequences of a gyrB paralog, parE, which encodes subunit B of topoisomerase IV; we therefore constructed a reference database of published sequences of both gyrB and pare for use in all subsequent analyses. Despite this co-amplification, the deviation between relative sequencing quantification and absolute qPCR quantification was comparable to that observed for 16S rDNA for all the tested species. This confirms that gyrB can be used successfully alongside 16S rDNA to determine the species composition (richness and evenness) of food microbiota. The major benefit of gyrB sequencing is its potential for improving taxonomic assignment and for further investigating OTU richness at the subspecies level, thus allowing more accurate discrimination of samples. Indeed, 80% of the reads of the 16S rDNA dataset were represented by thirteen 16S rDNA-based OTUs that could not be assigned at the species-level. Instead, these same clades corresponded to 44 gyrB-based OTUs, which differentiated various lineages down to the subspecies level. The increased ability of gyrB-based analyses to track and trace phylogenetically different groups of strains will generate improved resolution and more reliable results for studies of the strains implicated in food processes.
Collapse
Affiliation(s)
- Simon Poirier
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Olivier Rué
- MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Raphaëlle Peguilhan
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Gwendoline Coeuret
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | - Valentin Loux
- MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Stéphane Chaillou
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
17
|
Oren A, Garrity G. Proposal to emend Rules 50a and 50b of the International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol 2018; 68:3371-3376. [PMID: 30113302 DOI: 10.1099/ijsem.0.002958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rules 50a and 50b of the International Code of Nomenclature of Prokaryotes respectively regulate the elevation of a subspecies to the rank of a species and the lowering of a species to the rank of subspecies. The Code does not indicate that the resulting new names must be considered new combinations, as the cases described in Rules 50a and 50b are not covered by Rule 34a. Based on the rules of the Code, new combination events are applicable only at the identical rank, and therefore new combination events and new species/subspecies events are mutually exclusive. In spite of this there have been at least 44 cases in which the new names were described as comb. nov. during elevation in rank from subspecies to species and at least 30 such cases during lowering in rank from species to subspecies. To prevent confusion in the future we propose adding notes to Rules 50a and 50b to clarify the issue.
Collapse
Affiliation(s)
- Aharon Oren
- 1The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George Garrity
- 2Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|
18
|
Hilgarth M, Nani M, Vogel R. Assertiveness of meat‐borne
Lactococcus piscium
strains and their potential for competitive exclusion of spoilage bacteria
in situ
and
in vitro. J Appl Microbiol 2018; 124:1243-1253. [DOI: 10.1111/jam.13710] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/09/2018] [Accepted: 01/22/2018] [Indexed: 11/29/2022]
Affiliation(s)
- M. Hilgarth
- Lehrstuhl für Technische Mikrobiologie Technische Universität München Freising Germany
| | - M. Nani
- Lehrstuhl für Technische Mikrobiologie Technische Universität München Freising Germany
| | - R.F. Vogel
- Lehrstuhl für Technische Mikrobiologie Technische Universität München Freising Germany
| |
Collapse
|
19
|
Hilgarth M, Behr J, Vogel R. Monitoring of spoilage-associated microbiota on modified atmosphere packaged beef and differentiation of psychrophilic and psychrotrophic strains. J Appl Microbiol 2018; 124:740-753. [DOI: 10.1111/jam.13669] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/17/2017] [Accepted: 12/05/2017] [Indexed: 11/28/2022]
Affiliation(s)
- M. Hilgarth
- Technische Universität München; Lehrstuhl für Technische Mikrobiologie; Freising Germany
| | - J. Behr
- Technische Universität München; Lehrstuhl für Technische Mikrobiologie; Freising Germany
| | - R.F. Vogel
- Technische Universität München; Lehrstuhl für Technische Mikrobiologie; Freising Germany
| |
Collapse
|
20
|
Exploring lot-to-lot variation in spoilage bacterial communities on commercial modified atmosphere packaged beef. Food Microbiol 2016; 62:147-152. [PMID: 27889141 DOI: 10.1016/j.fm.2016.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/15/2016] [Accepted: 10/02/2016] [Indexed: 11/22/2022]
Abstract
Understanding the factors influencing meat bacterial communities is important as these communities are largely responsible for meat spoilage. The composition and structure of a bacterial community on a high-O2 modified-atmosphere packaged beef product were examined after packaging, on the use-by date and two days after, to determine whether the communities at each stage were similar to those in samples taken from different production lots. Furthermore, we examined whether the taxa associated with product spoilage were distributed across production lots. Results from 16S rRNA amplicon sequencing showed that while the early samples harbored distinct bacterial communities, after 8-12 days storage at 6 °C the communities were similar to those in samples from different lots, comprising mainly of common meat spoilage bacteria Carnobacterium spp., Brochothrix spp., Leuconostoc spp. and Lactococcus spp. Interestingly, abundant operational taxonomic units associated with product spoilage were shared between the production lots, suggesting that the bacteria enable to spoil the product were constant contaminants in the production chain. A characteristic succession pattern and the distribution of common spoilage bacteria between lots suggest that both the packaging type and the initial community structure influenced the development of the spoilage bacterial community.
