1
|
Gheibzadeh MS, Manyumwa CV, Tastan Bishop Ö, Shahbani Zahiri H, Parkkila S, Zolfaghari Emameh R. Genome Study of α-, β-, and γ-Carbonic Anhydrases from the Thermophilic Microbiome of Marine Hydrothermal Vent Ecosystems. BIOLOGY 2023; 12:770. [PMID: 37372055 DOI: 10.3390/biology12060770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023]
Abstract
Carbonic anhydrases (CAs) are metalloenzymes that can help organisms survive in hydrothermal vents by hydrating carbon dioxide (CO2). In this study, we focus on alpha (α), beta (β), and gamma (γ) CAs, which are present in the thermophilic microbiome of marine hydrothermal vents. The coding genes of these enzymes can be transferred between hydrothermal-vent organisms via horizontal gene transfer (HGT), which is an important tool in natural biodiversity. We performed big data mining and bioinformatics studies on α-, β-, and γ-CA coding genes from the thermophilic microbiome of marine hydrothermal vents. The results showed a reasonable association between thermostable α-, β-, and γ-CAs in the microbial population of the hydrothermal vents. This relationship could be due to HGT. We found evidence of HGT of α- and β-CAs between Cycloclasticus sp., a symbiont of Bathymodiolus heckerae, and an endosymbiont of Riftia pachyptila via Integrons. Conversely, HGT of β-CA genes from the endosymbiont Tevnia jerichonana to the endosymbiont Riftia pachyptila was detected. In addition, Hydrogenovibrio crunogenus SP-41 contains a β-CA gene on genomic islands (GIs). This gene can be transferred by HGT to Hydrogenovibrio sp. MA2-6, a methanotrophic endosymbiont of Bathymodiolus azoricus, and a methanotrophic endosymbiont of Bathymodiolus puteoserpentis. The endosymbiont of R. pachyptila has a γ-CA gene in the genome. If α- and β-CA coding genes have been derived from other microorganisms, such as endosymbionts of T. jerichonana and Cycloclasticus sp. as the endosymbiont of B. heckerae, through HGT, the theory of the necessity of thermostable CA enzymes for survival in the extreme ecosystem of hydrothermal vents is suggested and helps the conservation of microbiome natural diversity in hydrothermal vents. These harsh ecosystems, with their integral players, such as HGT and endosymbionts, significantly impact the enrichment of life on Earth and the carbon cycle in the ocean.
Collapse
Affiliation(s)
- Mohammad Sadegh Gheibzadeh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| | - Colleen Varaidzo Manyumwa
- Research Unit in Bioinformatics (Rubi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (Rubi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Hossein Shahbani Zahiri
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
- Fimlab Ltd., Tampere University Hospital, 33520 Tampere, Finland
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| |
Collapse
|
2
|
Fedorova I, Vasileva A, Selkova P, Abramova M, Arseniev A, Pobegalov G, Kazalov M, Musharova O, Goryanin I, Artamonova D, Zyubko T, Shmakov S, Artamonova T, Khodorkovskii M, Severinov K. PpCas9 from Pasteurella pneumotropica - a compact Type II-C Cas9 ortholog active in human cells. Nucleic Acids Res 2020; 48:12297-12309. [PMID: 33152077 PMCID: PMC7708072 DOI: 10.1093/nar/gkaa998] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/11/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022] Open
Abstract
CRISPR-Cas defense systems opened up the field of genome editing due to the ease with which effector Cas nucleases can be programmed with guide RNAs to access desirable genomic sites. Type II-A SpCas9 from Streptococcus pyogenes was the first Cas9 nuclease used for genome editing and it remains the most popular enzyme of its class. Nevertheless, SpCas9 has some drawbacks including a relatively large size and restriction to targets flanked by an 'NGG' PAM sequence. The more compact Type II-C Cas9 orthologs can help to overcome the size limitation of SpCas9. Yet, only a few Type II-C nucleases were fully characterized to date. Here, we characterized two Cas9 II-C orthologs, DfCas9 from Defluviimonas sp.20V17 and PpCas9 from Pasteurella pneumotropica. Both DfCas9 and PpCas9 cleave DNA in vitro and have novel PAM requirements. Unlike DfCas9, the PpCas9 nuclease is active in human cells. This small nuclease requires an 'NNNNRTT' PAM orthogonal to that of SpCas9 and thus potentially can broaden the range of Cas9 applications in biomedicine and biotechnology.
