1
|
Fusco V, Chieffi D, Fanelli F, Montemurro M, Rizzello CG, Franz CMAP. The Weissella and Periweissella genera: up-to-date taxonomy, ecology, safety, biotechnological, and probiotic potential. Front Microbiol 2023; 14:1289937. [PMID: 38169702 PMCID: PMC10758620 DOI: 10.3389/fmicb.2023.1289937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Bacteria belonging to the genera Weissella and Periweissella are lactic acid bacteria, which emerged in the last decades for their probiotic and biotechnological potential. In 2015, an article reviewing the scientific literature till that date on the taxonomy, ecology, and biotechnological potential of the Weissella genus was published. Since then, the number of studies on this genus has increased enormously, several novel species have been discovered, the taxonomy of the genus underwent changes and new insights into the safety, and biotechnological and probiotic potential of weissellas and periweissellas could be gained. Here, we provide an updated overview (from 2015 until today) of the taxonomy, ecology, safety, biotechnological, and probiotic potential of these lactic acid bacteria.
Collapse
Affiliation(s)
- Vincenzina Fusco
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Daniele Chieffi
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Francesca Fanelli
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Marco Montemurro
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | | | | |
Collapse
|
2
|
Ji M, Gong J, Tian Y, Ao C, Li Y, Tan J, Du G. Comparison of microbial communities and volatile profiles of wines made from mulberry and grape. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12632-y. [PMID: 37382613 DOI: 10.1007/s00253-023-12632-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/30/2023]
Abstract
In this study, three kinds of wines separately made from mulberry (MW), grape (GW), or mulberry/grape (MGW) were developed and their enological parameters, sensory scores, volatile components, and microbiota were investigated and compared. Contrary to the order of residual sugar and acidity of the three kinds of wines, the order of alcohol content from high to low is GW, MW, and MGW. A total of 60 volatile components (VCs), including esters (17), alcohols (12), acids (6), aldehydes (7), ketones (3), alkenes (3), amines (3), alkanes (4), pyrazines (2), benzene (1), sulfide (1), and thiazole (1), were identified by gas chromatography-ion mobility spectrometer (GC-IMS). The fingerprint of VCs and principal component analysis revealed that the volatile profiles of MGW and GW were more similar in comparison to that of MW and were significantly correlated with the mass ratio of mulberry to grape. Lactobacillus, Weissella, Pantoea, Leuconostoc, Lactococcus, Paenibacillus, Pediococcus, and Saccharomyces were identified as the main microflora at the genus level shared by the MW, MGW, and GW, suggesting that the heterolactic bacteria may contribute more to the high content of volatile acids in MW and MGW. The heatmap of core microbiota and main VCs of MW, MGW, and GW suggested the complicated and significant correlation between them. The above data implied that the volatile profiles were more closely related to the raw materials of winemaking and markedly affected by the fermentation microorganisms. This study provides references for evaluation and characterization of MGW and MW and improvement of MGW and MW winemaking process. KEY POINTS: • Fruit wine enological parameters, volatile profile, and microbiota were compared. • Sixty volatile compounds were identified by GC-IMS in three types of fruit wines. • Winemaking materials and microbiota affect volatile profiles of the fruit wines.
Collapse
Affiliation(s)
- Mingyue Ji
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Jiangang Gong
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Yiling Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Changwei Ao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Yue Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Jianxin Tan
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, People's Republic of China.
| | - Guoqiang Du
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, People's Republic of China.
| |
Collapse
|
3
|
Kim E, Yang SM, Kim HY. Weissella and the two Janus faces of the genus. Appl Microbiol Biotechnol 2023; 107:1119-1127. [PMID: 36680587 DOI: 10.1007/s00253-023-12387-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023]
Abstract
The genus Weissella belongs to the lactic acid bacteria group. It occurs naturally in foods and is a component of the human microbiome. A few Weissella species are candidate probiotics due to their potential for survival under the harsh conditions present in the gastrointestinal tract of humans and animals. Various species have also shown potential for treating and preventing periodontal disease, skin pathologies, and atopic dermatitis; some are used as starters for the fermentation of foods due to their production of exopolysaccharides; and others are used as protective cultures due to their production of weissellicin, a bacteriocin. However, a few Weissella species are opportunistic pathogens, such as W. ceti, which is the etiological agent of weissellosis, a disease in rainbow trout. Additionally, most Weissella species are intrinsically vancomycin-resistant. Thus, the Weissella genus is important from both medical and industrial points of view, and the Janus faces of this genus should be considered in any expected biotechnological applications. In this review, we present an overview of the probiotic potential and pathogenic cases of the Weissella genus reported in the literature.