Collapse
|
21
|
Andreevskaya M, Hultman J, Johansson P, Laine P, Paulin L, Auvinen P, Björkroth J. Complete genome sequence of Leuconostoc gelidum subsp. gasicomitatum KG16-1, isolated from vacuum-packaged vegetable sausages. Stand Genomic Sci 2016; 11:40. [PMID: 27274361 PMCID: PMC4895993 DOI: 10.1186/s40793-016-0164-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/31/2016] [Indexed: 11/10/2022] Open
Abstract
Leuconostoc gelidum subsp. gasicomitatum is a predominant lactic acid bacterium (LAB) in spoilage microbial communities of different kinds of modified-atmosphere packaged (MAP) food products. So far, only one genome sequence of a poultry-originating type strain of this bacterium (LMG 18811(T)) has been available. In the current study, we present the completely sequenced and functionally annotated genome of strain KG16-1 isolated from a vegetable-based product. In addition, six other vegetable-associated strains were sequenced to study possible "niche" specificity suggested by recent multilocus sequence typing. The genome of strain KG16-1 consisted of one circular chromosome and three plasmids, which together contained 2,035 CDSs. The chromosome carried at least three prophage regions and one of the plasmids encoded a galactan degradation cluster, which might provide a survival advantage in plant-related environments. The genome comparison with LMG 18811(T) and six other vegetable strains suggests no major differences between the meat- and vegetable-associated strains that would explain their "niche" specificity. Finally, the comparison with the genomes of other leuconostocs highlights the distribution of functionally interesting genes across the L. gelidum strains and the genus Leuconostoc.
Collapse
Affiliation(s)
- Margarita Andreevskaya
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5D, 00790 Helsinki, Finland
| | - Jenni Hultman
- Department of Food Hygiene and Environmental Health, University of Helsinki, Agnes Sjöbergin katu 2, 00790 Helsinki, Finland
| | - Per Johansson
- Department of Food Hygiene and Environmental Health, University of Helsinki, Agnes Sjöbergin katu 2, 00790 Helsinki, Finland
| | - Pia Laine
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5D, 00790 Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5D, 00790 Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5D, 00790 Helsinki, Finland
| | - Johanna Björkroth
- Department of Food Hygiene and Environmental Health, University of Helsinki, Agnes Sjöbergin katu 2, 00790 Helsinki, Finland
| |
Collapse
|
22
|
Flórez AB, Campedelli I, Delgado S, Alegría Á, Salvetti E, Felis GE, Mayo B, Torriani S. Antibiotic Susceptibility Profiles of Dairy Leuconostoc, Analysis of the Genetic Basis of Atypical Resistances and Transfer of Genes In Vitro and in a Food Matrix. PLoS One 2016; 11:e0145203. [PMID: 26726815 PMCID: PMC4699710 DOI: 10.1371/journal.pone.0145203] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/30/2015] [Indexed: 12/11/2022] Open
Abstract
In spite of a global concern on the transfer of antibiotic resistances (AR) via the food chain, limited information exists on this issue in species of Leuconostoc and Weissella, adjunct cultures used as aroma producers in fermented foods. In this work, the minimum inhibitory concentration was determined for 16 antibiotics in 34 strains of dairy origin, belonging to Leuconostoc mesenteroides (18), Leuconostoc citreum (11), Leuconostoc lactis (2), Weissella hellenica (2), and Leuconostoc carnosum (1). Atypical resistances were found for kanamycin (17 strains), tetracycline and chloramphenicol (two strains each), and erythromycin, clindamycin, virginiamycin, ciprofloxacin, and rifampicin (one strain each). Surprisingly, L. mesenteroides subsp. mesenteroides LbE16, showed resistance to four antibiotics, kanamycin, streptomycin, tetracycline and virginiamycin. PCR analysis identified tet(S) as responsible for tetracycline resistance in LbE16, but no gene was detected in a second tetracycline-resistant strain, L. mesenteroides subsp. cremoris LbT16. In Leuconostoc mesenteroides subsp. dextranicum LbE15, erythromycin and clindamycin resistant, an erm(B) gene was amplified. Hybridization experiments proved erm(B) and tet(S) to be associated to a plasmid of ≈35 kbp and to the chromosome of LbE15 and LbE16, respectively. The complete genome sequence of LbE15 and LbE16 was used to get further insights on the makeup and genetic organization of AR genes. Genome analysis confirmed the presence and location of erm(B) and tet(S), but genes providing tetracycline resistance in LbT16 were again not identified. In the genome of the multi-resistant strain LbE16, genes that might be involved in aminoglycoside (aadE, aphA-3, sat4) and virginiamycin [vat(E)] resistance were further found. The erm(B) gene but not tet(S) was transferred from Leuconostoc to Enterococcus faecalis both under laboratory conditions and in cheese. This study contributes to the characterization of AR in the Leuconostoc-Weissella group, provides evidence of the genetic basis of atypical resistances, and demonstrates the inter-species transfer of erythromycin resistance.
