1
|
Patel L, Singh R, Gowd SC, Thottathil SD. Environmental determinants of aerobic methane oxidation in a tropical river network. WATER RESEARCH 2024; 265:122257. [PMID: 39178592 DOI: 10.1016/j.watres.2024.122257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/08/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Aerobic methane oxidation (MOX) significantly reduces methane (CH4) emissions from inland water bodies and is, therefore, an important determinant of global CH4 budget. Yet, the magnitude and controls of MOX rates in rivers - a quantitatively significant natural source of atmospheric CH4 - are poorly constrained. Here, we conducted a series of incubation experiments to understand the magnitude and environmental controls of MOX rates in tropical fluvial systems. We observed a large variability in MOX rate (0.03 - 3.45 μmol l-1d-1) shaped by a suit of environmental variables. Accordingly, we developed an empirical model for MOX that incorporate key environmental drivers, including temperature, CH4, total phosphorus, and dissolved oxygen (O2) concentrations, based on the results of our incubation experiments. We show that temperature dependency of MOX (activation energy: 0.66 ± 0.18 eV) is lower than that of sediment methanogenesis (0.71 ± 0.21 eV) in the studied tropical fluvial network. Furthermore, we observed a non-linear relationship between O2 concentration and MOX, with the highest MOX rate occuring ∼135 μmol O2l-1, above or below this "optimal O2" concentration, MOX rate shows a gradual decline. Together, our results suggest that the relatively lower temperature response of MOX compared to methanogenesis along with the projected decrease of O2 concentration due to organic pollution may cause elevated CH4 emission from tropical southeast Asian rivers. Since estimation of CH4 oxidation is often neglected in routine CH4 monitoring programs, the model developed here may help to integrate MOX rate into process-based models for fluvial CH4 budget.
Collapse
Affiliation(s)
- Latika Patel
- Department of Environmental Science and Engineering, SRM University-AP, Amaravati, Andhra Pradesh 522 502, India
| | - Rashmi Singh
- Department of Environmental Science and Engineering, SRM University-AP, Amaravati, Andhra Pradesh 522 502, India
| | - Sarath C Gowd
- Department of Environmental Science and Engineering, SRM University-AP, Amaravati, Andhra Pradesh 522 502, India
| | - Shoji D Thottathil
- Department of Environmental Science and Engineering, SRM University-AP, Amaravati, Andhra Pradesh 522 502, India.
| |
Collapse
|
2
|
Gan Y, Meng X, Gao C, Song W, Liu L, Chen X. Metabolic engineering strategies for microbial utilization of methanol. ENGINEERING MICROBIOLOGY 2023; 3:100081. [PMID: 39628934 PMCID: PMC11611044 DOI: 10.1016/j.engmic.2023.100081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/19/2023] [Accepted: 02/25/2023] [Indexed: 12/06/2024]
Abstract
The increasing shortage of fossil resources and environmental pollution has renewed interest in the synthesis of value-added biochemicals from methanol. However, most of native or synthetic methylotrophs are unable to assimilate methanol at a sufficient rate to produce biochemicals. Thus, the performance of methylotrophs still needs to be optimized to meet the demands of industrial applications. In this review, we provide an in-depth discussion on the properties of natural and synthetic methylotrophs, and summarize the natural and synthetic methanol assimilation pathways. Further, we discuss metabolic engineering strategies for enabling microbial utilization of methanol for the bioproduction of value-added chemicals. Finally, we highlight the potential of microbial engineering for methanol assimilation and offer guidance for achieving a low-carbon footprint for the biosynthesis of chemicals.
Collapse
Affiliation(s)
- Yamei Gan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xin Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Jiang L, Chu YX, Zhang X, Wang J, He X, Liu CY, Chen T, He R. Characterization of anaerobic oxidation of methane and microbial community in landfills with aeration. ENVIRONMENTAL RESEARCH 2022; 214:114102. [PMID: 35973464 DOI: 10.1016/j.envres.2022.114102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Landfills are the third largest source of anthropogenic CH4 emissions. Anaerobic oxidation of methane (AOM) activity and communities of methane-oxidizing bacteria were investigated in three informal landfills in this study, namely, BJ, CH and SZ landfills, among which BJ and CH represent traditional anaerobic landfills, while the SZ landfill was subjected to aeration to accelerate waste stabilization. The AOM rates of the investigated landfilled wastes ranged from 3.66 to 23.91 nmol g-1 h-1. Among the three landfills, the AOM rate was highest in the SZ-1-Top sample, which was closest to the aeration pipe. Among the possible electron acceptors for AOM, including NO3-, NO2-, SO42- and Fe3+, the NO2--N content was the only variable that was positively correlated with the AOM rate. Compared with α-Proteobacteria methanotrophs, γ-Proteobacteria methanotrophs were more abundant in the landfilled waste, especially Methylobacter, which was detected in nearly all samples. Members of the family Methylomirabilaceae, including Candidatus Methylomirabilis, were also detected in the SZ-1 and SZ-2-Bot samples. The relative abundance of the main methanotrophs in the families Methylomonadaceae, Methylococcaceae, Rokubacteriales and Methylomirabilaceae, the genus Methylocystis and the phylum NC10 were all positive correlations with the contents of NO2--N in the landfilled waste samples. Additionally, significantly positive correlations were observed between the AOM rates and the relative abundance of the main methanotrophs except for the family Methylococcaceae. This indicated that aeration could enhance the conversion of nitrogen compounds in the landfilled waste, in which the high contents of NO2--N could stimulate the growth of methanotrophs and increase AOM rate. These findings are helpful for understanding the mechanisms of CH4 oxidation in landfills and for taking effective measures to mitigate CH4 emissions from landfills.
Collapse
Affiliation(s)
- Lei Jiang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yi-Xuan Chu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xuan Zhang
- Eco-Environmental Science and Research Institute of Zhejiang Province, Hangzhou, 310061, China
| | - Jing Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xiaosong He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chen-Yang Liu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Ting Chen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Ruo He
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
4
|
Xing T, Liu P, Ji M, Deng Y, Liu K, Wang W, Liu Y. Sink or Source: Alternative Roles of Glacier Foreland Meadow Soils in Methane Emission Is Regulated by Glacier Melting on the Tibetan Plateau. Front Microbiol 2022; 13:862242. [PMID: 35387086 PMCID: PMC8977769 DOI: 10.3389/fmicb.2022.862242] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Glacier foreland soils have long been considered as methane (CH4) sinks. However, they are flooded by glacial meltwater annually during the glacier melting season, altering their redox potential. The impacts of this annual flooding on CH4 emission dynamics and methane-cycling microorganisms are not well understood. Herein, we measured in situ methane flux in glacier foreland soils during the pre-melting and melting seasons on the Tibetan Plateau. In addition, high-throughput sequencing and qPCR were used to investigate the diversity, taxonomic composition, and the abundance of methanogenic archaea and methanotrophic bacteria. Our results showed that the methane flux ranged from -10.11 to 4.81 μg·m-2·h-1 in the pre-melting season, and increased to 7.48-22.57 μg·m-2·h-1 in the melting season. This indicates that glacier foreland soils change from a methane sink to a methane source under the impact of glacial meltwater. The extent of methane flux depends on methane production and oxidation conducted by methanogens and methanotrophs. Among all the environmental factors, pH (but not moisture) is dominant for methanogens, while both pH and moisture are not that strong for methanotrophs. The dominant methanotrophs were Methylobacter and Methylocystis, whereas the methanogens were dominated by methylotrophic Methanomassiliicoccales and hydrogenotrophic Methanomicrobiales. Their distributions were also affected by microtopography and environmental factor differences. This study reveals an alternative role of glacier foreland meadow soils as both methane sink and source, which is regulated by the annual glacial melt. This suggests enhanced glacial retreat may positively feedback global warming by increasing methane emission in glacier foreland soils in the context of climate change.
