1
|
Yang F, Wang H, Chen LQ, Zhou N, Lu JJ, Pu XX, Wan B, Wang L, Liu SJ. Clostridium lapidicellarium sp. nov. and Clostridium moutaii sp. nov., two species isolated from fermentation cellar-producing sauce-flavour Chinese baijiu. Int J Syst Evol Microbiol 2024; 74. [PMID: 39560674 DOI: 10.1099/ijsem.0.006580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
Clostridium is an important microbial component in pit mud due to its ability to produce alcohol and short-chain fatty acids. This study presents the characterization and taxonomy of two Gram-stain-positive, strictly anaerobic, rod-shaped mesophilic bacterial strains, designated MT-113T and MT-5T, isolated from pit mud in a fermentation cellar used for producing sauce-flavour Chinese baijiu. Phylogenetic analysis based on genome and 16S rRNA gene sequences of strains MT-113T and MT-5T indicates their affiliation with the genus Clostridium sensu stricto (Cluster I of the Clostridia), with C. luticellarii FW431T and C. aromativorans WLY-B-L2T as the closest related species. The major cellular fatty acids (>10.0%) of both strains are C14 : 0 and summed feature 1 (iso-C15 : 1 h and/or C13 : 0 3-OH). The G+C molar contents of the complete genomes for strains MT-113T and MT-5T are 35.84 and 32.74 mol%, respectively. The average nucleotide identity and average amino acid identity values between strains MT-113T, MT-5T, C. aromativorans WLY-B-L2T and C. luticellarii FW431T range from 79 to 85%. The primary products of glucose fermentation by MT-113T are acetic, butyric and isovaleric acids, while those of MT-5T are acetic, isobutyric, butyric and isovaleric acids. Based on their phenotypic, chemotaxonomic and phylogenetic characteristics, strains MT-113T (=CGMCC 1.18018T = JCM 36532T) and MT-5T (=CGMCC 1.18016T = JCM 36530T) are proposed as the type strains of two novel species of the genus Clostridium, namely Clostridium lapidicellarium sp. nov. and Clostridium moutaii sp. nov., respectively.
Collapse
Affiliation(s)
- Fan Yang
- Kweichow Moutai Distillery Co., Ltd., Zunyi 564501, PR China
| | - Hui Wang
- Kweichow Moutai Distillery Co., Ltd., Zunyi 564501, PR China
| | | | - Nan Zhou
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jian-Jun Lu
- Kweichow Moutai Distillery Co., Ltd., Zunyi 564501, PR China
| | - Xiu-Xin Pu
- Kweichow Moutai Distillery Co., Ltd., Zunyi 564501, PR China
| | - Bo Wan
- Kweichow Moutai Distillery Co., Ltd., Zunyi 564501, PR China
| | - Li Wang
- Kweichow Moutai Distillery Co., Ltd., Zunyi 564501, PR China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
2
|
Pragya K, Sreya P, Vighnesh L, Mahima D, Sushmita M, Sasikala C, Venkata Ramana C. Phylogenomic analysis of metagenome-assembled genomes indicates new taxa in the order Spirochaetales and proposal of Thalassospirochaeta sargassi gen. nov. sp. nov. from seaweeds. Syst Appl Microbiol 2024; 47:126502. [PMID: 38458136 DOI: 10.1016/j.syapm.2024.126502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/16/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Six metagenome-assembled genomes (JB008Ts, JB007, JB015, JB003, JB004, and JB002) belonging to the order Spirochaetales were generated from seaweed samples collected from the Gulf of Mannar, India. The binned genomes JB008Ts and JB007 shared highest 16S rRNA gene identity of 94.9 % and 92.2-93.4 %, respectively with uncultivated Spirochaetaceae family members, and < 90 % identity with Marispirochaeta aestuari JC444T. While, the bin JB015 showed 99.1 % identity with Pleomorphochaeta naphthae SEBR 4209T. The phylogenomic and 16S rRNA gene-based phylogenetic analysis of the binned genomes JB007 and JB008Ts confirmed that these members belong to the family Spirochaetaceae and bins JB015, JB002, JB003, and JB004 belong to the genus Pleomorphochaeta within the family Sphaerochaetaceae. The AAI values of the binned genomes JB007 and JB008Ts compared to other members of the Spirochaetaceae family were between 53.9- 56.8 % and 53.8-57.1 %, respectively. Furthermore, the comparison of ANI, dDDH, and POCP metrics of the binned genomes JB007 and JB008Ts, both among themselves and with the members of Spirochaetaceae, was also below the suggested thresholds for genera delineation. Consequently, the binned genome JB008Ts is proposed as a new genus according to the guidelines of code of nomenclature of prokaryotes described from sequence data (SeqCode) with the name Thalassospirochaeta sargassi gen. nov. sp. nov., in the family Spirochaetaceae while the bin JB007 could not be proposed as novel taxa due to low-quality estimates. The bin JB015 and its additional genomes form a distinct clade, but their taxonomic status remains ambiguous due to the absence of genomic evidence from other Pleomorphochaeta members.