Collapse
Affiliation(s)
- Eiseul Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Seung-Min Yang
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea.
| |
Collapse
|
4
|
The Weissella Genus: Clinically Treatable Bacteria with Antimicrobial/Probiotic Effects on Inflammation and Cancer. Microorganisms 2022; 10:microorganisms10122427. [PMID: 36557680 PMCID: PMC9788376 DOI: 10.3390/microorganisms10122427] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Weissella is a genus earlier considered a member of the family Leuconostocaceae, which was reclassified into the family Lactobacillaceae in 1993. Recently, there have been studies emphasizing the probiotic and anti-inflammatory potential of various species of Weissella, of which W. confusa and W. cibaria are the most representative. Other species within this genus include: W. paramesenteroides, W. viridescens, W. halotolerans, W. minor, W. kandleri, W. soli, W. ghanensis, W. hellenica, W. thailandensis, W. fabalis, W. cryptocerci, W. koreensis, W. beninensis, W. fabaria, W. oryzae, W. ceti, W. uvarum, W. bombi, W. sagaensis, W. kimchi, W. muntiaci, W. jogaejeotgali, W. coleopterorum, W. hanii, W. salipiscis, and W. diestrammenae. Weissella confusa, W. paramesenteroides, W. koreensis, and W. cibaria are among the few species that have been isolated from human samples, although the identification of these and other species is possible using metagenomics, as we have shown for inflammatory bowel disease (IBD) and healthy controls. We were able to isolate Weissella in gut-associated bacteria (post 24 h food deprivation and laxatives). Other sources of isolation include fermented food, soil, and skin/gut/saliva of insects/animals. With the potential for hospital and industrial applications, there is a concern about possible infections. Herein, we present the current applications of Weissella on its antimicrobial and anti-inflammatory mechanistic effects, the predisposing factors (e.g., vancomycin) for pathogenicity in humans, and the antimicrobials used in patients. To address the medical concerns, we examined 28 case reports focused on W. confusa and found that 78.5% of infections were bacteremia (of which 7 were fatal; 1 for lack of treatment), 8 were associated with underlying malignancies, and 8 with gastrointestinal procedures/diseases of which 2 were Crohn’s disease patients. In cases of a successful resolution, commonly administered antibiotics included: cephalosporin, ampicillin, piperacillin-tazobactam, and daptomycin. Despite reports of Weissella-related infections, the evolving mechanistic findings suggest that Weissella are clinically treatable bacteria with emerging antimicrobial and probiotic benefits ranging from oral health, skin care, obesity, and inflammatory diseases to cancer.
Collapse
|
5
|
Fanelli F, Montemurro M, Chieffi D, Cho GS, Franz CMAP, Dell'Aquila A, Rizzello CG, Fusco V. Novel Insights Into the Phylogeny and Biotechnological Potential of Weissella Species. Front Microbiol 2022; 13:914036. [PMID: 35814678 PMCID: PMC9257631 DOI: 10.3389/fmicb.2022.914036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
In this study, the genomes of the Weissella (W.) beninensis, W. diestrammenae, W. fabalis, W. fabaria, W. ghanensis, and W. uvarum type strains were sequenced and analyzed. Moreover, the ability of these strains to metabolize 95 carbohydrates was investigated, and the genetic determinants of such capability were searched within the sequenced genomes. 16S rRNA gene and genome-based-phylogeny of all the Weissella species described to date allowed a reassessment of the Weissella genus species groups. As a result, six distinct species groups within the genus, namely, W. beninensis, W. kandleri, W. confusa, W. halotolerans, W. oryzae, and W. paramesenteroides species groups, could be described. Phenotypic analyses provided further knowledge about the ability of the W. beninensis, W. ghanensis, W. fabaria, W. fabalis, W. uvarum, and W. diestrammenae type strains to metabolize certain carbohydrates and confirmed the interspecific diversity of the analyzed strains. Moreover, in many cases, the carbohydrate metabolism pathway and phylogenomic species group clustering overlapped. The novel insights provided in our study significantly improved the knowledge about the Weissella genus and allowed us to identify features that define the role of the analyzed type strains in fermentative processes and their biotechnological potential.