Collapse
Affiliation(s)
- Iana Fedorova
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Moscow, 121205, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Aleksandra Vasileva
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Moscow, 121205, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, 195251, Russia
| | - Polina Selkova
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Moscow, 121205, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, 195251, Russia
| | - Marina Abramova
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, 195251, Russia
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Anatolii Arseniev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, 195251, Russia
| | - Georgii Pobegalov
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, 195251, Russia
| | - Maksim Kazalov
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, 195251, Russia
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Olga Musharova
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Moscow, 121205, Russia
- Institute of Molecular Genetics of National Research Center “Kurchatov Institute’’, Moscow, 123182, Russia
| | - Ignatiy Goryanin
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Moscow, 121205, Russia
| | - Daria Artamonova
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Moscow, 121205, Russia
| | - Tatyana Zyubko
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, 195251, Russia
| | - Sergey Shmakov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Tatyana Artamonova
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, 195251, Russia
| | - Mikhail Khodorkovskii
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, 195251, Russia
| | - Konstantin Severinov
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Institute of Molecular Genetics of National Research Center “Kurchatov Institute’’, Moscow, 123182, Russia
| |
Collapse
|
3
|
Liu Y, Pei T, Zhang J, Yang F, Zhu H. Proposal for transfer of Defluviimonas alba to the genus Frigidibacter as Frigidibacter mobilis nom. nov. Int J Syst Evol Microbiol 2020; 70:3553-3558. [PMID: 32379019 DOI: 10.1099/ijsem.0.004216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A polyphasic taxonomic study was undertaken to clarify the exact position of the type strain cai42T of the species Defluviimonas alba Pan et al. 2015. The results of the 16S rRNA gene sequence analysis indicated that the two sequences from cai42T shared 99.6 and 99.7 % similarity to that of the type strain SP32T of the species Frigidibacter albus and formed a coherent clade in the phylogenetic tree. Whole genomic comparison between cai42T and SP32T yielded a digital DNA-DNA hybridization estimate of 36.3 %, an average nucleotide identity of 88.8 % and an average amino acid identity of 89.8 %, clearly indicating that the two strains should belong to two genospecies of the same genus. The close relationship between the two strains was underpinned by the results of genome-based phylogenetic analysis. Although cai42T and SP32T shared similar physiological and biochemical properties, some striking differences, such as mobility, the temperature range for growth and the polar lipid components, could distinguish them as separate species. Therefore, the comparative phenotypic and genotypic analyses supported the incorporation of Defluviimonas alba into the genus Frigidibacter as Frigidibacter mobilis nom. nov. with the type strain cai42T (=CGMCC 1.12518T=LMG 27406T).
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Tao Pei
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Jun Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Fan Yang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Honghui Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| |
Collapse
|
4
|
Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM, Tindall BJ, Gronow S, Kyrpides NC, Woyke T, Göker M. Analysis of 1,000+ Type-Strain Genomes Substantially Improves Taxonomic Classification of Alphaproteobacteria. Front Microbiol 2020; 11:468. [PMID: 32373076 PMCID: PMC7179689 DOI: 10.3389/fmicb.2020.00468] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
The class Alphaproteobacteria is comprised of a diverse assemblage of Gram-negative bacteria that includes organisms of varying morphologies, physiologies and habitat preferences many of which are of clinical and ecological importance. Alphaproteobacteria classification has proved to be difficult, not least when taxonomic decisions rested heavily on a limited number of phenotypic features and interpretation of poorly resolved 16S rRNA gene trees. Despite progress in recent years regarding the classification of bacteria assigned to the class, there remains a need to further clarify taxonomic relationships. Here, draft genome sequences of a collection of genomes of more than 1000 Alphaproteobacteria and outgroup type strains were used to infer phylogenetic trees from genome-scale data using the principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families and genera, including taxa recognized as problematic long ago but also quite recent taxa, as well as a few species were shown to be in need of revision. According proposals are made for the recognition of new orders, families and genera, as well as the transfer of a variety of species to other genera and of a variety of genera to other families. In addition, emended descriptions are given for many species mainly involving information on DNA G+C content and (approximate) genome size, both of which are confirmed as valuable taxonomic markers. Similarly, analysis of the gene content was shown to provide valuable taxonomic insights in the class. Significant incongruities between 16S rRNA gene and whole genome trees were not found in the class. The incongruities that became obvious when comparing the results of the present study with existing classifications appeared to be caused mainly by insufficiently resolved 16S rRNA gene trees or incomplete taxon sampling. Another probable cause of misclassifications in the past is the partially low overall fit of phenotypic characters to the sequence-based tree. Even though a significant degree of phylogenetic conservation was detected in all characters investigated, the overall fit to the tree varied considerably.