Collapse
Affiliation(s)
- Ana Belén Flórez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Ilenia Campedelli
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, Italy
| | - Susana Delgado
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Ángel Alegría
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, Italy
| | - Elisa Salvetti
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, Italy
| | - Giovanna E. Felis
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, Italy
| | - Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Sandra Torriani
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, Italy
- * E-mail:
| |
Collapse
|
23
|
Endo A, Tanizawa Y, Tanaka N, Maeno S, Kumar H, Shiwa Y, Okada S, Yoshikawa H, Dicks L, Nakagawa J, Arita M. Comparative genomics of Fructobacillus spp. and Leuconostoc spp. reveals niche-specific evolution of Fructobacillus spp. BMC Genomics 2015; 16:1117. [PMID: 26715526 PMCID: PMC4696137 DOI: 10.1186/s12864-015-2339-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 12/22/2015] [Indexed: 11/21/2022] Open
Abstract
Background Fructobacillus spp. in fructose-rich niches belong to the family Leuconostocaceae. They were originally classified as Leuconostoc spp., but were later grouped into a novel genus, Fructobacillus, based on their phylogenetic position, morphology and specific biochemical characteristics. The unique characters, so called fructophilic characteristics, had not been reported in the group of lactic acid bacteria, suggesting unique evolution at the genome level. Here we studied four draft genome sequences of Fructobacillus spp. and compared their metabolic properties against those of Leuconostoc spp. Results Fructobacillus species possess significantly less protein coding sequences in their small genomes. The number of genes was significantly smaller in carbohydrate transport and metabolism. Several other metabolic pathways, including TCA cycle, ubiquinone and other terpenoid-quinone biosynthesis and phosphotransferase systems, were characterized as discriminative pathways between the two genera. The adhE gene for bifunctional acetaldehyde/alcohol dehydrogenase, and genes for subunits of the pyruvate dehydrogenase complex were absent in Fructobacillus spp. The two genera also show different levels of GC contents, which are mainly due to the different GC contents at the third codon position. Conclusion The present genome characteristics in Fructobacillus spp. suggest reductive evolution that took place to adapt to specific niches. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2339-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Akihito Endo
- Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido, 099-2493, Japan.
| | - Yasuhiro Tanizawa
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan. .,Center for Information Biology, National Institute of Genetics, Mishima, Japan.
| | - Naoto Tanaka
- NODAI Culture Collection Centre, Tokyo University of Agriculture, Tokyo, Japan.
| | - Shintaro Maeno
- Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido, 099-2493, Japan.
| | - Himanshu Kumar
- Functional Foods Forum, University of Turku, Turku, Finland.
| | - Yuh Shiwa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Tokyo, Japan.
| | - Sanae Okada
- NODAI Culture Collection Centre, Tokyo University of Agriculture, Tokyo, Japan.
| | - Hirofumi Yoshikawa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Tokyo, Japan. .,Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan.
| | - Leon Dicks
- Department of Microbiology, University of Stellenbosch, Stellenbosch, South Africa.
| | - Junichi Nakagawa
- Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido, 099-2493, Japan.