Collapse
Affiliation(s)
- Francesca Fanelli
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Marco Montemurro
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Daniele Chieffi
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Gyu-Sung Cho
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | | | - Anna Dell'Aquila
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | | | - Vincenzina Fusco
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
- *Correspondence: Vincenzina Fusco
| |
Collapse
|
6
|
Teixeira CG, Fusieger A, Milião GL, Martins E, Drider D, Nero LA, de Carvalho AF. Weissella: An Emerging Bacterium with Promising Health Benefits. Probiotics Antimicrob Proteins 2021; 13:915-925. [PMID: 33565028 DOI: 10.1007/s12602-021-09751-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2021] [Indexed: 01/11/2023]
Abstract
Weissella strains have been the subject of much research over the last 5 years because of the genus' technological and probiotic potential. Certain strains have attracted the attention of the pharmaceutical, medical, and food industries because of their ability to produce antimicrobial exopolysaccharides (EPSs). Moreover, Weissella strains are able to keep foodborne pathogens in check because of the bacteriocins, hydrogen peroxide, and organic acids they can produce; all listed have recognized pathogen inhibitory activities. The Weissella genus has also shown potential for treating atopic dermatitis and certain cancers. W. cibaria, W. confusa, and W. paramesenteroides are particularly of note because of their probiotic potential (fermentation of prebiotic fibers) and their ability to survive in the gastrointestinal tract. It is important to note that most of the Weissella strains with these health-promoting properties have been shown to be save safe, due to the absence or the low occurrence of virulence or antibiotic-resistant genes. A large number of scientific studies continue to report on and to support the use of Weissella strains in the food and pharmaceutical industries. This review provides an overview of these studies and draws conclusions for future uses of this rich and previously unexplored genus.
Collapse
Affiliation(s)
- Camila Gonçalves Teixeira
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil
| | - Andressa Fusieger
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil
| | - Gustavo Leite Milião
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil
| | - Evandro Martins
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D'Opale, ICV - Institut Charles Viollette, 59000, Lille, France
| | - Luís Augusto Nero
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil.
| | - Antônio Fernandes de Carvalho
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil.
| |
Collapse
|
7
|
Overview of exopolysaccharides produced by Weissella genus - A review. Int J Biol Macromol 2020; 164:2964-2973. [PMID: 32853618 DOI: 10.1016/j.ijbiomac.2020.08.185] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 12/14/2022]
Abstract
Exopolysaccharides (EPS) from lactic acid bacteria (LAB) are much diversed in structure, composition and applications which also adding a great commercial potential due to its generally recognized as safe (GRAS) status. LAB genus such as Lactobacillus, Leuconostoc, Streptococcus, Weissella, Lactococcus are known to produce EPS. Among this genus, Weissella is enormously reported for diversity and high production of EPS with wide range of industrial applications and bio-functional properties. This review summarize in detail about the Weissella EPS from genus to functional application. Physico-chemical characterization from production, purification step to structural elucidation of Weissella EPS is comprehensively discussed along with their properties. Weissella genus has revealed various EPS with significant functional potentials, making massive application in food and pharma industries as viscosifiers, biothickener, emulsifiers and stabilizers. In addition to this, biological properties of these EPS revealed multiple health promoting properties which can be explored for further applications in food and pharmaceutical sectors.
Collapse
|
8
|
Lin ST, Wang LT, Wu YC, Guu JRJ, Tamura T, Mori K, Huang L, Watanabe K. Weissella muntiaci sp. nov., isolated from faeces of Formosan barking deer ( Muntiacus reevesi). Int J Syst Evol Microbiol 2020; 70:1578-1584. [PMID: 32228749 DOI: 10.1099/ijsem.0.003937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A Gram-stain-positive strain, 8 H-2T, was isolated from faeces of Reeves' muntjac (Muntiacus reevesi) barking deer in Taiwan. Cells of the strain were short rod-shaped, non-motile, non-haemolytic, asporogenous, facultatively anaerobic, heterofermentative and did not exhibit catalase and oxidase activities. Comparative analyses of 16S rRNA, pheS and dnaA gene sequences demonstrated that the novel strain was a member of the genus Weissella. On the basis of 16S rRNA gene sequence similarities, the type strains of Weissella oryzae (99.2 %), Weissella confusa (97.8 %), Weissella cibaria (97.6 %) and Weissella soli (97.3 %) were the closest neighbours to strain 8 H-2T. The concatenated housekeeping gene sequence (pheS and dnaA) similarities of 8 H-2T to closely related type strains were 72.5-84.9 %, respectively. The genomic DNA G+C content was 40.5 mol%. The average nucleotide identity and digital DNA-DNA hybridization values with these type strains were 70.2-75.4% and 25.1-30.1 %, respectively. Phenotypic and genotypic test results demonstrated that strain 8 H-2T represents a novel species belonging to the genus Weissella, for which the name Weissella muntiaci sp. nov. is proposed. The type strain is 8 H-2T (=BCRC 81133T=NBRC 113537T).