Collapse
Affiliation(s)
- Tingting Xing
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Pengfei Liu
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, China
| | - Mukan Ji
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, China
| | - Yongcui Deng
- School of Geography, Nanjing Normal University, Nanjing, China.,Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Wenqiang Wang
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China.,Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Burrows RM, van de Kamp J, Bodrossy L, Venarsky M, Coates-Marnane J, Rees G, Jumppanen P, Kennard MJ. Methanotroph community structure and processes in an inland river affected by natural gas macro-seeps. FEMS Microbiol Ecol 2021; 97:6367056. [PMID: 34498669 DOI: 10.1093/femsec/fiab130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Methane availability in freshwaters is usually associated with spatial-temporal variation in methanogenesis. Unusually, however, natural gas macro-seeps occur along the Condamine River in eastern Australia which elevate ambient water-column methane concentrations more than 3,000 times. We quantified the spatial-temporal variation in methane oxidation rates and the total microbial and methanotroph community composition (through the amplification and sequencing of 16S rRNA and particulate methane monooxygenase (pmoA) genes), and the factors mediating this variation, in reaches with and without macro-seeps. Sediment methane oxidation rates were, on average, 29 times greater, and the abundance of methanotrophs significantly higher, in the vicinity of methane macro-seeps compared to non-seep sites. Methylocystis was the most abundant methanotroph group at all sites, but type Ib methanotrophs showed the steepest increase in abundance at seep sites. pmoA gene analysis identified these as clade 501, while 16S rRNA gene analysis identified these as the closely related genus Methylocaldum. Sediment methane oxidation rates and the relative abundance and composition of benthic microbial communities were primarily influenced by methane availability which was in turn related to variation in river discharge. Methane-derived carbon may be an important energy source for the aquatic food webs in reaches affected by natural gas macro-seeps.
Collapse
Affiliation(s)
- Ryan M Burrows
- School of Ecosystem and Forest Sciences, The University of Melbourne, Burnley Campus, Richmond, Victoria 3121, Australia.,Australian Rivers Institute, Griffith University, Nathan, Queensland 4111, Australia
| | - Jodie van de Kamp
- CSIRO Oceans and Atmosphere, Castray Esplanade, Hobart, Tasmania 7004, Australia
| | - Levente Bodrossy
- CSIRO Oceans and Atmosphere, Castray Esplanade, Hobart, Tasmania 7004, Australia
| | - Michael Venarsky
- Australian Rivers Institute, Griffith University, Nathan, Queensland 4111, Australia
| | - Jack Coates-Marnane
- Australian Rivers Institute, Griffith University, Nathan, Queensland 4111, Australia.,Healthy Land and Water, Ann Street, Brisbane, Queensland 4000, Australia
| | - Gavin Rees
- CSIRO Land and Water, and Institute of Land Water and Society, Charles Sturt University, Thurgoona, New South Wales, 2640, Australia
| | - Paavo Jumppanen
- CSIRO Oceans and Atmosphere, Castray Esplanade, Hobart, Tasmania 7004, Australia
| | - Mark J Kennard
- Australian Rivers Institute, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
6
|
Rahalkar MC, Khatri K, Pandit P, Bahulikar RA, Mohite JA. Cultivation of Important Methanotrophs From Indian Rice Fields. Front Microbiol 2021; 12:669244. [PMID: 34539593 PMCID: PMC8447245 DOI: 10.3389/fmicb.2021.669244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/09/2021] [Indexed: 11/15/2022] Open
Abstract
Methanotrophs are aerobic to micro-aerophilic bacteria, which oxidize and utilize methane, the second most important greenhouse gas. The community structure of the methanotrophs in rice fields worldwide has been studied mainly using culture-independent methods. Very few studies have focused on culturing methanotrophs from rice fields. We developed a unique method for the cultivation of methanotrophs from rice field samples. Here, we used a modified dilute nitrate mineral salts (dNMS) medium, with two cycles of dilution till extinction series cultivation with prolonged incubation time, and used agarose in the solid medium. The cultivation approach resulted in the isolation of methanotrophs from seven genera from the three major groups: Type Ia (Methylomonas, Methylomicrobium, and Methylocucumis), Type Ib (Methylocaldum and Methylomagnum), and Type II (Methylocystis and Methylosinus). Growth was obtained till 10–6–10–8 dilutions in the first dilution series, indicating the culturing of dominant methanotrophs. Our study was supported by 16S rRNA gene-based next-generation sequencing (NGS) of three of the rice samples. Our analyses and comparison with the global scenario suggested that the cultured members represented the major detected taxa. Strain RS1, representing a putative novel species of Methylomicrobium, was cultured; and the draft genome sequence was obtained. Genome analysis indicated that RS1 represented a new putative Methylomicrobium species. Methylomicrobium has been detected globally in rice fields as a dominant genus, although no Methylomicrobium strains have been isolated from rice fields worldwide. Ours is one of the first extensive studies on cultured methanotrophs from Indian rice fields focusing on the tropical region, and a unique method was developed. A total of 29 strains were obtained, which could be used as models for studying methane mitigation from rice fields and for environmental and biotechnological applications.
Collapse
Affiliation(s)
- Monali C Rahalkar
- C2, Bioenergy Group, MACS Agharkar Research Institute, Pune, India.,Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Kumal Khatri
- C2, Bioenergy Group, MACS Agharkar Research Institute, Pune, India.,Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Pranitha Pandit
- C2, Bioenergy Group, MACS Agharkar Research Institute, Pune, India.,Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Rahul A Bahulikar
- Central Research Station, BAIF Development Research Foundation, Pune, India
| | - Jyoti A Mohite
- C2, Bioenergy Group, MACS Agharkar Research Institute, Pune, India.,Department of Microbiology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
7
|
Isolation, Description and Genome Analysis of a Putative Novel Methylobacter Species (‘Ca. Methylobacter coli’) Isolated from the Faeces of a Blackbuck (Indian Antelope). MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12020035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Enteric fermentation of methane by ruminant animals represents a major source of anthropogenic methane. Significantly less information is available on the existence of methanotrophs in the gut of ruminants. Therefore, detailed strain descriptions of methanotrophs isolated from ruminant faeces or gut are rare. We present a first report on the enrichment and isolation of a methanotroph, strain BlB1, from the faeces of an Indian antelope (blackbuck). The 16S rRNA gene sequence of strain BlB1 showed the highest identity (98.40% identity) to Methylobacter marinus A45T and Methylobacter luteus NCIMB 11914T. Strain BlB1 showed coccoidal cells (1.5–2 µm in diameter), which formed chains or aggregates of 3–4 cells of light yellow-coloured colonies on agarose when incubated with methane in the gas phase. The draft genome of BlB1 (JADMKV01) is 4.87 Mbp in size, with a G + C content of 51.3%. The draft genome showed 27.4% digital DNA-DNA hybridization (DDH) and 83.07% average nucleotide identity (ANIb) values with that of its closest phylogenetic neighbour, Methylobacter marinus A45T. Due to the lower values of DDH and ANIb with the nearest species, and <98.7% 16S rRNA gene sequence identity, we propose that strain BlB1 belongs to a novel species of Methylobacter. However, as the culture has to be maintained live and resisted cryopreservation, deposition in culture collections was not possible and hence we propose a Candidatus species name, ‘Ca. Methylobacter coli’ BlB1. ‘Ca. Methylobacter coli’ BlB1 would be the first described methanotroph from ruminants worldwide, with a sequenced draft genome. This strain could be used as a model for studies concerning methane mitigation from ruminants.