Collapse
Affiliation(s)
- Kohli Pragya
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Pannikurungottu Sreya
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Lakshmanan Vighnesh
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Dhurka Mahima
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Mallick Sushmita
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Chintalapati Sasikala
- Bacterial Discovery Laboratory, Centre for Environment, IST, JNT University Hyderabad, Kukatpally, Hyderabad 500085, India.
| | - Chintalapati Venkata Ramana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India.
| |
Collapse
|
3
|
Prinčič L, Burtscher J, Sacken P, Krajnc T, Domig KJ. Clostridium strain FAM25158, a unique endospore-forming bacterium related to Clostridium tyrobutyricum and isolated from Emmental cheese shows low tolerance to salt. Front Microbiol 2024; 15:1353321. [PMID: 38414773 PMCID: PMC10897056 DOI: 10.3389/fmicb.2024.1353321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
The genus Clostridium is a large and diverse group of species that can cause food spoilage, including late blowing defect (LBD) in cheese. In this study, we investigated the taxonomic status of strain FAM25158 isolated from Emmental cheese with LBD using a polyphasic taxonomic and comparative genomic approach. A 16S rRNA gene sequence phylogeny suggested affiliation to the Clostridium sensu stricto cluster, with Clostridium tyrobutyricum DSM 2637T being the closest related type strain (99.16% sequence similarity). Average Nucleotide Identity (ANI) analysis revealed that strain FAM25158 is at the species threshold with C. tyrobutyricum, with ANI values ranging from 94.70 to 95.26%, while the digital DNA-DNA hybridization values were below the recommended threshold, suggesting that FAM25158 is significantly different from C. tyrobutyricum at the genomic level. Moreover, comparative genomic analysis between FAM25158 and its four closest C. tyrobutyricum relatives revealed a diversity of metabolic pathways, with FAM25158 differing from other C. tyrobutyricum strains by the presence of genes such as scrA, srcB, and scrK, responsible for sucrose utilization, and the absence of many important functional genes associated with cold and osmolality adaptation, which was further supported by phenotypic analyses. Surprisingly, strain FAM25158 exhibited unique physiologic traits, such as an optimal growth temperature of 30°C, in contrast to its closest relatives, C. tyrobutyricum species with an optimal growth temperature of 37°C. Additionally, the growth of FAM25158 was inhibited at NaCl concentrations higher than 0.5%, a remarkable observation considering its origin from cheese. While the results of this study provide novel information on the genetic content of strain FAM25158, the relationship between its genetic content and the observed phenotype remains a topic requiring further investigation.
Collapse
Affiliation(s)
- Lucija Prinčič
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Johanna Burtscher
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Paul Sacken
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Tina Krajnc
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Konrad J Domig
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| |
Collapse
|
4
|
Walters KA, Mohan G, Myers KS, Ingle AT, Donohue TJ, Noguera DR. A metagenome-level analysis of a microbial community fermenting ultra-filtered milk permeate. Front Bioeng Biotechnol 2023; 11:1173656. [PMID: 37324413 PMCID: PMC10263058 DOI: 10.3389/fbioe.2023.1173656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
Fermentative microbial communities have the potential to serve as biocatalysts for the conversion of low-value dairy coproducts into renewable chemicals, contributing to a more sustainable global economy. To develop predictive tools for the design and operation of industrially relevant strategies that utilize fermentative microbial communities, there is a need to determine the genomic features of community members that are characteristic to the accumulation of different products. To address this knowledge gap, we performed a 282-day bioreactor experiment with a microbial community that was fed ultra-filtered milk permeate, a low-value coproduct from the dairy industry. The bioreactor was inoculated with a microbial community from an acid-phase digester. A metagenomic analysis was used to assess microbial community dynamics, construct metagenome-assembled genomes (MAGs), and evaluate the potential for lactose utilization and fermentation product synthesis of community members represented by the assembled MAGs. This analysis led us to propose that, in this reactor, members of the Actinobacteriota phylum are important in the degradation of lactose, via the Leloir pathway and the bifid shunt, and the production of acetic, lactic, and succinic acids. In addition, members of the Firmicutes phylum contribute to the chain-elongation-mediated production of butyric, hexanoic, and octanoic acids, with different microbes using either lactose, ethanol, or lactic acid as the growth substrate. We conclude that genes encoding carbohydrate utilization pathways, and genes encoding lactic acid transport into the cell, electron confurcating lactate dehydrogenase, and its associated electron transfer flavoproteins, are genomic features whose presence in Firmicutes needs to be established to infer the growth substrate used for chain elongation.