Collapse
Affiliation(s)
- Shih-Ting Lin
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, 331 Shih-Pin Rd., Hsinchu 30062, Taiwan, ROC
| | - Li-Ting Wang
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, 331 Shih-Pin Rd., Hsinchu 30062, Taiwan, ROC
| | - Yen-Chi Wu
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, 331 Shih-Pin Rd., Hsinchu 30062, Taiwan, ROC
| | - Jia-Rong Jeremy Guu
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, 331 Shih-Pin Rd., Hsinchu 30062, Taiwan, ROC
| | - Tomohiko Tamura
- Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Koji Mori
- Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Lina Huang
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, 331 Shih-Pin Rd., Hsinchu 30062, Taiwan, ROC
| | - Koichi Watanabe
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, 331 Shih-Pin Rd., Hsinchu 30062, Taiwan, ROC
- Department of Animal Science and Technology, College of Bioresources and Agriculture, National Taiwan University, No. 50, Ln. 155, Sec. 3, Keelung Rd., Taipei 10673, Taipei, Taiwan, ROC
| |
Collapse
|
9
|
Ramos Monroy OA, Ruiz Ordaz N, Hernández Gayosso MJ, Juárez Ramírez C, Galíndez Mayer J. The corrosion process caused by the activity of the anaerobic sporulated bacterium Clostridium celerecrescens on API XL 52 steel. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:29991-30002. [PMID: 31414386 DOI: 10.1007/s11356-019-06064-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
The microbial corrosion of oil and gas pipes is one of the problems occurring in the oil industry. Various mechanisms explaining microbial corrosion have been demonstrated. Commonly, biocorrosion is attributed to sulfate-reducing bacteria. Also, it has recently been reported that microbial species can connect their electron transport system to metal electrodes. In this research, two spore-forming bacteria isolated in different years from a gas pipeline were identified by biochemical techniques and by 16S rDNA amplification, sequencing, and comparison with the NCBI database. Isolates were also compared between them using molecular techniques as the restriction patterns, unique for 16S rDNA (ARDRA), and the profile of the amplified bit from the genomic DNA, using an unspecific primer (RAPD). The results obtained showed that both isolates corresponded to Clostridium celerecrescens with a 99% similarity according to the sequence reported on the NCBI database. Also, the ARDRA and RAPD electrophoretic profiles of both strains were identical, and no plasmids were found in the strains. Thus, it can be settled that this bacterium is persistent in the environment prevailing in gas pipelines. Also, it was demonstrated that the bacterial secretion of organic acids contributes to the pitting and general biocorrosion of API XL 52 steel. The rates of corrosion obtained, approximately after 40 days, were correlated with the presence and metabolic activity of C. celerecrescens on the metallic surfaces.
Collapse
Affiliation(s)
- Oswaldo Arturo Ramos Monroy
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación de Carpio y Plan de Ayala S/N, 11340, Col. Santo Tomás, CDMX, México.
| | - Nora Ruiz Ordaz
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación de Carpio y Plan de Ayala S/N, 11340, Col. Santo Tomás, CDMX, México.