Collapse
Affiliation(s)
- Anton Hördt
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marina García López
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Jan P. Meier-Kolthoff
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marcel Schleuning
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Lisa-Maria Weinhold
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Brian J. Tindall
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Sabine Gronow
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Markus Göker
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| |
Collapse
|
5
|
Liu P, Ding W, Lai Q, Liu R, Wei Y, Wang L, Xie Z, Cao J, Fang J. Physiological and genomic features of Paraoceanicella profunda gen. nov., sp. nov., a novel piezophile isolated from deep seawater of the Mariana Trench. Microbiologyopen 2019; 9:e966. [PMID: 31743595 PMCID: PMC7002103 DOI: 10.1002/mbo3.966] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/27/2019] [Accepted: 10/30/2019] [Indexed: 01/11/2023] Open
Abstract
A novel piezophilic alphaproteobacterium, strain D4M1T, was isolated from deep seawater of the Mariana Trench. 16S rRNA gene analysis showed that strain D4M1T was most closely related to Oceanicella actignis PRQ‐67T (94.2%), Oceanibium sediminis O448T (94.2%), and Thioclava electrotropha ElOx9T (94.1%). Phylogenetic analyses based on both 16S rRNA gene and genome sequences showed that strain D4M1T formed an independent monophyletic branch paralleled with the genus Oceanicella in the family Rhodobacteraceae. Cells were Gram‐stain‐negative, aerobic short rods, and grew optimally at 37°C, pH 6.5, and 3.0% (w/v) NaCl. Strain D4M1T was piezophilic with the optimum pressure of 10 MPa. The principal fatty acids were C18:1ω7c/C18:1ω6c and C16:0, major respiratory quinone was ubiquinone‐10, and predominant polar lipids were phosphatidylglycerol, phosphatidylethanolamine, and an unidentified aminophospholipid. The complete genome contained 5,468,583‐bp with a G + C content of 70.2 mol% and contained 4,855 protein‐coding genes and 78 RNA genes. Genomic analysis revealed abundant clues on bacterial high‐pressure adaptation and piezophilic lifestyle. The combined evidence shows that strain D4M1T represents a novel species of a novel genus in the family Rhodobacteraceae, for which the name Paraoceanicella profunda gen. nov., sp. nov. is proposed (type strain D4M1T = MCCC 1K03820T = KCTC 72285T).
Collapse
Affiliation(s)
- Ping Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.,National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Wanzhen Ding
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.,National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources of PR China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Xiamen, China
| | - Rulong Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.,National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Yuli Wei
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.,National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Li Wang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.,National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Zhe Xie
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.,National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Junwei Cao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.,National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Department of Natural Sciences, Hawaii Pacific University, Honolulu, HI, USA
| |
Collapse
|
6
|
Chu C, Liu B, Lian Z, Zheng H, Chen C, Yue Z, Li L, Sun Z. Solirhodobacter olei gen. nov., sp. nov., a nonphotosynthetic bacterium isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2019; 70:582-588. [PMID: 31613741 DOI: 10.1099/ijsem.0.003795] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A nonphotosynthetic, Gram-stain-negative, rod-shaped and motile strain, designated Pet-1T, was isolated from oil-contaminated soil collected from Daqing oil field in China. Optimal growth occurred at 37 °C, pH 5.5 and in 1 % (w/v) NaCl. Q-10 was the sole respiratory quinone. The most abundant fatty acid was C18 : 1ɷ7c/C18 : 1ɷ6c (67.4 %). The major polar lipids were phosphatidylglycerol, aminolipid, phosphatidylethanolaine, phosphatidycholine, two unidentified lipids and two unidentified phospholipids. The genomic DNA G+C content was 69.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that Pet-1T shared the highest similarity (95.1 %) to Rhodobacter vinaykumarii DSM 18714T, followed by Sinorhodobacter populi sk2b1T (95.0 %) and Haematobacter massiliensis CCUG 47968T (95.0 %). In the phylogenetic tree, strain Pet-1T formed a separate branch from the closely related genera Rhodobacter, Pararhodobacter, Defluviimonas and Rhodovulum within the family Rhodobacteraceae. Based on the data from the current polyphasic study, it is proposed that the isolate is a novel species of a novel genus within the family Rhodobacteraceae, with the name Solirhodobacter olei gen. nov., sp. nov. The type strain of the type species is Pet-1T (=KCTC 72074T =CCTCC AB 2018368T).