Collapse
Affiliation(s)
- Kevin A. Walters
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, United States
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Geethaanjali Mohan
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, United States
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Kevin S. Myers
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, United States
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Abel T. Ingle
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, United States
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Timothy J. Donohue
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, United States
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Daniel R. Noguera
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, United States
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
5
|
Li D, Ye G, Zong X, Zou W. Effect of Multiple Rounds of Enrichment on Metabolite Accumulation and Microbiota Composition of Pit Mud for Baijiu Fermentation. Foods 2023; 12:foods12081594. [PMID: 37107389 PMCID: PMC10137600 DOI: 10.3390/foods12081594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Pit mud (PM) is the main component of Baijiu (traditional Chinese liquor), and its microorganisms are the primary sources of the aroma of Chinese strong-flavor Baijiu (SFB). Enrichment plays an important role in the selection of functional microorganisms in PM. Herein, the PM of SFB was submitted to six rounds of enrichment using clostridial growth medium (CGM), and changes in the metabolite accumulation and microbiota composition were evaluated. Based on the metabolite production and microbiota composition, the enrichment rounds were classified as the acclimation stage (round 2), main fermentation stage (rounds 3 and 4), and late fermentation stage (rounds 5 and 6). Species within the genus Clostridium dominated in the acclimation stage (65.84-74.51%). In the main fermentation stage, the dominant microbial groups were producers of butyric acid, acetic acid, and caproic acid, which included Clostridium (45.99-74.80%), Caproicibacter (1.45-17.02%), and potential new species within the order of Oscillataceae (14.26-29.10%). In the late stage of enrichment, Pediococcus dominated (45.96-79.44%). Thus, the main fermentation stage can be considered optimal for the isolation of acid-producing bacteria from PM. The findings discussed herein support the development and application of functional bacteria by bioaugmentation, and contribute to improving the quality of PM and SFB production.
Collapse
Affiliation(s)
- Dong Li
- School of Life Science, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Guangbin Ye
- School of Life Science, Sichuan University of Science & Engineering, Yibin 644000, China
- Liquor-Making Biotechnology and Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Xuyan Zong
- School of Life Science, Sichuan University of Science & Engineering, Yibin 644000, China
- Liquor-Making Biotechnology and Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Wei Zou
- School of Life Science, Sichuan University of Science & Engineering, Yibin 644000, China
| |
Collapse
|
6
|
Sørensen JS, Madsen SK, Bang-Berthelsen CH, Hansen LT. Quality and safety aspects in fermentation of winged kelp (Alaria esculenta) and sugar kelp (Saccharina latissima) by the natural microbiota with or without addition of a Lactiplantibacillus plantarum starter culture. Food Res Int 2021; 150:110800. [PMID: 34863492 DOI: 10.1016/j.foodres.2021.110800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/22/2021] [Accepted: 11/01/2021] [Indexed: 01/04/2023]
Abstract
Nourishment of the growing human population requires new and alternative food sources, preferable produced without occupying new land areas. Cultivation of seaweed presents an opportunity, however, a major obstacle is sustainable preservation. Fermentation has been used for centuries to preserve vegetables, e.g., to produce kimchi based on cabbage. This study investigated changes in the microbiota, characteristics (pH, organic acids and water soluble carbohydrates) and food safety of raw shredded Alaria esculenta and Saccharina latissima during fermentation by the natural microbiota with or without addition of a Lactiplantibacillus plantarum starter culture. The Lb. plantarum fermented products retained a high Shannon diversity index, indicating a partially unsuccessful fermentation. Lb. plantarum performed better in A. esculenta causing pH to drop to below 4.6, a critical limit for control of growth of Clostridium botulinum, within 2 days compared to 7 days for S. latissima. Natural fermentation by the endogenous microbiota resulted in unsafe products with high final pH values (4.8-5.2), presence of unwanted organic acids, such as butyric acid, and in the case of A. esculenta sustenance of inoculated Listeria monocytogenes. Fermentation of A. esculenta and S. latissima by Lb. plantarum is a promising preservation method. However, future work is needed to optimise the process, by investigation of the use of different starter cultures, seaweed pre-treatments (blanching, freezing, etc.) and adjuvants (i.e., addition of sugars, minerals and similar) to promote growth of the starter culture and ensure the fermented products are safe to eat.