| | - Mónica Jazmín Hernández Gayosso
- Instituto Mexicano del Petróleo, Grupo de Corrosión, Eje Central Lázaro Cárdenas 152, 07730, Col. San Bartolo Atepehuacan, CDMX, México
| | - Cleotilde Juárez Ramírez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación de Carpio y Plan de Ayala S/N, 11340, Col. Santo Tomás, CDMX, México
| | - Juvencio Galíndez Mayer
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación de Carpio y Plan de Ayala S/N, 11340, Col. Santo Tomás, CDMX, México
| |
Collapse
|
10
|
Heo J, Hamada M, Cho H, Weon HY, Kim JS, Hong SB, Kim SJ, Kwon SW. Weissella cryptocerci sp. nov., isolated from gut of the insect Cryptocercus kyebangensis. Int J Syst Evol Microbiol 2019; 69:2801-2806. [PMID: 31246166 DOI: 10.1099/ijsem.0.003564] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A taxonomic study of a Gram-stain-positive, rod-shaped, non-motile, non-spore-forming, catalase-negative bacterium, isolated from the gut of an insect, Cryptocercus kyebangensis collected from the mountainous area of Seoraksan, Yangyang-gun, Republic of Korea, was conducted. Its 16S rRNA gene sequence showed high similarity values to Weissella ghanensis LMG 24286T (95.9 %), Weissella beninensis 2L24P13T (95.9 %), Weissella fabalis M75T (95.7 %) and Weissella fabaria 257T (95.7 %). The phylogenetic tree indicated that the novel organism formed a cluster with W. ghanensis LMG 24286T, W. beninensis 2L24P13T, W. fabalis M75T and W. fabaria 257T. The G+C content was 41.1 mol% on the basis of the whole-genome sequence. Polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, two unidentified aminophospholipids, one unidentified phospholipid and four unidentified lipids. The major cellular fatty acids were C18 : 1 ω9c, C16 : 0, C14 : 0, summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and summed feature 8 (C16 : 1 ω7c and/or C16 : 1 ω6c). The cell-wall peptidoglycan was of A4α type with the interpeptide bridge of Gly-d-Glu. Based on these results, strain 26KH-42T could be classified as a novel species of the genus Weissella, for which the name Weissellacryptocerci sp. nov. is proposed. The type strain is 26KH-42T (=KACC 18423T=NBRC 113066T).
Collapse
Affiliation(s)
- Jun Heo
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Moriyuki Hamada
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation, 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Hayoung Cho
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Hang-Yeon Weon
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Jeong-Seon Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Seong-Beom Hong
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Soo-Jin Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Soon-Wo Kwon
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| |
Collapse
|
11
|
Safika S, Wardinal W, Ismail YS, Nisa K, Sari WN. Weissella, a novel lactic acid bacteria isolated from wild Sumatran orangutans ( Pongo abelii). Vet World 2019; 12:1060-1065. [PMID: 31528033 PMCID: PMC6702570 DOI: 10.14202/vetworld.2019.1060-1065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/10/2019] [Indexed: 11/16/2022] Open
Abstract
Aims This study aimed to isolate and identify lactic acid bacteria (LAB) in wild Sumatran orangutans to provide more information about LAB diversity derived from Sumatran orangutan feces. Materials and Methods Fecal sampling from three female orangutans, around 35 years old, was carried out in the wild forest areas at the research station of Suaq Belimbing Gunung Leuser National Park located in the South Aceh district. Orangutan fecal samples were taken in the morning when the orangutans first defecated. The orangutans were above the tree, which is approximately 12-15 m from the ground where feces were found. Results Fermentation testing using the API 50 CHL Kit showed that OUL4 isolates were identified as Lactococcus lactis ssp. lactis with an identity value of 73.5%. Homology analysis demonstrated that the OUL4 isolates have 93% similarity to Weissella cibaria, and phylogenetic trees constructed using Mega 7.0 also showed that OUL4 isolates are related to W. cibaria. Conclusion These results show that there is a difference in identification between biochemical testing with API kits and molecular analyses on LAB isolates from wild Sumatran orangutans. Based on 16S rRNA gene homology, the OUL4 LAB isolates from wild Sumatran orangutans have 93% homology to W. cibaria.