| | - Masanori Arita
- Center for Information Biology, National Institute of Genetics, Mishima, Japan. .,RIKEN Center for Sustainable Resource Science, Yokohama, Japan.
| |
Collapse
|
24
|
Lactic acid bacteria and their controversial role in fresh meat spoilage. Meat Sci 2015; 109:66-74. [DOI: 10.1016/j.meatsci.2015.04.014] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 11/19/2022]
|
25
|
Lyhs U, Snauwaert I, Pihlajaviita S, Vuyst LD, Vandamme P. Leuconostoc rapi sp. nov., isolated from sous-vide-cooked rutabaga. Int J Syst Evol Microbiol 2015; 65:2586-2590. [PMID: 25951860 DOI: 10.1099/ijs.0.000305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, ovoid, lactic acid bacterium, strain LMG 27676T, was isolated from a spoiled sous-vide-cooked rutabaga. 16S rRNA gene sequence analysis indicated that the novel strain belongs to the genus Leuconostoc, with Leuconostoc kimchii and Leuconostoc miyukkimchii as the nearest neighbours (99.1 and 98.8% 16S rRNA gene sequence similarity towards the type strain, respectively). Phylogenetic analysis of the 16S rRNA gene, multilocus sequence analysis of the pheS, rpoA and atpA genes, and biochemical and genotypic characteristics allowed differentiation of strain LMG 27676T from all established species of the genus Leuconostoc. Strain LMG 27676T ( = R-50029T = MHB 277T = DSM 27776T) therefore represents the type strain of a novel species, for which the name Leuconostoc rapi sp. nov. is proposed.
Collapse
Affiliation(s)
- Ulrike Lyhs
- Ruralia Institute, Seinäjoki Unit, University of Helsinki, Kampusranta 9C, FI-60320 Seinäjoki, Finland
| | - Isabel Snauwaert
- Laboratory of Microbiology and BCCM/LMG Bacteria Collection, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Seija Pihlajaviita
- Seinäjoki University of Applied Sciences, School of Food and Agriculture/Hospitality Management, Kampusranta 9, Frami A, FI-60320 Seinäjoki, Finland
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology and BCCM/LMG Bacteria Collection, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium
| |
Collapse
|
26
|
Rahkila R, Johansson P, Säde E, Paulin L, Auvinen P, Björkroth J. Multilocus sequence typing of Leuconostoc gelidum subsp. gasicomitatum, a Psychrotrophic lactic acid bacterium causing spoilage of packaged perishable foods. Appl Environ Microbiol 2015; 81:2474-80. [PMID: 25616799 PMCID: PMC4357932 DOI: 10.1128/aem.04013-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/20/2015] [Indexed: 11/20/2022] Open
Abstract
Leuconostoc gelidum subsp. gasicomitatum is a psychrotrophic lactic acid bacterium (LAB) that causes spoilage of a variety of modified-atmosphere-packaged (MAP) cold-stored food products. During the past 10 years, this spoilage organism has been increasingly reported in MAP meat and vegetable products in northern Europe. In the present study, the population structure within 252 L. gelidum subsp. gasicomitatum strains was determined based on a novel multilocus sequence-typing (MLST) scheme employing seven housekeeping genes. These strains had been isolated from meat and vegetable sources over a time span of 15 years, and all 68 previously detected pulsed-field gel electrophoresis (PFGE) genotypes were represented. A total of 46 sequence types (STs) were identified, with a majority of the strains (>60%) belonging to three major STs, which were grouped into three clonal complexes (CCs) and 17 singletons by Global Optimal eBURST (goeBURST). The results by Bayesian analysis of population structure (BAPS) mostly correlated with the grouping by goeBURST. Admixture analysis by BAPS indicated a very low level of exchange of genetic material between the subpopulations. Niche specificity was observed within the subpopulations: CC1 and BAPS cluster 1 consisted mostly of strains from a variety of MAP meats, whereas vegetable strains grouped together with strains from MAP poultry within CC2 and BAPS cluster 2. The MLST scheme presented in this study provides a shareable and continuously growing sequence database enabling global comparison of strains associated with spoilage cases. This will further advance our understanding of the microbial ecology of this industrially important LAB.