Collapse
Affiliation(s)
| | - Sanne Kjærulf Madsen
- The National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | |
Collapse
|
7
|
Wang M, Noor S, Huan R, Liu C, Li J, Shi Q, Zhang YJ, Wu C, He H. Comparison of the diversity of cultured and total bacterial communities in marine sediment using culture-dependent and sequencing methods. PeerJ 2020; 8:e10060. [PMID: 33150062 PMCID: PMC7585373 DOI: 10.7717/peerj.10060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022] Open
Abstract
Despite recent great advances in microbial culture, most microbes have not yet been cultured, and the impact of medium composition on the isolation of microbes from natural systems has not been elucidated. To optimize media for culturing marine microbes, microbial communities in three sediment samples were described using high-throughput sequencing (HTS) and culture-dependent techniques. HTS revealed communities dominated by Gammaproteobacteria, and culture-based methods revealed communities dominated by Actinobacteria. Among the total operational taxonomic units (OTUs) from the HTS dataset, 6% were recovered in the culture collection. Four potentially novel bacterial strains belonging to Oceaniovalibus, Psychrobacter and Salegentibacter were isolated. The combination of media cultured more taxa than any single medium. Nutrient-rich and single-carbon/nitrogen-source media supported the growth of relatively few taxa, and the quality of nitrogen strongly influenced the types of bacteria isolated.
Collapse
Affiliation(s)
- Meng Wang
- School of Life Science, Central South University, Changsha, China
| | - Samina Noor
- School of Life Science, Central South University, Changsha, China
| | - Ran Huan
- School of Life Science, Central South University, Changsha, China
| | - Congling Liu
- School of Life Science, Central South University, Changsha, China
| | - JiaYi Li
- School of Life Science, Central South University, Changsha, China
| | - Qingxin Shi
- School of Life Science, Central South University, Changsha, China
| | | | - Cuiling Wu
- Changzhi Medical College, Changzhi, China
| | - Hailun He
- School of Life Science, Central South University, Changsha, China
| |
Collapse
|
8
|
Tall M, Lo C, Yimagou EK, Ndongo S, Pham T, Raoult D, Fournier PE, Fenollar F, Levasseur A. Description of Clostridium cagae sp. nov., Clostridium rectalis sp. nov. and Hathewaya massiliensis sp. nov., new anaerobic bacteria isolated from human stool samples. New Microbes New Infect 2020; 37:100719. [PMID: 32944255 PMCID: PMC7481820 DOI: 10.1016/j.nmni.2020.100719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022] Open
Abstract
Using culturomics methods, three strains were isolated, identified and characterized following the taxonogenomics concept. Clostridium cagae strain Marseille-P4344T (=CSURP4344), Clostridium rectalis strain Marseille-P4200T (=CSURP4200) and Hathewaya massiliensis strain Marseille-P3545T (=CSURP3545) were isolated from human stool samples. The phylogenetic reconstruction, phenotypic criteria and genomic analyses were carried out and demonstrated that these three bacteria are different from previously known bacterial species with standing in nomenclature and were classified as new members of the Clostridiaceae family.