Collapse
|
8
|
Kumar M, Yadav AN, Saxena R, Rai PK, Paul D, Tomar RS. Novel methanotrophic and methanogenic bacterial communities from diverse ecosystems and their impact on environment. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Saidi-Mehrabad A, Kits DK, Kim JJ, Tamas I, Schumann P, Khadka R, Strilets T, Smirnova AV, Rijpstra WIC, Sinninghe Damsté JS, Dunfield PF. Methylicorpusculum oleiharenae gen. nov., sp. nov., an aerobic methanotroph isolated from an oil sands tailings pond. Int J Syst Evol Microbiol 2020; 70:2499-2508. [DOI: 10.1099/ijsem.0.004064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An aerobic methane oxidizing bacterium, designated XLMV4T, was isolated from the oxic surface layer of an oil sands tailings pond in Alberta, Canada. Strain XLMV4T is capable of growth on methane and methanol as energy sources. NH4Cl and sodium nitrate are nitrogen sources. Cells are Gram-negative, beige to yellow-pigmented, motile (via a single polar flagellum), short rods 2.0–3.3 µm in length and 1.0–1.6 µm in width. A thick capsule is produced. Surface glycoprotein or cup shape proteins typical of the genera Methylococcus, Methylothermus and
Methylomicrobium
were not observed. Major isoprenoid quinones are Q-8 and Q-7 at an approximate molar ratio of 71 : 22. Major polar lipids are phosphoglycerol and ornithine lipids. Major fatty acids are C16 : 1 ω8+C16 : 1 ω7 (34 %), C16 : 1 ω5 (16 %), and C18 : 1 ω7 (11 %). Optimum growth is observed at pH 8.0 and 25 °C. The DNA G+C content based on a draft genome sequence is 46.7 mol%. Phylogenetic analysis of 16S rRNA genes and a larger set of conserved genes place strain XLMV4T within the class
Gammaproteobacteria
and family
Methylococcaceae
, most closely related to members of the genera
Methylomicrobium
and
Methylobacter
(95.0–97.1 % 16S rRNA gene sequence identity). In silico genomic predictions of DNA–DNA hybridization values of strain XLMV4T to the nearest phylogenetic neighbours were all below 26 %. On the basis of the data presented, strain XLMV4T is considered to represent a new genus and species for which the name Methylicorpusculum oleiharenae is proposed. Strain XLMV4T (=DSMZ DSM 27269=ATCC TSD-186) is the type strain.
Collapse
Affiliation(s)
- Alireza Saidi-Mehrabad
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, T6G 2E9, Canada
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
| | - Dimitri K. Kits
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, T6G 2E9, Canada
| | - Joong-Jae Kim
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
| | - Ivica Tamas
- Departman Za Biologiju I Ekologiju, Prirodno-Matematicki Fakultet, Univerzitet u Novom Sadu, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
| | - Peter Schumann
- Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures. Inhoffenstr. 7 B 38124 Braunschweig, Germany
| | - Roshan Khadka
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
| | - Tania Strilets
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, T6G 2E9, Canada
| | - Angela V. Smirnova
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
| | - W. Irene C. Rijpstra
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands
| | - Jaap S. Sinninghe Damsté
- Faculty of Geosciences, Department of Earth Sciences, Utrecht University, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands
| | - Peter F. Dunfield
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
10
|
Mayr MJ, Zimmermann M, Dey J, Brand A, Wehrli B, Bürgmann H. Growth and rapid succession of methanotrophs effectively limit methane release during lake overturn. Commun Biol 2020; 3:108. [PMID: 32144394 PMCID: PMC7060174 DOI: 10.1038/s42003-020-0838-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/19/2020] [Indexed: 11/09/2022] Open
Abstract
Lakes and reservoirs contribute substantially to atmospheric concentrations of the potent greenhouse gas methane. Lake sediments produce large amounts of methane, which accumulate in the oxygen-depleted bottom waters of stratified lakes. Climate change and eutrophication may increase the number of lakes with methane storage in the future. Whether stored methane escapes to the atmosphere during annual lake overturn is a matter of controversy and depends critically on the response of the methanotroph assemblage. Here we show, by combining 16S rRNA gene and pmoA mRNA amplicon sequencing, qPCR, CARD-FISH and potential methane-oxidation rate measurements, that the methanotroph assemblage in a mixing lake underwent both a substantial bloom and ecological succession. As a result, methane oxidation kept pace with the methane supplied from methane-rich bottom water and most methane was oxidized. This aspect of freshwater methanotroph ecology represents an effective mechanism limiting methane transfer from lakes to the atmosphere.
Collapse
Affiliation(s)
- Magdalena J Mayr
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047, Kastanienbaum, Switzerland.,Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, 8092, Zurich, Switzerland
| | - Matthias Zimmermann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047, Kastanienbaum, Switzerland.,Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, 8092, Zurich, Switzerland
| | - Jason Dey
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047, Kastanienbaum, Switzerland
| | - Andreas Brand
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047, Kastanienbaum, Switzerland.,Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, 8092, Zurich, Switzerland
| | - Bernhard Wehrli
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047, Kastanienbaum, Switzerland.,Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, 8092, Zurich, Switzerland
| | - Helmut Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047, Kastanienbaum, Switzerland.
| |
Collapse
|
11
|
Islam T, Larsen Ø, Birkeland NK. A Novel Cold-adapted Methylovulum species, with a High C16:1ω5c Content, Isolated from an Arctic Thermal Spring in Spitsbergen. Microbes Environ 2020; 35:ME20044. [PMID: 32536671 PMCID: PMC7511782 DOI: 10.1264/jsme2.me20044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/25/2020] [Indexed: 11/12/2022] Open
Abstract
A novel cold-adapted methane-oxidizing bacterium, termed TFB, was isolated from the thermoglacial Arctic karst spring, Trollosen, located in the South Spitsbergen National Park (Norway). The source water is cold and extremely low in phosphate and nitrate. The isolate belongs to the Methylovulum genus of gammaproteobacterial methanotrophs, with the closest phylogenetic affiliation with Methylovulum miyakonense and Methylovulum psychrotolerans (96.2 and 96.1% 16S rRNA gene sequence similarities, respectively). TFB is a strict aerobe that only grows in the presence of methane or methanol. It fixes atmospheric nitrogen and contains Type I intracellular membranes. The growth temperature range was 2-22°C, with an optimum at 13-18°C. The functional genes pmoA, mxaF, and nifH were identified by PCR, whereas mmoX and cbbL were not. C16:1ω5c was identified as the major fatty acid constituent, at an amount (>49%) not previously found in any methanotrophs, and is likely to play a major role in cold adaptation. Strain TFB may be regarded as a new psychrotolerant or psychrophilic species within the genus Methylovulum. The recovery of this cold-adapted bacterium from a neutral Arctic thermal spring increases our knowledge of the diversity and adaptation of extremophilic gammaproteobacterial methanotrophs in the candidate family "Methylomonadaceae".