Collapse
Affiliation(s)
- Safika Safika
- Department of Veterinary Infection Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Jalan Agatis, IPB Dermaga, Bogor 16680, Indonesia
| | - Wardinal Wardinal
- Department of Biology, Education and Teaching Faculty, Ar-Raniry State Islamic University Banda Aceh 23111, Indonesia
| | - Yulia Sari Ismail
- Department of Biology, Faculty of Mathematics and Sciences, Syiah Kuala University, Banda Aceh 23111, Indonesia
| | - Khairun Nisa
- Department of Biology, Education and Teaching Faculty, Ar-Raniry State Islamic University Banda Aceh 23111, Indonesia
| | - Wenny Novita Sari
- Department of Mathematics and Applied Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, Indonesia
| |
Collapse
|
12
|
Zafar SB, Siddiqui NN, Shahid F, Qader SAU, Aman A. Bioprospecting of indigenous resources for the exploration of exopolysaccharide producing lactic acid bacteria. J Genet Eng Biotechnol 2018; 16:17-22. [PMID: 30647699 PMCID: PMC6296591 DOI: 10.1016/j.jgeb.2017.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 10/04/2017] [Accepted: 10/15/2017] [Indexed: 10/26/2022]
Abstract
Exploration of biodiversity lead towards the discovery of novel exopolysaccharide (EPS) producing microbes that have multiple applications. The safety compatibility status of lactic acid bacteria (LAB) makes it an attractive candidate for the production of EPS in industries. Therefore, new bacterial isolates are continuously being identified from different habitats. Current research was conducted to explore indigenous biodiversity for the production of dextransucrase, which is involved in the synthesis of dextran. Dextran is an EPS which is used in different industries. In this study, thirty-nine LAB were isolated from different food samples. The isolates were identified as genus Leuconostoc, Weissella and Streptococcus based on genotypic and phenotypic characteristics. Screening revealed that only eight isolates can produce dextransucrase in high titres. Fermentation conditions of dextran producing LAB was optimized. The results indicated that Weissella confusa exhibited maximum specific activity (1.50 DSU mg-1) in 8 h at 25 °C with pH 7.5. Dextran produced from Weissella proved to be a useful alternative to commercially used dextran produced by Leuconostoc mesenteroides in industries for various applications.
Collapse
Affiliation(s)
- Syeda Bushra Zafar
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan
| | - Nadir Naveed Siddiqui
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan
| | - Faiza Shahid
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan
| | - Shah Ali Ul Qader
- Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan
| | - Afsheen Aman
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
13
|
Chaix E, Deléger L, Bossy R, Nédellec C. Text mining tools for extracting information about microbial biodiversity in food. Food Microbiol 2018; 81:63-75. [PMID: 30910089 PMCID: PMC6460834 DOI: 10.1016/j.fm.2018.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/26/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022]
Abstract
Information on food microbial diversity is scattered across millions of scientific papers. Researchers need tools to assist their bibliographic search in such large collections. Text mining and knowledge engineering methods are useful to automatically and efficiently find relevant information in Life Science. This work describes how the Alvis text mining platform has been applied to a large collection of PubMed abstracts of scientific papers in the food microbiology domain. The information targeted by our work is microorganisms, their habitats and phenotypes. Two knowledge resources, the NCBI taxonomy and the OntoBiotope ontology were used to detect this information in texts. The result of the text mining process was indexed and is presented through the AlvisIR Food on-line semantic search engine. In this paper, we also show through two illustrative examples the great potential of this new tool to assist in studies on ecological diversity and the origin of microbial presence in food. We present new text-mining tools to extract information in food microbiology. The results of the extraction are available in an on-line semantic search engine. Taxa, habitats, phenotypes and links between them can be queried in PubMed abstracts. Text-mining tools could assist to browse past and recent scientific literature. Two use-cases are presented: fruit microbiota and spore-forming bacteria in food.
Collapse
Affiliation(s)
- Estelle Chaix
- MaIAGE, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Louise Deléger
- MaIAGE, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Robert Bossy
- MaIAGE, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Claire Nédellec
- MaIAGE, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| |
Collapse
|
14
|
Abstract
Among other fermentation processes, lactic acid fermentation is a valuable process which enhances the safety, nutritional and sensory properties of food. The use of starters is recommended compared to spontaneous fermentation, from a safety point of view but also to ensure a better control of product functional and sensory properties. Starters are used for dairy products, sourdough, wine, meat, sauerkraut and homemade foods and beverages from dairy or vegetal origin. Among lactic acid bacteria, Lactobacillus, Lactococcus, Leuconostoc, Streptococcus and Pediococcus are the majors genera used as starters whereas Weissella is not. Weissella spp. are frequently isolated from spontaneous fermented foods and participate to the characteristics of the fermented product. They possess a large set of functional and technological properties, which can enhance safety, nutritional and sensory characteristics of food. Particularly, Weissella cibaria and Weissella confusa have been described as high producers of exo-polysaccharides, which exhibit texturizing properties. Numerous bacteriocins have been purified from Weissella hellenica strains and may be used as bio-preservative. Some Weissella strains are able to decarboxylate polymeric phenolic compounds resulting in a better bioavailability. Other Weissella strains showed resistance to low pH and bile salts and were isolated from healthy human feces, suggesting their potential as probiotics. Despite all these features, the use of Weissella spp. as commercial starters remained non-investigated. Potential biogenic amine production, antibiotic resistance pattern or infection hazard partly explains this neglecting. Besides, Weissella spp. are not recognized as GRAS (Generally Recognized As Safe). However, Weissella spp. are potential powerful starters for food fermentation as well as Lactococcus, Leuconostoc or Lactobacillus species.