Collapse
Affiliation(s)
- M.L. Tall
- Aix-Marseille Université, UMR MEPHI (Microbes, Evolution, Phylogeny and Infections), IRD, APHM, Faculté de Médecine, Marseille, 13005, France
- IHU-Méditerranée Infection, Marseille, France
| | - C.I. Lo
- Aix-Marseille Université, UMR MEPHI (Microbes, Evolution, Phylogeny and Infections), IRD, APHM, Faculté de Médecine, Marseille, 13005, France
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - E. Kuete Yimagou
- Aix-Marseille Université, UMR MEPHI (Microbes, Evolution, Phylogeny and Infections), IRD, APHM, Faculté de Médecine, Marseille, 13005, France
- IHU-Méditerranée Infection, Marseille, France
| | - S. Ndongo
- Aix-Marseille Université, UMR MEPHI (Microbes, Evolution, Phylogeny and Infections), IRD, APHM, Faculté de Médecine, Marseille, 13005, France
- IHU-Méditerranée Infection, Marseille, France
| | - T.P.T. Pham
- Aix-Marseille Université, UMR MEPHI (Microbes, Evolution, Phylogeny and Infections), IRD, APHM, Faculté de Médecine, Marseille, 13005, France
- IHU-Méditerranée Infection, Marseille, France
| | - D. Raoult
- Aix-Marseille Université, UMR MEPHI (Microbes, Evolution, Phylogeny and Infections), IRD, APHM, Faculté de Médecine, Marseille, 13005, France
- IHU-Méditerranée Infection, Marseille, France
| | - P.-E. Fournier
- Aix-Marseille Université, UMR MEPHI (Microbes, Evolution, Phylogeny and Infections), IRD, APHM, Faculté de Médecine, Marseille, 13005, France
- IHU-Méditerranée Infection, Marseille, France
| | - F. Fenollar
- Aix-Marseille Université, UMR MEPHI (Microbes, Evolution, Phylogeny and Infections), IRD, APHM, Faculté de Médecine, Marseille, 13005, France
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - A. Levasseur
- Aix-Marseille Université, UMR MEPHI (Microbes, Evolution, Phylogeny and Infections), IRD, APHM, Faculté de Médecine, Marseille, 13005, France
- IHU-Méditerranée Infection, Marseille, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
9
|
Tang L, Hamid Y, Zehra A, Sahito ZA, He Z, Khan MB, Feng Y, Yang X. Mechanisms of water regime effects on uptake of cadmium and nitrate by two ecotypes of water spinach (Ipomoea aquatica Forsk.) in contaminated soil. CHEMOSPHERE 2020; 246:125798. [PMID: 31927376 DOI: 10.1016/j.chemosphere.2019.125798] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/20/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Availability of cadmium (Cd) and nitrate and their transfer to green leafy vegetables is highly dependent on physical, chemical and biochemical conditions of the soil. The phenotypic characteristics, accumulation of hazardous materials and rhizosphere properties of two ecotypes of water spinach in response to water stress were investigated. Flooding significantly enhanced plant growth and decreased Cd and nitrate concentrations in the shoot and root of both ecotypes of water spinach. Flooding extensively changed the physicochemical properties and biological processes in the rhizosphere, including increased pH and activities of urease and acid phosphatase, and decreased availability of Cd and nitrate and activity of nitrate reductase. Furthermore, flooding increased rhizosphere bacteria community diversity (including richness and evenness) and changed their community structure. Denitrifying bacteria (Clostridiales, Azoarcus and Pseudomonas), toxic metal resistant microorganisms (Rhodosporillaceae, Rhizobiales and Geobacter) were enriched in the rhizosphere under flooding conditions, and the plant growth-promoting taxa (Sphingomonadaceae) were preferentially colonized in the high accumulator (HA) rhizosphere region. These results indicated that flooding treatments result in biochemical and microbiological changes in soil, especially in the rhizosphere and reduced the availability of Cd and nitrate to plants, thus decreasing their uptake by water spinach. It is, therefore, possible to promote crop growth and reduce the accumulation of hazardous materials in vegetable crops like water spinach by controlling soil moisture conditions.
Collapse
Affiliation(s)
- Lin Tang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yasir Hamid
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Afsheen Zehra
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China; Department of Botany, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
| | - Zulfiqar Ali Sahito
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Zhenli He
- University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Fort Pierce, Florida, 34945, United States
| | - Muhammad Bilal Khan
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Ying Feng
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Xiaoe Yang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
10
|
Cao J, Sun Q, Zhao D, Xu M, Shen Q, Wang D, Wang Y, Ding S. A critical review of the appearance of black-odorous waterbodies in China and treatment methods. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121511. [PMID: 31706745 DOI: 10.1016/j.jhazmat.2019.121511] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/04/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
Black-odorous rivers and lakes are a serious environmental problem and are frequently reported in China. Despite this, there have been no comprehensive in-depth reviews of black-odorous water formation mechanisms, contributing factors and potential treatment technologies. Elements such as S, C and N play an important role in the biogeochemical cycle of black-odorous waterbodies, with water blackening caused by metal sulfides such as iron sulfide (FeS) and manganese sulfide (MnS). Volatile substances such as volatile organic sulfur compounds (VOSCs) are the main contributors of odor. Microorganisms such as sulfate reducing bacteria (SRB), Bacteroidetes and Proteobacteria play important roles in blackening and odor formation processes. Effectiveness of the commonly used treatments methods for black-odorous waterbodies, such as artificial aeration, sediment dredging, microbial enhanced technologies and constructed wetlands, varies significantly under different conditions. In contrast, bio-ecological engineering technologies exhibit comprehensive, long-lasting and economical treatment effects. The causes and mechanisms of black-odorous water formation require further investigation, as well as the optimal application conditions and mechanisms of treatment technologies. This study comprehensively reviews 1) the characteristics and current distribution of black-odorous waterbodies; 2) the compounds contributing to black-odorous phenomenon; 3) black-odorous waterbody production mechanisms; 4) treatment technologies for black-odorous waterbodies. Further studies on the mechanisms of blackening and odor formation are required, with treatment application conditions and mechanisms also requiring further clarification. In addition, the long-term ecological restoration of black-odorous rivers immediately after remediation is key issue that is easily overlooked but merits further investigation and development.