Collapse
Affiliation(s)
- Riitta Rahkila
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Per Johansson
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Elina Säde
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Johanna Björkroth
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| |
Collapse
|
27
|
Pothakos V, Aulia YA, Van der Linden I, Uyttendaele M, Devlieghere F. Exploring the strain-specific attachment of Leuconostoc gelidum subsp. gasicomitatum on food contact surfaces. Int J Food Microbiol 2015; 199:41-6. [PMID: 25625910 DOI: 10.1016/j.ijfoodmicro.2015.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 02/05/2023]
Abstract
The psychrotrophic lactic acid bacterium (LAB) Leuconostoc gelidum subsp. gasicomitatum has emerged as one of the most prevalent specific spoilage organisms (SSOs) of packaged, cold-stored food products in Northern Europe. The whole genome sequencing of the type strain L. gelidum subsp. gasicomitatum LMG 18811(T) revealed genes encoding for proteins related to adhesion. In the present study the attachment of six food and environmental isolates was monitored on stainless steel (SS) and glass surfaces incubated (7 °C for 5-9 days) in two food simulating substrates (i.e. sweet bell pepper juice and boiled eggs in brine). The selection encompassed unique genotypes, isolated from different food products or sampling sites as well as slime-forming biotypes. The evaluation of the attached cells was performed with the bead vortexing method and a viability staining assay coupled with epifluorescence microscopy. On SS surfaces the slime-formers showed the lowest attachment (3.3-4.5 logCFU/cm(2)), while strain L. gelidum subsp. gasicomitatum ab2, which was isolated from an acetic acid bath in a vegetable salad company, reached significantly higher populations of attached cells exceeding 7 logCFU/cm(2). Strain ab2 formed dense cell aggregations on SS after 9 days of incubation in sweet bell pepper juice. The attachment ability of L. gelidum subsp. gasicomitatum on surfaces documented in the present study extends our knowledge and understanding of the spoilage potential and intra-subspecies diversity of this microbe.
Collapse
Affiliation(s)
- Vasileios Pothakos
- LFMFP, Laboratory of Food Microbiology and Food Preservation, Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Member of Food2Know, Coupure Links 653, B-9000 Gent, Belgium.
| | - Yosi Ayu Aulia
- LFMFP, Laboratory of Food Microbiology and Food Preservation, Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Member of Food2Know, Coupure Links 653, B-9000 Gent, Belgium
| | - Inge Van der Linden
- LFMFP, Laboratory of Food Microbiology and Food Preservation, Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Member of Food2Know, Coupure Links 653, B-9000 Gent, Belgium
| | - Mieke Uyttendaele
- LFMFP, Laboratory of Food Microbiology and Food Preservation, Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Member of Food2Know, Coupure Links 653, B-9000 Gent, Belgium
| | - Frank Devlieghere
- LFMFP, Laboratory of Food Microbiology and Food Preservation, Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Member of Food2Know, Coupure Links 653, B-9000 Gent, Belgium
| |
Collapse
|
28
|
Production of buttery-odor compounds and transcriptome response in Leuconostoc gelidum subsp. gasicomitatum LMG18811T during growth on various carbon sources. Appl Environ Microbiol 2014; 81:1902-8. [PMID: 25548057 DOI: 10.1128/aem.03705-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Leuconostoc gelidum subsp. gasicomitatum is a common spoilage bacterium in meat products packaged under oxygen-containing modified atmospheres. Buttery off-odors related to diacetyl/acetoin formation are frequently associated with the spoilage of these products. A whole-genome microarray study, together with gas chromatography (GC)-mass spectrometry (MS) analyses of the pathway end products, was performed to investigate the transcriptome response of L. gelidum subsp. gasicomitatum LMG18811(T) growing on semidefined media containing glucose, ribose, or inosine, which are essential carbon sources in meat. Generally, the gene expression patterns with ribose and inosine were quite similar, indicating that catabolism of ribose and nucleosides is closely linked. Diacetyl/acetoin concentrations as high as 110 or 470 μM were measured when growth was based on inosine or ribose, respectively. The gene expression results for pyruvate metabolism (upregulation of α-acetolactate synthase, downregulation of l-lactate dehydrogenase and pyruvate dehydrogenase) were as expected when diacetyl and acetoin were the end products. No diacetyl production (<7.5 μM) was detected with the glucose-containing medium, even though the cell counts of LMG18811(T) was 6 or 10 times higher than that on inosine or ribose, respectively. Although glucose was the most effective carbon source for the growth of L. gelidum subsp. gasicomitatum, utilization of inosine and ribose resulted in the production of the unwanted buttery-odor compounds. These results increase our understanding of which compounds are likely to enhance the formation of buttery odors during meat spoilage caused by L. gelidum subsp. gasicomitatum.
Collapse
|