Collapse
|
15
|
Kim E, Cho Y, Lee Y, Han SK, Kim CG, Choo DW, Kim YR, Kim HY. A proteomic approach for rapid identification of Weissella species isolated from Korean fermented foods on MALDI-TOF MS supplemented with an in-house database. Int J Food Microbiol 2017; 243:9-15. [DOI: 10.1016/j.ijfoodmicro.2016.11.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/13/2016] [Accepted: 11/28/2016] [Indexed: 11/28/2022]
|
16
|
Cappello MS, Zapparoli G, Logrieco A, Bartowsky EJ. Linking wine lactic acid bacteria diversity with wine aroma and flavour. Int J Food Microbiol 2016; 243:16-27. [PMID: 27940412 DOI: 10.1016/j.ijfoodmicro.2016.11.025] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 11/09/2016] [Accepted: 11/27/2016] [Indexed: 10/20/2022]
Abstract
In the last two decades knowledge on lactic acid bacteria (LAB) associated with wine has increased considerably. Investigations on genetic and biochemistry of species involved in malolactic fermentation, such as Oenococcus oeni and of Lactobacillus have enabled a better understand of their role in aroma modification and microbial stability of wine. In particular, the use of molecular techniques has provided evidence on the high diversity at species and strain level, thus improving the knowledge on wine LAB taxonomy and ecology. These tools demonstrated to also be useful to detect strains with potential desirable or undesirable traits for winemaking purposes. At the same time, advances on the enzymatic properties of wine LAB responsible for the development of wine aroma molecules have been undertaken. Interestingly, it has highlighted the high intraspecific variability of enzymatic activities such as glucosidase, esterase, proteases and those related to citrate metabolism within the wine LAB species. This genetic and biochemistry diversity that characterizes wine LAB populations can generate a wide spectrum of wine sensory outcomes. This review examines some of these interesting aspects as a way to elucidate the link between LAB diversity with wine aroma and flavour. In particular, the correlation between inter- and intra-species diversity and bacterial metabolic traits that affect the organoleptic properties of wines is highlighted with emphasis on the importance of enzymatic potential of bacteria for the selection of starter cultures to control MLF and to enhance wine aroma.
Collapse
Affiliation(s)
- Maria Stella Cappello
- CNR, Institute of Science of Food Production (ISPA), Prov.le Lecce-Monteroni, 73100 Lecce, Italy.
| | - Giacomo Zapparoli
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy.
| | - Antonio Logrieco
- CNR, Institute of Science of Food Production, Via G. Amendola, 122/0, 70126 Bari, Italy
| | - Eveline J Bartowsky
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, SA 5064, Australia
| |
Collapse
|
17
|
Lee SH, Ku HJ, Ahn MJ, Hong JS, Lee SH, Shin H, Lee KC, Lee JS, Ryu S, Jeon CO, Lee JH. Weissella jogaejeotgali sp. nov., isolated from jogae jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 2015; 65:4674-4681. [PMID: 26410078 DOI: 10.1099/ijsem.0.000631] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain FOL01T was isolated from traditionally fermented Korean jogae jeotgal (fermented clams). Phylogenetic sequence analysis of the 16S rRNA gene from FOL01T revealed that it is closely related to Weissella thailandensis FS61-1T and Weissella paramesenteroides ATCC 33313T with 99.39 % and 98.50 % 16S rRNA gene sequence similarities, respectively. API and VITEK analyses showed that strain FOL01T could be separated from its nearest phylogenetic relatives with respect to carbohydrate fermentation and antibiotic resistance. Subsequent amplified rRNA gene restriction analysis of 16S rRNA genes and HaeIII-restriction enzyme profiling of genomic DNAs revealed different band patterns. In addition, DNA-DNA hybridization of genomic DNAs showed 63.9 % relatedness. Analysis of the composition of cellular fatty acids confirmed that strain FOL01T differs from its close relatives and supports the proposal to assign this organism to a novel species of the genus Weissella. Based on these results, strain FOL01T could be classified as a novel species of the genus Weissella, for which the name Weissella jogaejeotgali sp. nov. is proposed. The type strain is FOL01T ( = KCCM 43128T = JCM 30589T).