Collapse
Affiliation(s)
- Jingxin Cao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin Sun
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Donghua Zhao
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai 200120, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Qiushi Shen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dan Wang
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai 200120, China
| | - Yan Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Nanjing Easysensor Environmental Technology Co., Ltd., Nanjing 210018, China
| | - Shiming Ding
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
11
|
Wang S, Zhao D, Zeng J, Xu H, Huang R, Jiao C, Guo L. Variations of bacterial community during the decomposition of Microcystis under different temperatures and biomass. BMC Microbiol 2019; 19:207. [PMID: 31484494 PMCID: PMC6727399 DOI: 10.1186/s12866-019-1585-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 08/28/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The decomposition of Microcystis can dramatically change the physicochemical properties of freshwater ecosystems. Bacteria play an important role in decomposing organic matters and accelerating the cycling of materials within freshwater lakes. However, actions of the bacterial community are greatly influenced by temperature and the amount of organic matter available to decompose during a bloom. Therefore, it is vital to understand how different temperatures and biomass levels affect the bacterial community during the decomposition of Microcystis. RESULTS Microcystis addition reduced the diversity of bacterial community. The composition of bacterial community differed markedly between samples with different biomass of Microcystis (no addition, low biomass addition: 0.17 g/L, and high biomass addition: 0.33 g/L). In contrast, temperature factor did not contribute much to the different bacterial community composition. Total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), ammonia nitrogen (NH4+-N) and oxidation-reduction potential (ORP) were the key measured environmental variables shaping the composition of bacterial community. CONCLUSIONS Decomposition of Microcystis changed the physicochemical characteristics of the water and controlled the diversity and composition of the bacterial community. Microcystis biomass rather than temperature was the dominant factor affecting the diversity and composition of the bacterial community.
Collapse
Affiliation(s)
- Shuren Wang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Xikang Road 1, Nanjing, 210098, China.,State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Dayong Zhao
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Xikang Road 1, Nanjing, 210098, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China.
| | - Huimin Xu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Xikang Road 1, Nanjing, 210098, China
| | - Rui Huang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Xikang Road 1, Nanjing, 210098, China
| | - Congcong Jiao
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Xikang Road 1, Nanjing, 210098, China
| | - Lin Guo
- Department of Biological and Environmental Sciences, Texas A&M University, Commerce, TX, 76129, USA
| |
Collapse
|
12
|
Hou D, Wang R, Gao X, Wang K, Lin Z, Ge J, Liu T, Wei S, Chen W, Xie R, Yang X, Lu L, Tian S. Cultivar-specific response of bacterial community to cadmium contamination in the rhizosphere of rice (Oryza sativa L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:63-73. [PMID: 29800928 DOI: 10.1016/j.envpol.2018.04.121] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Cadmium accumulation in rice grains is highly dependent on its bioavailability that affected by various physicochemical properties and microbiological processes of soil. The rhizospheric bacterial communities of rice grown in contaminated soils by means of rice cultivars highly or weakly accumulating Cd in grains (HA and LA, respectively) were investigated. HA roots absorbed 7.26- and 2.25-fold more Cd than did LA roots at low (0.44 mg kg-1) and high (6.66 mg kg-1) soil Cd levels, respectively. Regardless of Cd levels, Cd bioavailability in the rhizosphere of HA was significantly higher than that of LA. Planting of rice and elevated Cd levels both significantly decreased bacterial α-diversity and altered bacterial community structure, with noticeable differences between the rice cultivars. Taxa specifically enriched in the HA rhizosphere (phyla Bacteroidetes, Firmicutes, and Deltaproteobacteria) can directly or indirectly participate in metal activation, whereas the LA rhizosphere was highly colonized by plant growth-promoting taxa (phyla Alphaproteobacteria and Gammaproteobacteria). The results indicate a potential association of Cd uptake and accumulation with rhizosphere bacteria in rice grown on a contaminated soil, thus providing baseline data and a new perspective on the maintenance of rice security.