Collapse
Affiliation(s)
- Tajul Islam
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Bergen Katedralskole, Kong Oscars gate 36, 5017 Bergen, Norway
| | - Øivind Larsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- NORCE Norwegian Research Centre AS, Bergen, Norway
| | | |
Collapse
|
12
|
Thriving in Wetlands: Ecophysiology of the Spiral-Shaped Methanotroph Methylospira mobilis as Revealed by the Complete Genome Sequence. Microorganisms 2019; 7:microorganisms7120683. [PMID: 31835835 PMCID: PMC6956133 DOI: 10.3390/microorganisms7120683] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 12/27/2022] Open
Abstract
Candidatus Methylospira mobilis is a recently described spiral-shaped, micro-aerobic methanotroph, which inhabits northern freshwater wetlands and sediments. Due to difficulties of cultivation, it could not be obtained in a pure culture for a long time. Here, we report on the successful isolation of strain Shm1, the first axenic culture of this unique methanotroph. The complete genome sequence obtained for strain Shm1 was 4.7 Mb in size and contained over 4800 potential protein-coding genes. The array of genes encoding C1 metabolic capabilities in strain Shm1 was highly similar to that in the closely related non-motile, moderately thermophilic methanotroph Methylococcus capsulatus Bath. The genomes of both methanotrophs encoded both low- and high-affinity oxidases, which allow their survival in a wide range of oxygen concentrations. The repertoire of signal transduction systems encoded in the genome of strain Shm1, however, by far exceeded that in Methylococcus capsulatus Bath but was comparable to those in other motile gammaproteobacterial methanotrophs. The complete set of motility genes, the presence of both the molybdenum–iron and vanadium-iron nitrogenases, as well as a large number of insertion sequences were also among the features, which define environmental adaptation of Methylospira mobilis to water-saturated, micro-oxic, heterogeneous habitats depleted in available nitrogen.
Collapse
|
13
|
Niche partitioning of methane-oxidizing bacteria along the oxygen-methane counter gradient of stratified lakes. ISME JOURNAL 2019; 14:274-287. [PMID: 31624343 DOI: 10.1038/s41396-019-0515-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/13/2019] [Accepted: 08/25/2019] [Indexed: 12/30/2022]
Abstract
Lakes are a significant source of atmospheric methane, although methane-oxidizing bacteria consume most methane diffusing upward from anoxic sediments. Diverse methane-oxidizing bacteria form an effective methane filter in the water column of stratified lakes, yet, niche partitioning of different methane-oxidizing bacteria along the oxygen-methane counter gradient remains poorly understood. In our study, we reveal vertical distribution patterns of active methane-oxidizing bacteria along the oxygen-methane counter gradient of four lakes, based on amplicon sequencing analysis of 16S rRNA and pmoA genes, and 16S rRNA and pmoA transcripts, and potential methane oxidation rates. Differential distribution patterns indicated that ecologically different methane-oxidizing bacteria occupied the methane-deficient and oxygen-deficient part above and below the oxygen-methane interface. The interface sometimes harbored additional taxa. Within the dominant Methylococcales, an uncultivated taxon (CABC2E06) occurred mainly under methane-deficient conditions, whereas Crenothrix-related taxa preferred oxygen-deficient conditions. Candidatus Methylomirabilis limnetica (NC10 phylum) abundantly populated the oxygen-deficient part in two of four lakes. We reason that the methane filter in lakes is structured and that methane-oxidizing bacteria may rely on niche-specific adaptations for methane oxidation along the oxygen-methane counter gradient. Niche partitioning of methane-oxidizing bacteria might support greater overall resource consumption, contributing to the high effectivity of the lacustrine methane filter.
Collapse
|
14
|
Houghton KM, Carere CR, Stott MB, McDonald IR. Thermophilic methanotrophs: in hot pursuit. FEMS Microbiol Ecol 2019; 95:5543213. [DOI: 10.1093/femsec/fiz125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/31/2019] [Indexed: 11/13/2022] Open
Abstract
ABSTRACTMethane is a potent greenhouse gas responsible for 20–30% of global climate change effects. The global methane budget is ∼500–600 Tg y−1, with the majority of methane produced via microbial processes, including anthropogenic-mediated sources such as ruminant animals, rice fields, sewage treatment facilities and landfills. It is estimated that microbially mediated methane oxidation (methanotrophy) consumes >50% of global methane flux each year. Methanotrophy research has primarily focused on mesophilic methanotrophic representatives and cooler environments such as freshwater, wetlands or marine habitats from which they are sourced. Nevertheless, geothermal emissions of geological methane, produced from magma and lithosphere degassing micro-seepages, mud volcanoes and other geological sources, contribute an estimated 33–75 Tg y−1 to the global methane budget. The aim of this review is to summarise current literature pertaining to the activity of thermophilic and thermotolerant methanotrophs, both proteobacterial (Methylocaldum, Methylococcus, Methylothermus) and verrucomicrobial (Methylacidiphilum). We assert, on the basis of recently reported molecular and geochemical data, that geothermal ecosystems host hitherto unidentified species capable of methane oxidation at higher temperatures.
Collapse
Affiliation(s)
- Karen M Houghton
- GNS Science, Wairakei Research Centre, 114 Karetoto Rd, Taupō 3384, New Zealand
- School of Science, University of Waikato, Knighton Rd, Hamilton 3240, New Zealand
| | - Carlo R Carere
- GNS Science, Wairakei Research Centre, 114 Karetoto Rd, Taupō 3384, New Zealand
- Department of Chemical and Process Engineering, University of Canterbury, 20 Kirkwood Ave, Upper Riccarton, Christchurch 8041, New Zealand
| | - Matthew B Stott
- GNS Science, Wairakei Research Centre, 114 Karetoto Rd, Taupō 3384, New Zealand
- School of Biological Sciences, University of Canterbury, 20 Kirkwood Ave, Upper Riccarton, Christchurch 8041, New Zealand
| | - Ian R McDonald
- School of Science, University of Waikato, Knighton Rd, Hamilton 3240, New Zealand
| |
Collapse
|
15
|
Sun Y, Wang M, Li L, Zhou L, Wang X, Zheng P, Yu H, Li C, Sun S. Molecular identification of methane monooxygenase and quantitative analysis of methanotrophic endosymbionts under laboratory maintenance in Bathymodiolus platifrons from the South China Sea. PeerJ 2017; 5:e3565. [PMID: 28828234 PMCID: PMC5553348 DOI: 10.7717/peerj.3565] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/21/2017] [Indexed: 11/22/2022] Open
Abstract
Deep-sea mussels of the genus Bathymodiolus are numerically dominant macrofauna in many cold seep and hydrothermal vent ecosystems worldwide, and they depend on organic carbon produced by symbionts present in the epithelial cells of the gills. Although Bathymodiolus platifrons represents typical methanotrophic endosymbiosis, our understanding of molecular mechanisms of methane oxidization and carbon fixation is still in its infancy. Moreover, the laboratory maintenance of B. platifrons and the symbiont abundance dynamics during maintenance has not been reported. In the present study, we report the first systematic identification and phylogenetic analysis of three subunits of methane monooxygenase (pmoA, pmoB, and pmoC) obtained from the endosymbiotic bacteria found in B. platifrons. The coding sequences (CDS) of the three genes in the B. platifrons endosymbiont were 750, 1,245, and 753 bp, encoding 249, 414, and 250 amino acids, respectively. Sequence alignment and phylogenetic analysis revealed that the symbiont of B. platifrons belongs to the type I methanotrophs. In order to clarify the impact of environmental methane on symbiont abundance, a 34-day laboratory maintenance experiment was conducted in which B. platifrons individuals were acclimatized to methane-present and methane-absent environments. Symbiont abundance was evaluated by calculating the relative DNA content of the methane monooxygenase gene using quantitative real-time PCR. We found that symbiont quantity immediately decreased from its initial level, then continued to gradually decline during maintenance. At 24 and 34 days of maintenance, symbiont abundance in the methane-absent environment had significantly decreased compared to that in the methane-present environment, indicating that the maintenance of symbionts relies on a continuous supply of methane. Our electron microscopy results validated the qPCR analysis. This study enriches our knowledge of the molecular basis and the dynamic changes of the methanotrophic endosymbiosis in B. platifrons, and provides a feasible model biosystem for further investigation of methane oxidization, the carbon fixation process, and environmental adaptations of deep-sea mussels.