Collapse
Affiliation(s)
- Se-Hui Lee
- Department of Food Science and Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, South Korea
| | - Hye-Jin Ku
- Department of Food Science and Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, South Korea
| | - Min-Ju Ahn
- Department of Food Science and Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, South Korea
| | - Ji-Sang Hong
- Department of Food Science and Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, South Korea
| | - Se Hee Lee
- School of Biological Sciences and Research Center for Biomolecules and Biosystems Chung-Ang University, Seoul 156-756, South Korea
| | - Hakdong Shin
- Department of Food and Animal Biotechnology, Center for Agricultural Biomaterials and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Keun Chul Lee
- Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, South Korea
| | - Jung-Sook Lee
- Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, South Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Center for Agricultural Biomaterials and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Che Ok Jeon
- School of Biological Sciences and Research Center for Biomolecules and Biosystems Chung-Ang University, Seoul 156-756, South Korea
| | - Ju-Hoon Lee
- Department of Food Science and Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, South Korea
| |
Collapse
|
18
|
Fusco V, Quero GM, Cho GS, Kabisch J, Meske D, Neve H, Bockelmann W, Franz CMAP. The genus Weissella: taxonomy, ecology and biotechnological potential. Front Microbiol 2015; 6:155. [PMID: 25852652 PMCID: PMC4362408 DOI: 10.3389/fmicb.2015.00155] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/10/2015] [Indexed: 01/20/2023] Open
Abstract
Bacteria assigned to the genus Weissella are Gram-positive, catalase-negative, non-endospore forming cells with coccoid or rod-shaped morphology (Collins et al., 1993; Björkroth et al., 2009, 2014) and belong to the group of bacteria generally known as lactic acid bacteria. Phylogenetically, the Weissella belong to the Firmicutes, class Bacilli, order Lactobacillales and family Leuconostocaceae (Collins et al., 1993). They are obligately heterofermentative, producing CO2 from carbohydrate metabolism with either d(-)-, or a mixture of d(-)- and l(+)- lactic acid and acetic acid as major end products from sugar metabolism. To date, there are 19 validly described Weissella species known. Weissella spp. have been isolated from and occur in a wide range of habitats, e.g., on the skin and in the milk and feces of animals, from saliva, breast milk, feces and vagina of humans, from plants and vegetables, as well as from a variety of fermented foods such as European sourdoughs and Asian and African traditional fermented foods. Thus, apart from a perceived technical role of certain Weissella species involved in such traditional fermentations, specific Weissella strains are also receiving attention as potential probiotics, and strain development of particularly W. cibaria strains is receiving attention because of their high probiotic potential for controlling periodontal disease. Moreover, W. confusa and W. cibaria strains are known to produce copius amounts of novel, non-digestible oligosaccharides and extracellular polysaccharides, mainly dextran. These polymers are receiving increased attention for their potential application as prebiotics and for a wide range of industrial applications, predominantly for bakeries and for the production of cereal-based fermented functional beverages. On the detrimental side, strains of certain Weissella species, e.g., of W. viridescens, W. cibaria and W. confusa, are known as opportunistic pathogens involved in human infections while strains of W. ceti have been recently recongnized as etiological agent of "weissellosis," which is a disease affecting farmed rainbow trouts. Bacteria belonging to this species thus are important both from a technological, as well as from a medical point of view, and both aspects should be taken into account in any envisaged biotechnological applications.
Collapse
Affiliation(s)
- Vincenzina Fusco
- National Research Council of Italy, Institute of Sciences of Food ProductionBari, Italy
| | - Grazia M. Quero
- National Research Council of Italy, Institute of Sciences of Food ProductionBari, Italy
| | - Gyu-Sung Cho
- Department of Microbiology and Biotechnology, Max Rubner-InstitutKiel, Germany
| | - Jan Kabisch
- Department of Microbiology and Biotechnology, Max Rubner-InstitutKiel, Germany
| | - Diana Meske
- Department of Microbiology and Biotechnology, Max Rubner-InstitutKiel, Germany
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-InstitutKiel, Germany
| | - Wilhelm Bockelmann
- Department of Microbiology and Biotechnology, Max Rubner-InstitutKiel, Germany
| | | |
Collapse
|