Collapse
Affiliation(s)
- Cuiwei Chu
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, PR China
| | - Bin Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Ziyi Lian
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, PR China
| | - Huiying Zheng
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, PR China
| | - Can Chen
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, PR China
| | - Zonghao Yue
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, PR China
| | - Lili Li
- Henan Key Laboratory of Molecular Breeding and Bioreactor, Zhoukou, Henan 466001, PR China.,College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, PR China
| | - Zhongke Sun
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, PR China
| |
Collapse
|
7
|
Ren H, Ma H, Li H, Huang L, Luo Y. Acidimangrovimonas sediminis gen. nov., sp. nov., isolated from mangrove sediment and reclassification of Defluviimonas indica as Acidimangrovimonas indica comb. nov. and Defluviimonas pyrenivorans as Acidimangrovimonas pyrenivorans comb. nov. Int J Syst Evol Microbiol 2019; 69:2445-2451. [PMID: 31169491 DOI: 10.1099/ijsem.0.003513] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, aerobic, non-motile, short-rod bacterium, strain MS2-2T, was isolated from mangrove sediment sampled at Jiulong River Estuary, Fujian province, PR China. 16S rRNA gene sequence similarity analysis showed that strain MS2-2T was most closely related to Defluviimonas indica 20V17T (97.41 %) and Defluviimonas pyrenivorans PrR001T (96.18 %). Phylogenetic trees based on 16S rRNA genes and genome sequences both revealed that strain MS2-2T formed a distinct cluster with D. indica 20V17T and D. pyrenivorans PrR001T within family Rhodobacteracea, quite separate from other type species in the genus Defluviimonas. The average nucleotide identity value between strain MS2-2T and D. indica 20V17T was 78.35 %. Growth of strain MS2-2T was observed at 16-41 ° C (optimum, 34 ° C), pH 3.6-7.5 (pH 6.0) and 0.5-10.0 % (w/v) NaCl (4.0 %). The major cellular fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), C16 : 0 and C18 : 0. Ubiquinone 10 was the sole quinone. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The DNA G+C content was 67.9 mol%. The combined genotypic and phenotypic data show that strain MS2-2T represents a novel species of a novel genus in the family Rhodobacteraceae, for which the name Acidimangrovimonassediminis gen. nov., sp. nov. is proposed, with the type strain MS2-2T (=MCCC 1K02682T=NBRC 112978T). We also propose the reclassification of Defluviimonas indica as Acidimangrovimonas indica comb. nov. and Defluviimonas pyrenivorans as Acidimangrovimonas pyrenivorans comb. nov.