Collapse
Affiliation(s)
- Yan Sun
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Minxiao Wang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Leilei Li
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Li Zhou
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xiaocheng Wang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ping Zheng
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Haiyan Yu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Chaolun Li
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Song Sun
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Jiaozhou Bay Marine Ecosystem Research Station, Chinese Ecosystem Research Network, Qingdao, China
| |
Collapse
|
16
|
Liang Y, Cook LJ, Mattes TE. Temporal abundance and activity trends of vinyl chloride (VC)-degrading bacteria in a dilute VC plume at Naval Air Station Oceana. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:13760-13774. [PMID: 28401391 DOI: 10.1007/s11356-017-8948-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
Assessment and monitoring of microbial community dynamics is useful when tracking the progress of vinyl chloride (VC) bioremediation strategies, particularly in dilute plumes where apparent VC attenuation rates are low. In a long-term field study, the abundance and the activity of microbial VC degraders were tracked in three monitoring wells (MW05, MW25, and MW19) along a dilute VC plume at Naval Air Station (NAS) Oceana. High-throughput sequencing of partial 16S ribosomal RNA (rRNA) genes and transcripts revealed diverse groundwater microbial communities and showed that methanotrophs and anaerobic respirers (e.g., methanogens, sulfate reducers, and iron reducers) were among the most active and abundant guilds. Quantitative PCR analysis showed that among bacterial guilds with a potential to contribute to VC biodegradation, methanotrophs were the most abundant and active microbial group. Ethene-oxidizing bacterial populations were less abundant and relatively inactive compared to methanotrophs. In MW19, expression of functional genes associated with both aerobic VC oxidation and anaerobic VC reduction was observed. Overall, our results reveal that the groundwater community contains various active bacterial guilds previously associated with metabolic and cometabolic VC degradation processes either under aerobic and anaerobic conditions that might have contributed to the slowly decreasing VC concentrations at the NAS Oceana site over the 6-year study period.
Collapse
Affiliation(s)
- Yi Liang
- Department of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA, 52242, USA
| | - Laura J Cook
- CH2M 5701 Cleveland Street Suite 200, Virginia Beach, VA, 23462, USA
| | - Timothy E Mattes
- Department of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA, 52242, USA.
| |
Collapse
|
17
|
Brazelton WJ, Thornton CN, Hyer A, Twing KI, Longino AA, Lang SQ, Lilley MD, Früh-Green GL, Schrenk MO. Metagenomic identification of active methanogens and methanotrophs in serpentinite springs of the Voltri Massif, Italy. PeerJ 2017; 5:e2945. [PMID: 28149702 PMCID: PMC5274519 DOI: 10.7717/peerj.2945] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/27/2016] [Indexed: 12/22/2022] Open
Abstract
The production of hydrogen and methane by geochemical reactions associated with the serpentinization of ultramafic rocks can potentially support subsurface microbial ecosystems independent of the photosynthetic biosphere. Methanogenic and methanotrophic microorganisms are abundant in marine hydrothermal systems heavily influenced by serpentinization, but evidence for methane-cycling archaea and bacteria in continental serpentinite springs has been limited. This report provides metagenomic and experimental evidence for active methanogenesis and methanotrophy by microbial communities in serpentinite springs of the Voltri Massif, Italy. Methanogens belonging to family Methanobacteriaceae and methanotrophic bacteria belonging to family Methylococcaceae were heavily enriched in three ultrabasic springs (pH 12). Metagenomic data also suggest the potential for hydrogen oxidation, hydrogen production, carbon fixation, fermentation, and organic acid metabolism in the ultrabasic springs. The predicted metabolic capabilities are consistent with an active subsurface ecosystem supported by energy and carbon liberated by geochemical reactions within the serpentinite rocks of the Voltri Massif.
Collapse
Affiliation(s)
- William J Brazelton
- Department of Biology, University of Utah , Salt Lake City , UT , United States
| | | | - Alex Hyer
- Department of Biology, University of Utah , Salt Lake City , UT , United States
| | - Katrina I Twing
- Department of Earth and Environmental Sciences, Michigan State University , East Lansing , MI , United States
| | - August A Longino
- Department of Biology, University of Utah , Salt Lake City , UT , United States
| | - Susan Q Lang
- Department of Earth and Ocean Sciences, University of South Carolina, Columbia, SC, United States; Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
| | - Marvin D Lilley
- School of Oceanography, University of Washington , Seattle , WA , United States
| | | | - Matthew O Schrenk
- Department of Earth and Environmental Sciences, Michigan State University , East Lansing , MI , United States
| |
Collapse
|
18
|
Improved enrichment culture technique for methane-oxidizing bacteria from marine ecosystems: the effect of adhesion material and gas composition. Antonie van Leeuwenhoek 2016; 110:281-289. [DOI: 10.1007/s10482-016-0787-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
|
19
|
Islam T, Torsvik V, Larsen Ø, Bodrossy L, Øvreås L, Birkeland NK. Acid-Tolerant Moderately Thermophilic Methanotrophs of the Class Gammaproteobacteria Isolated From Tropical Topsoil with Methane Seeps. Front Microbiol 2016; 7:851. [PMID: 27379029 PMCID: PMC4908921 DOI: 10.3389/fmicb.2016.00851] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 05/23/2016] [Indexed: 11/13/2022] Open
Abstract
Terrestrial tropical methane seep habitats are important ecosystems in the methane cycle. Methane oxidizing bacteria play a key role in these ecosystems as they reduce methane emissions to the atmosphere. Here, we describe the isolation and initial characterization of two novel moderately thermophilic and acid-tolerant obligate methanotrophs, assigned BFH1 and BFH2 recovered from a tropical methane seep topsoil habitat. The new isolates were strictly aerobic, non-motile, coccus-shaped and utilized methane and methanol as sole carbon and energy source. Isolates grew at pH range 4.2–7.5 (optimal 5.5–6.0) and at a temperature range of 30–60°C (optimal 51–55°C). 16S rRNA gene phylogeny placed them in a well-separated branch forming a cluster together with the genus Methylocaldum as the closest relatives (93.1–94.1% sequence similarity). The genes pmoA, mxaF, and cbbL were detected, but mmoX was absent. Strains BFH1 and BFH2 are, to our knowledge, the first isolated acid-tolerant moderately thermophilic methane oxidizers of the class Gammaproteobacteria. Each strain probably denotes a novel species and they most likely represent a novel genus within the family Methylococcaceae of type I methanotrophs. Furthermore, the isolates increase our knowledge of acid-tolerant aerobic methanotrophs and signify a previously unrecognized biological methane sink in tropical ecosystems.