Collapse
Affiliation(s)
- Dandi Hou
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Runze Wang
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyu Gao
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kai Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Zhi Lin
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun Ge
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ting Liu
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuai Wei
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weikang Chen
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ruohan Xie
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoe Yang
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lingli Lu
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shengke Tian
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
13
|
Sträuber H, Bühligen F, Kleinsteuber S, Dittrich-Zechendorf M. Carboxylic acid production from ensiled crops in anaerobic solid-state fermentation - trace elements as pH controlling agents support microbial chain elongation with lactic acid. Eng Life Sci 2018; 18:447-458. [PMID: 32624926 DOI: 10.1002/elsc.201700186] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/23/2018] [Accepted: 04/10/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND For the production of carboxylic acid platform chemicals like medium-chain fatty acids (MCFA) by anaerobic fermentation, pH control is required. However, adding buffer solutions is ineffective in leach-bed reactors. AIM In order to increase the MCFA production by maize silage fermentation and to engineer the process we investigated the effect of solid alkaline iron and manganese additives on the process performance and microbial community dynamics. RESULTS Without additives, the pH dropped to 3.9 and lactic acid bacteria were favored. Total product yields of 207 ± 5.4 g organic acids (C2-C6) and alcohols per kg volatile solids were reached. The addition of trace elements increased the pH value and the product spectrum and yields changed. With a commercial iron additive, the product yields were higher (293 ± 15.2 g/kgvolatile solids) and supposedly clostridia used lactic acid for microbial chain elongation of acetic acid producing n-butyric acid. With the addition of pure Fe(OH)3 or Mn(OH)2, the total product yields were lower than in the other reactors. However, increased production of MCFA and the occurrence of distinct bacterial taxa (Lachnospiraceae, Ruminococcaceae and Megasphaera) related to this metabolic function were observed. CONCLUSIONS The application of alkaline trace metal additives as pH stabilizing agents can mitigate spatial metabolic heterogeneities when trace metal deficient substrates like specific crops or residues thereof are applied.
Collapse
Affiliation(s)
- Heike Sträuber
- Department of Environmental Microbiology Helmholtz Centre for Environmental Research - UFZ Leipzig Germany
| | - Franziska Bühligen
- Department of Environmental Microbiology Helmholtz Centre for Environmental Research - UFZ Leipzig Germany
| | - Sabine Kleinsteuber
- Department of Environmental Microbiology Helmholtz Centre for Environmental Research - UFZ Leipzig Germany
| | - Michael Dittrich-Zechendorf
- Department Biochemical Conversion Deutsches Biomasseforschungszentrum gemeinnützige GmbH (DBFZ) Leipzig Germany
| |
Collapse
|
14
|
Zhao D, Cao X, Huang R, Zeng J, Wu QL. Variation of bacterial communities in water and sediments during the decomposition of Microcystis biomass. PLoS One 2017; 12:e0176397. [PMID: 28437480 PMCID: PMC5402945 DOI: 10.1371/journal.pone.0176397] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/10/2017] [Indexed: 12/14/2022] Open
Abstract
The bacterial community composition in water and sediment samples during the decomposition of Microcystis biomass were analyzed using the 454 pyrosequencing technique. We found dramatic shifts in the bacterial community composition of water and sediments after the addition of Microcystis biomass. Among all the detected phyla, only Firmicutes was found to be dominant in both water and sediment samples. The genus Clostridium sensu stricto was the absolutely dominant group in Firmicutes and showed drastic variations with incubation time during the decomposition process. Peak values in relative abundance of Clostridium sensu stricto appeared in the first few days for water and sediment samples. Environmental factors such as pH, dissolved oxygen (DO), and dissolved organic carbon (DOC) in water samples showed drastic variations during the decomposing process, which might be the prominent forces driving the variation of bacterial communities. The abundant genus, Clostridium sensu stricto, were thought to be well adapted to higher DOC and turbidity and lower pH and DO conditions. Compared with the sediment samples, the decomposition of Microcystis biomass had greater influence on the bacterial community composition in water and Clostridium sensu stricto might play important roles in the process of Microcystis biomass decomposition.