Collapse
Affiliation(s)
- Hao Ren
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China.,Fujian Provincial Key Laboratory of Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, PR China
| | - Hui Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China.,Fujian Provincial Key Laboratory of Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, PR China
| | - Hao Li
- School of Life Sciences, Xiamen University, Xiamen 361102, PR China
| | - Lingfeng Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China.,Fujian Provincial Key Laboratory of Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, PR China
| | - Yuanrong Luo
- Fujian Provincial Key Laboratory of Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, PR China.,Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| |
Collapse
|
8
|
Sánchez-Sánchez J, Cerca M, Alcántara-Hernández RJ, Lozano-Flores C, Carreón-Freyre D, Levresse G, Vega M, Varela-Echavarría A, Aranda-Gómez JJ. Extant microbial communities in the partially desiccated Rincon de Parangueo maar crater lake in Mexico. FEMS Microbiol Ecol 2019; 95:5437671. [DOI: 10.1093/femsec/fiz051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/09/2019] [Indexed: 11/12/2022] Open
Abstract
ABSTRACT
Rincon de Parangueo is a maar where a perennial lake was present until the 1980s. A conspicuous feature of the lake’s sediments is the presence of bioherms and organo-sedimentary deposits produced by microbial communities. The gradual lake desiccation during the last 40 years has produced dramatic environmental changes inside the maar basin, which resulted in the formation of a highly saline-alkaline system with extant microorganisms. In this paper we succinctly describe the geologic setting where the microbial communities have developed inside of the maar crater and the results obtained from high-throughput sequencing methods to characterize the microbial component (Bacteria, Eukarya and Archaea) in endolithic mats of calcareous sediments, and microbial mats and free-living microorganisms in the soda ponds. The studied sites displayed different microbial communities with a diverse number of phylotypes belonging to Bacteria and Eukarya, contrasting with a much less diverse component in Archaea. The sequences here detected were related to environmental sequences from sites with extreme life conditions such as high alkalinity (alkaliphiles), high salinity (halophiles) and high temperature (thermophiles). Moreover, our results indicate an important unexplored endemic microbial biodiversity in the vestiges of the former lake that need to be studied.
Collapse
Affiliation(s)
- Janet Sánchez-Sánchez
- Posgrado en Ciencias de la Tierra, Centro de Geociencias, Universidad Nacional Autónoma de México, Blvd Juriquilla, 3001, 76230, Juriquilla, Querétaro, México
| | - Mariano Cerca
- Centro de Geociencias, Universidad Nacional Autónoma de México, Blvd Juriquilla, 3001, 76230, Juriquilla, Querétaro, México
| | - Rocío J Alcántara-Hernández
- Instituto de Geología, UNAM, Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Del. Coyoacán, 04510, Ciudad de México, México
| | - Carlos Lozano-Flores
- Departamento de Biología del Desarrollo y Neurofisiología, Instituto de Neurobiología Universidad Nacional Autónoma de México, Querétaro, México
| | - Dora Carreón-Freyre
- Centro de Geociencias, Universidad Nacional Autónoma de México, Blvd Juriquilla, 3001, 76230, Juriquilla, Querétaro, México
| | - Gilles Levresse
- Centro de Geociencias, Universidad Nacional Autónoma de México, Blvd Juriquilla, 3001, 76230, Juriquilla, Querétaro, México
| | - Marina Vega
- Centro de Geociencias, Universidad Nacional Autónoma de México, Blvd Juriquilla, 3001, 76230, Juriquilla, Querétaro, México
| | - Alfredo Varela-Echavarría
- Departamento de Biología del Desarrollo y Neurofisiología, Instituto de Neurobiología Universidad Nacional Autónoma de México, Querétaro, México
| | - Jose Jorge Aranda-Gómez
- Centro de Geociencias, Universidad Nacional Autónoma de México, Blvd Juriquilla, 3001, 76230, Juriquilla, Querétaro, México
| |
Collapse
|
9
|
Kandeliimicrobium roseum gen. nov., sp. nov., a new member of the family Rhodobacteraceae isolated from mangrove rhizosphere soil. Int J Syst Evol Microbiol 2018; 68:2158-2164. [DOI: 10.1099/ijsem.0.002773] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
10
|
Defluviimonas pyrenivorans sp. nov., a novel bacterium capable of degrading polycyclic aromatic hydrocarbons. Int J Syst Evol Microbiol 2018; 68:957-961. [DOI: 10.1099/ijsem.0.002629] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
11
|
Liu Y, Lai Q, Wang W, Shao Z. Defluviimonas nitratireducens sp. nov., isolated from surface seawater. Int J Syst Evol Microbiol 2017; 67:2752-2757. [DOI: 10.1099/ijsem.0.002015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yang Liu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, State Oceanic Administration, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA, Xiamen 361005, PR China