Collapse
Affiliation(s)
- Tajul Islam
- Department of Biology, University of Bergen Bergen, Norway
| | - Vigdis Torsvik
- Department of Biology, University of Bergen Bergen, Norway
| | - Øivind Larsen
- Department of Biology, University of BergenBergen, Norway; Uni Environment, Uni ResearchBergen, Norway
| | | | - Lise Øvreås
- Department of Biology, University of Bergen Bergen, Norway
| | - Nils-Kåre Birkeland
- Department of Biology, University of BergenBergen, Norway; Centre for Geobiology, University of BergenBergen, Norway
| |
Collapse
|
20
|
Bornemann M, Bussmann I, Tichy L, Deutzmann J, Schink B, Pester M. Methane release from sediment seeps to the atmosphere is counteracted by highly active Methylococcaceae in the water column of deep oligotrophic Lake Constance. FEMS Microbiol Ecol 2016; 92:fiw123. [PMID: 27267930 DOI: 10.1093/femsec/fiw123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2016] [Indexed: 11/14/2022] Open
Abstract
Methane emissions from freshwater environments contribute substantially to global warming but are under strong control of aerobic methane-oxidizing bacteria. Recently discovered methane seeps (pockmarks) in freshwater lake sediments have the potential to bypass this control by their strong outgassing activity. Whether this is counteracted by pelagic methanotrophs is not well understood yet. We used a (3)H-CH4-radiotracer technique and pmoA-based molecular approaches to assess the activity, abundance and community structure of pelagic methanotrophs above active pockmarks in deep oligotrophic Lake Constance. Above profundal pockmarks, methane oxidation rates (up to 458 nmol CH4 l(-1) d(-1)) exceeded those of the surrounding water column by two orders of magnitude and coincided with maximum methanotroph abundances of 0.6% of the microbial community. Phylogenetic analysis indicated a dominance of members of the Methylococcaceae in the water column of both, pockmark and reference sites, with most of the retrieved sequences being associated with a water-column specific clade. Communities at pockmark and reference locations also differed in parts, which was likely caused by entrainment of sediment-hosted methanotrophs at pockmark sites. Our results show that the release of seep-derived methane to the atmosphere is counteracted by a distinct methanotrophic community with a pronounced activity throughout bottom waters.
Collapse
Affiliation(s)
- Maren Bornemann
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Ingeborg Bussmann
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Meeresstation Helgoland, Kurpromenade 201, D-27498 Helgoland, Germany
| | - Lucas Tichy
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Jörg Deutzmann
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany Department of Civil and Environmental Engineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Bernhard Schink
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Michael Pester
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| |
Collapse
|
21
|
Danilova OV, Suzina NE, Van De Kamp J, Svenning MM, Bodrossy L, Dedysh SN. A new cell morphotype among methane oxidizers: a spiral-shaped obligately microaerophilic methanotroph from northern low-oxygen environments. ISME JOURNAL 2016; 10:2734-2743. [PMID: 27058508 DOI: 10.1038/ismej.2016.48] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/05/2016] [Accepted: 02/25/2016] [Indexed: 12/29/2022]
Abstract
Although representatives with spiral-shaped cells are described for many functional groups of bacteria, this cell morphotype has never been observed among methanotrophs. Here, we show that spiral-shaped methanotrophic bacteria do exist in nature but elude isolation by conventional approaches due to the preference for growth under micro-oxic conditions. The helical cell shape may enable rapid motility of these bacteria in water-saturated, heterogeneous environments with high microbial biofilm content, therefore offering an advantage of fast cell positioning under desired high methane/low oxygen conditions. The pmoA genes encoding a subunit of particulate methane monooxygenase from these methanotrophs form a new genus-level lineage within the family Methylococcaceae, type Ib methanotrophs. Application of a pmoA-based microarray detected these bacteria in a variety of high-latitude freshwater environments including wetlands and lake sediments. As revealed by the environmental pmoA distribution analysis, type Ib methanotrophs tend to live very near the methane source, where oxygen is scarce. The former perception of type Ib methanotrophs as being typical for thermal habitats appears to be incorrect because only a minor proportion of pmoA sequences from these bacteria originated from environments with elevated temperatures.
Collapse
Affiliation(s)
- Olga V Danilova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Natalia E Suzina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | | - Mette M Svenning
- UiT The Arctic University of Norway, Department of Arctic and Marine Biology, Tromsø, Norway
| | | | - Svetlana N Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
22
|
Pandit PS, Rahalkar MC, Dhakephalkar PK, Ranade DR, Pore S, Arora P, Kapse N. Deciphering Community Structure of Methanotrophs Dwelling in Rice Rhizospheres of an Indian Rice Field Using Cultivation and Cultivation-Independent Approaches. MICROBIAL ECOLOGY 2016; 71:634-644. [PMID: 26547567 DOI: 10.1007/s00248-015-0697-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/26/2015] [Indexed: 06/05/2023]
Abstract
Methanotrophs play a crucial role in filtering out methane from habitats, such as flooded rice fields. India has the largest area under rice cultivation in the world; however, to the best of our knowledge, methanotrophs have not been isolated and characterized from Indian rice fields. A cultivation strategy composing of a modified medium, longer incubation time, and serial dilutions in microtiter plates was used to cultivate methanotrophs from a rice rhizosphere sample from a flooded rice field in Western India. We compared the cultured members with the uncultured community as revealed by three culture-independent methods. A novel type Ia methanotroph (Sn10-6), at the rank of a genus, and a putative novel species of a type II methanotroph (Sn-Cys) were cultivated from the terminal positive dilution (10(-6)). From lower dilution (10(-4)), a strain of Methylomonas spp. was cultivated. All the three culture-independent analyses, i.e., pmoA clone library, terminal restriction fragment length polymorphism (T-RFLP), and metagenomics approach, revealed the dominance of type I methanotrophs. Only metagenomic analysis showed significant presence of type II methanotrophs, albeit in lower proportion (37 %). All the three isolates showed relevance to the methanotrophic community as depicted by uncultured methods; however, the cultivated members might not be the most dominant ones. In conclusion, a combined cultivation and cultivation-independent strategy yielded us a broader picture of the methanotrophic community from rice rhizospheres of a flooded rice field in India.