Collapse
Affiliation(s)
- Dayong Zhao
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing, China
| | - Xinyi Cao
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Rui Huang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Qinglong L. Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
15
|
Zhao X, Li D, Xu S, Guo Z, Zhang Y, Man L, Jiang B, Hu X. Clostridium guangxiense sp. nov. and Clostridium neuense sp. nov., two phylogenetically closely related hydrogen-producing species isolated from lake sediment. Int J Syst Evol Microbiol 2017; 67:710-715. [DOI: 10.1099/ijsem.0.001702] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Xin Zhao
- Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang 110004, PR China
| | - Danyang Li
- Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang 110004, PR China
| | - Shuhong Xu
- Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang 110004, PR China
| | - Zhanghao Guo
- Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang 110004, PR China
| | - Yan Zhang
- Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang 110004, PR China
| | - Lin Man
- Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang 110004, PR China
| | - Binhui Jiang
- Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang 110004, PR China
| | - Xiaomin Hu
- Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang 110004, PR China
| |
Collapse
|
16
|
Deng H, Xue H, Zhong W. A Novel Exoelectrogenic Bacterium Phylogenetically Related toClostridium sporogenesIsolated from Copper Contaminated Soil. ELECTROANAL 2017. [DOI: 10.1002/elan.201600673] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Huan Deng
- School of Environment; Nanjing Normal University; Nanjing PR China 210023
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control; School of Geography Science; Nanjing Normal University; Nanjing PR China 210023
| | - Hongjing Xue
- School of Environment; Nanjing Normal University; Nanjing PR China 210023
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control; School of Geography Science; Nanjing Normal University; Nanjing PR China 210023
| | - Wenhui Zhong
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control; School of Geography Science; Nanjing Normal University; Nanjing PR China 210023
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application; Nanjing PR China 210023
| |
Collapse
|
17
|
Marino-Marmolejo EN, Corbalá-Robles L, Cortez-Aguilar RC, Contreras-Ramos SM, Bolaños-Rosales RE, Davila-Vazquez G. Tequila vinasses acidogenesis in a UASB reactor with Clostridium predominance. SPRINGERPLUS 2015; 4:419. [PMID: 26301166 PMCID: PMC4536240 DOI: 10.1186/s40064-015-1193-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/29/2015] [Indexed: 11/10/2022]
Abstract
Tequila vinasses represent an acidic, highly concentrated pollutant effluent generated during the distillation step of Tequila production. Although acidogenesis of Tequila vinasses has been reported for some reactor configurations, a characterization of the bacteria present during this metabolic process is lacking in the literature. Hydraulic retention times (HRT) between 36 and 6 h and organic loading rates (OLR) from 5 to 30 g COD L−1 d−1 were assessed in a UASB reactor fed with Tequila vinasses. Results showed that OLR excerted a stronger effect (p ≤ 0.0001) on parameters such as gas production rate, pH, and acidity than HRT. While it was clear that shorter HRT were related to higher volatile fatty acid production levels. Figures above 2 Lgas Lreactor−1 d−1 (where “gas” could be a mixture of methane and hydrogen) were attained only with an OLR as high as 30 g COD L−1 d−1. Bacterial identification of a sludge sample at the end of the experiment revealed that acid-tolerant microorganisms that remained in the reactor were exclusively affiliated to the Clostridium genera, being the first report of organisms identification for Tequila vinasses acidogenesis. These findings are relevant to the field of biotechnology since acidogenesis of Tequila vinasses using identified and studied microorganism abilities (i.e. Clostridium strains) presents the opportunity of optimizing processes intended for different metabolites production (butanol, volatile fatty acids, hydrogen, solvents).
Collapse
Affiliation(s)
- E N Marino-Marmolejo
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Av. Normalistas 800, Col. Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco Mexico
| | - L Corbalá-Robles
- Tecnología Ambiental, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Av. Normalistas 800, Col. Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco Mexico
| | - R C Cortez-Aguilar
- Tecnología Ambiental, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Av. Normalistas 800, Col. Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco Mexico
| | - S M Contreras-Ramos
- Tecnología Ambiental, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Av. Normalistas 800, Col. Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco Mexico
| | - R E Bolaños-Rosales
- Tecnología Ambiental, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Av. Normalistas 800, Col. Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco Mexico
| | - G Davila-Vazquez
- Tecnología Ambiental, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Av. Normalistas 800, Col. Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco Mexico
| |
Collapse
|
18
|
Chengxin FAN. Progress and prospect in formation of black bloom in Lake Taihu: A review. ACTA ACUST UNITED AC 2015. [DOI: 10.18307/2015.0401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
19
|
Peng XING, Wangting HU, Yufan WU, Qinglong WU. Major progress in microbial ecology of hypoxia in the shallow eutrophic lakes. ACTA ACUST UNITED AC 2015. [DOI: 10.18307/2015.0402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|