| | - Qiliang Lai
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, State Oceanic Administration, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA, Xiamen 361005, PR China
| | - Wanpeng Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, State Oceanic Administration, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA, Xiamen 361005, PR China
| | - Zongze Shao
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, State Oceanic Administration, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA, Xiamen 361005, PR China
| |
Collapse
|
12
|
Jiang L, Xu H, Zeng X, Wu X, Long M, Shao Z. Thermophilic hydrogen-producing bacteria inhabiting deep-sea hydrothermal environments represented by Caloranaerobacter. Res Microbiol 2015; 166:677-87. [DOI: 10.1016/j.resmic.2015.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/28/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
|
13
|
Abstract
Two Gram-stain-negative, rod-shaped bacterial strains, cai42T and b45, were isolated from oil-production water taken from Xinjiang Oilfield, China. Optimum growth was observed at 30 °C, at pH 8 and with 1–3 % (w/v) NaCl. According to phylogenetic analyses, the two strains were members of the genus
Defluviimonas
, with 16S rRNA gene sequence similarities of 95.5−96.3 % with the type strains of species of the genus. The major cellular fatty acids of strains cai42T and b45 were C10 : 0 3-OH, C16 : 0 and summed feature 8 (C18 : 1ω7c/C18 : 1ω6c), and the predominant ubiquinone was Q-10, all of these data being typical for the genus
Defluviimonas
. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, glycolipid, phosphatidylcholine, two unidentified aminolipids, an unidentified phospholipid and two unidentified lipids. The mean genomic DNA G+C contents of strains cai42T and b45 were 60.8±1.1 and 60.4±1.0 mol%, respectively. On the basis of phylogenetic, physiological and chemotaxonomic analyses, strains cai42T and b45 represent a novel species of the genus
Defluviimonas
, for which the name Defluviimonas alba sp. nov. is proposed. The type strain is cai42T ( = CGMCC 1.12518T = LMG 27406T).
Collapse
|
14
|
Defluviimonas aquaemixtae sp. nov., isolated from the junction between a freshwater spring and the ocean. Int J Syst Evol Microbiol 2014; 64:4191-4197. [DOI: 10.1099/ijs.0.068767-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, coccoid- or short-rod-shaped and non-gliding bacterial strain, designated CDM-7T, was isolated from the zone where the ocean meets a freshwater spring at Jeju island, South Korea, and was subjected to a polyphasic taxonomic study. Strain CDM-7T grew optimally at pH 7.0–8.0, at 30 °C and in the presence of 2–3 % (w/v) NaCl. Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain CDM-7T falls within the clade comprising species of the genus
Defluviimonas,
clustering with the type strain of
Defluviimonas aestuarii
, with which it exhibited the highest 16S rRNA gene sequence similarity value (98.4 %). The 16S rRNA gene sequence similarity values between strain CDM-7T and the type strains of
Defluviimonas denitrificans
and
Defluviimonas indica
were 97.1 and 96.2 %, respectively. The genomic DNA G+C content was 66.8 mol% and the mean DNA–DNA relatedness values between strain CDM-7T and the type strains of
D. aestuarii
and
D. denitrificans
were 15.6±2.5 and 6.7±3.2 %, respectively. Strain CDM-7T contained Q-10 as the predominant ubiquinone and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) as the major fatty acid. The major polar lipids were phosphatidylcholine, phosphatidylglycerol, an unidentified aminolipid, an unidentified phospholipid and an unidentified lipid. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, demonstrated that strain CDM-7T is distinguishable from other species of the genus
Defluviimonas
. On the basis of the data presented, strain CDM-7T is considered to represent a novel species of the genus
Defluviimonas
, for which the name Defluviimonas
aquaemixtae sp. nov. is proposed. The type strain is CDM-7T ( = KCTC 42108T = CECT 8626T).
Collapse
|
15
|
Draft Genome Sequence of Defluviimonas indica Strain 20V17T, Isolated from a Deep-Sea Hydrothermal Vent Environment in the Southwest Indian Ocean. GENOME ANNOUNCEMENTS 2014; 2:2/3/e00479-14. [PMID: 24903865 PMCID: PMC4047444 DOI: 10.1128/genomea.00479-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we present the draft genome sequence of Defluviimonas indica 20V17T, which was isolated from a deep-sea hydrothermal vent chimney sample in the southwest Indian Ocean. The draft genome sequence contains 4,268,338 bp, with a G+C content of 66.33%.
Collapse
|