Collapse
Affiliation(s)
- Pranitha S Pandit
- MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India
| | - Monali C Rahalkar
- MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India.
| | | | - Dilip R Ranade
- MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India
- Microbial Culture Collection, NCCS, Sai-Trinity Building Garware Circle, Pashan, Pune, Maharashtra, 411021, India
| | - Soham Pore
- MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India
| | - Preeti Arora
- MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India
| | - Neelam Kapse
- MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India
| |
Collapse
|
23
|
Knief C. Diversity and Habitat Preferences of Cultivated and Uncultivated Aerobic Methanotrophic Bacteria Evaluated Based on pmoA as Molecular Marker. Front Microbiol 2015; 6:1346. [PMID: 26696968 PMCID: PMC4678205 DOI: 10.3389/fmicb.2015.01346] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/16/2015] [Indexed: 01/06/2023] Open
Abstract
Methane-oxidizing bacteria are characterized by their capability to grow on methane as sole source of carbon and energy. Cultivation-dependent and -independent methods have revealed that this functional guild of bacteria comprises a substantial diversity of organisms. In particular the use of cultivation-independent methods targeting a subunit of the particulate methane monooxygenase (pmoA) as functional marker for the detection of aerobic methanotrophs has resulted in thousands of sequences representing "unknown methanotrophic bacteria." This limits data interpretation due to restricted information about these uncultured methanotrophs. A few groups of uncultivated methanotrophs are assumed to play important roles in methane oxidation in specific habitats, while the biology behind other sequence clusters remains still largely unknown. The discovery of evolutionary related monooxygenases in non-methanotrophic bacteria and of pmoA paralogs in methanotrophs requires that sequence clusters of uncultivated organisms have to be interpreted with care. This review article describes the present diversity of cultivated and uncultivated aerobic methanotrophic bacteria based on pmoA gene sequence diversity. It summarizes current knowledge about cultivated and major clusters of uncultivated methanotrophic bacteria and evaluates habitat specificity of these bacteria at different levels of taxonomic resolution. Habitat specificity exists for diverse lineages and at different taxonomic levels. Methanotrophic genera such as Methylocystis and Methylocaldum are identified as generalists, but they harbor habitat specific methanotrophs at species level. This finding implies that future studies should consider these diverging preferences at different taxonomic levels when analyzing methanotrophic communities.
Collapse
Affiliation(s)
- Claudia Knief
- Institute of Crop Science and Resource Conservation – Molecular Biology of the Rhizosphere, University of BonnBonn, Germany
| |
Collapse
|
24
|
Novel Methanotrophs of the Family Methylococcaceae from Different Geographical Regions and Habitats. Microorganisms 2015; 3:484-99. [PMID: 27682101 PMCID: PMC5023254 DOI: 10.3390/microorganisms3030484] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/04/2015] [Accepted: 08/07/2015] [Indexed: 11/24/2022] Open
Abstract
Terrestrial methane seeps and rice paddy fields are important ecosystems in the methane cycle. Methanotrophic bacteria in these ecosystems play a key role in reducing methane emission into the atmosphere. Here, we describe three novel methanotrophs, designated BRS-K6, GFS-K6 and AK-K6, which were recovered from three different habitats in contrasting geographic regions and ecosystems: waterlogged rice-field soil and methane seep pond sediments from Bangladesh; and warm spring sediments from Armenia. All isolates had a temperature range for growth of 8–35 °C (optimal 25–28 °C) and a pH range of 5.0–7.5 (optimal 6.4–7.0). 16S rRNA gene sequences showed that they were new gammaproteobacterial methanotrophs, which form a separate clade in the family Methylococcaceae. They fell into a cluster with thermotolerant and mesophilic growth tendency, comprising the genera Methylocaldum-Methylococcus-Methyloparacoccus-Methylogaea. So far, growth below 15 °C of methanotrophs from this cluster has not been reported. The strains possessed type I intracytoplasmic membranes. The genes pmoA, mxaF, cbbL, nifH were detected, but no mmoX gene was found. Each strain probably represents a novel species either belonging to the same novel genus or each may even represent separate genera. These isolates extend our knowledge of methanotrophic Gammaproteobacteria and their physiology and adaptation to different ecosystems.
Collapse
|
25
|
Chidambarampadmavathy K, Obulisamy P. K, Heimann K. Role of copper and iron in methane oxidation and bacterial biopolymer accumulation. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Karthigeyan Chidambarampadmavathy
- Collegeof Marine and Environmental ScienceJames Cook University Townsville Queensland Australia
- Centre for Sustainable Fisheries and AquacultureJames Cook University Townsville Queensland Australia
| | - Karthikeyan Obulisamy P.
- Collegeof Marine and Environmental ScienceJames Cook University Townsville Queensland Australia
- Centre for Sustainable Fisheries and AquacultureJames Cook University Townsville Queensland Australia
| | - Kirsten Heimann
- Collegeof Marine and Environmental ScienceJames Cook University Townsville Queensland Australia
- Centre for Sustainable Fisheries and AquacultureJames Cook University Townsville Queensland Australia
- Centre for Biodiscovery and Molecular Development of TherapeuticsJames Cook University Townsville Queensland Australia
- Comparative Genomics CentreJames Cook University Townsville Queensland Australia
| |
Collapse
|
26
|
Tavormina PL, Hatzenpichler R, McGlynn S, Chadwick G, Dawson KS, Connon SA, Orphan VJ. Methyloprofundus sedimenti gen. nov., sp. nov., an obligate methanotroph from ocean sediment belonging to the 'deep sea-1' clade of marine methanotrophs. Int J Syst Evol Microbiol 2014; 65:251-259. [PMID: 25342114 DOI: 10.1099/ijs.0.062927-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We report the isolation and growth characteristics of a gammaproteobacterial methane-oxidizing bacterium (Methylococcaceae strain WF1(T), 'whale fall 1') that shares 98 % 16S rRNA gene sequence identity with uncultivated free-living methanotrophs and the methanotrophic endosymbionts of deep-sea mussels, ≤94.6 % 16S rRNA gene sequence identity with species of the genus Methylobacter and ≤93.6 % 16S rRNA gene sequence identity with species of the genera Methylomonas and Methylosarcina. Strain WF1(T) represents the first cultivar from the 'deep sea-1' clade of marine methanotrophs, which includes members that participate in methane oxidation in sediments and the water column in addition to mussel endosymbionts. Cells of strain WF1(T) were elongated cocci, approximately 1.5 µm in diameter, and occurred singly, in pairs and in clumps. The cell wall was Gram-negative, and stacked intracytoplasmic membranes and storage granules were evident. The genomic DNA G+C content of WF1(T) was 40.5 mol%, significantly lower than that of currently described cultivars, and the major fatty acids were 16 : 0, 16 : 1ω9c, 16 : 1ω9t, 16 : 1ω8c and 16 : 2ω9,14. Growth occurred in liquid media at an optimal temperature of 23 °C, and was dependent on the presence of methane or methanol. Atmospheric nitrogen could serve as the sole nitrogen source for WF1(T), a capacity that had not been functionally demonstrated previously in members of Methylobacter. On the basis of its unique morphological, physiological and phylogenetic properties, this strain represents the type species within a new genus, and we propose the name Methyloprofundus sedimenti gen. nov., sp. nov. The type strain of Methyloprofundus sedimenti is WF1(T) ( = LMG 28393(T) = ATCC BAA-2619(T)).
Collapse
Affiliation(s)
- Patricia L Tavormina
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Roland Hatzenpichler
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Shawn McGlynn
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Grayson Chadwick
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Katherine S Dawson
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Stephanie A Connon
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| |
Collapse
|
27
|
Gammaproteobacterial methanotrophs dominate cold methane seeps in floodplains of West Siberian rivers. Appl Environ Microbiol 2014; 80:5944-54. [PMID: 25063667 DOI: 10.1128/aem.01539-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A complex system of muddy fluid-discharging and methane (CH4)-releasing seeps was discovered in a valley of the river Mukhrinskaya, one of the small rivers of the Irtysh Basin, West Siberia. CH4 flux from most (90%) of these gas ebullition sites did not exceed 1.45 g CH4 h(-1), while some seeps emitted up to 5.54 g CH4 h(-1). The δ(13)C value of methane released from these seeps varied between -71.1 and -71.3‰, suggesting its biogenic origin. Although the seeps were characterized by low in situ temperatures (3.5 to 5°C), relatively high rates of methane oxidation (15.5 to 15.9 nmol CH4 ml(-1) day(-1)) were measured in mud samples. Fluorescence in situ hybridization detected 10(7) methanotrophic bacteria (MB) per g of mud (dry weight), which accounted for up to 20.5% of total bacterial cell counts. Most (95.8 to 99.3%) methanotroph cells were type I (gammaproteobacterial) MB. The diversity of methanotrophs in this habitat was further assessed by pyrosequencing of pmoA genes, encoding particulate methane monooxygenase. A total of 53,828 pmoA gene sequences of seep-inhabiting methanotrophs were retrieved and analyzed. Nearly all of these sequences affiliated with type I MB, including the Methylobacter-Methylovulum-Methylosoma group, lake cluster 2, and several as-yet-uncharacterized methanotroph clades. Apparently, microbial communities attenuating methane fluxes from these local but strong CH4 sources in floodplains of high-latitude rivers have a large proportion of potentially novel, psychrotolerant methanotrophs, thereby providing a challenge for future isolation studies.
Collapse
|
28
|
Krause S, van Bodegom PM, Cornwell WK, Bodelier PLE. Weak phylogenetic signal in physiological traits of methane-oxidizing bacteria. J Evol Biol 2014; 27:1240-7. [DOI: 10.1111/jeb.12401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 04/01/2014] [Accepted: 04/04/2014] [Indexed: 11/29/2022]
Affiliation(s)
- S. Krause
- Department of Microbial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Wageningen The Netherlands
- Department of Chemical Engineering; University of Washington; Seattle WA USA
| | - P. M. van Bodegom
- Department of Ecological Sciences; Subdepartment of Systems Ecology; VU University of Amsterdam; Amsterdam The Netherlands
| | - W. K. Cornwell
- Department of Ecological Sciences; Subdepartment of Systems Ecology; VU University of Amsterdam; Amsterdam The Netherlands
| | - P. L. E. Bodelier
- Department of Microbial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Wageningen The Netherlands
| |
Collapse
|
29
|
Deutzmann JS, Hoppert M, Schink B. Characterization and phylogeny of a novel methanotroph, Methyloglobulus morosus gen. nov., spec. nov. Syst Appl Microbiol 2014; 37:165-9. [PMID: 24685906 DOI: 10.1016/j.syapm.2014.02.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 02/24/2014] [Accepted: 02/28/2014] [Indexed: 11/18/2022]
Abstract
A novel methanotrophic gammaproteobacterium, strain KoM1, was isolated from the profundal sediment of Lake Constance after initial enrichment in opposing gradients of methane and oxygen. Strain KoM1 grows on methane or methanol as its sole source of carbon and energy. It is a Gram-negative methanotroph, often expressing red pigmentation. Cells are short rods and occur sometimes in pairs or short chains. Strain KoM1 grows preferably at reduced oxygen concentrations (pO2=0.05-0.1bar). It can fix nitrogen, and grows at neutral pH and at temperatures between 4 and 30°C. Phylogenetically, the closest relatives are Methylovulum miyakonense and Methylosoma difficile showing 91% 16S rRNA gene sequence identity. The only respiratory quinone is ubiquinone Q8; the main polar lipids are phosphatidyl ethanolamine and phosphatidyl glycerol. The major cellular fatty acids are summed feature 3 (presumably C16:1ω7c) and C16:1ω5c, and the G+C content of the DNA is 47.7mol%. Strain KoM1 is described as the type strain of a novel species within a new genus, Methyloglobulus morosus gen. nov., sp. nov.
Collapse
Affiliation(s)
- J S Deutzmann
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - M Hoppert
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - B Schink
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany.
| |
Collapse
|
30
|
Shabarova T, Widmer F, Pernthaler J. Mass effects meet species sorting: transformations of microbial assemblages in epiphreatic subsurface karst water pools. Environ Microbiol 2013; 15:2476-88. [PMID: 23614967 DOI: 10.1111/1462-2920.12124] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 02/21/2013] [Accepted: 02/25/2013] [Indexed: 11/29/2022]
Abstract
We investigated the transformations of the microbial communities in epiphreatic karst cave pools with different flooding frequencies. Fingerprinting of 16S rRNA genes was combined with microscopic and sequence analysis to examine if source water would transport comparable microbial inocula into the pools at consecutive flood events, and to assess possible effects of residence time on the microbial assemblages during stagnant periods. Variability in the concentrations of dissolved organic carbon and conductivity indicated differences between floods and changes of pool water over time. High numbers of Betaproteobacteria affiliated with Methylophilaceae and Comamonadaceae were introduced into the pools during floodings. While the former persisted in the pools, the latter exhibited considerable microdiversification. These Betaproteobacteria might thus represent core microbial groups in karst water. A decrease in the estimated total diversity of the remaining bacterial taxa was apparent after a few weeks of residence: Some were favoured by stagnant conditions, whereas the majority was rapidly outcompeted. Thus, the microbial communities consisted of different components governed by complementary assembly mechanisms (dispersal versus environmental filtering) upon introduction into the pools. High overlap of temporary and persistent community members between samplings from two winters, moreover, reflected the seasonal recurrence of the studied microbial assemblages.
Collapse
Affiliation(s)
- Tanja Shabarova
- Limnological Station, Institute of Plant Biology, University of Zurich, Seestr. 187, CH-8802, Kilchberg, Switzerland
| | | | | |
Collapse
|
31
|
Bodelier PLE, Bär-Gilissen MJ, Meima-Franke M, Hordijk K. Structural and functional response of methane-consuming microbial communities to different flooding regimes in riparian soils. Ecol Evol 2012; 2:106-27. [PMID: 22408730 PMCID: PMC3297182 DOI: 10.1002/ece3.34] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/12/2011] [Accepted: 08/17/2011] [Indexed: 02/02/2023] Open
Abstract
Climate change will lead to more extreme precipitation and associated increase of flooding events of soils. This can turn these soils from a sink into a source of atmospheric methane. The latter will depend on the balance of microbial methane production and oxidation. In the present study, the structural and functional response of methane oxidizing microbial communities was investigated in a riparian flooding gradient. Four sites differing in flooding frequency were sampled and soil-physico-chemistry as well as methane oxidizing activities, numbers and community composition were assessed. Next to this, the active community members were determined by stable isotope probing of lipids. Methane consumption as well as population size distinctly increased with flooding frequency. All methane consumption parameters (activity, numbers, lipids) correlated with soil moisture, organic matter content, and conductivity. Methane oxidizing bacteria were present and activated quickly even in seldom flooded soils. However, the active species comprised only a few representatives belonging to the genera Methylobacter, Methylosarcina, and Methylocystis, the latter being active only in permanently or regularly flooded soils. This study demonstrates that soils exposed to irregular flooding harbor a very responsive methane oxidizing community that has the potential to mitigate methane produced in these soils. The number of active species is limited and dominated by one methane oxidizing lineage. Knowledge on the characteristics of these microbes is necessary to assess the effects of flooding of soils and subsequent methane cycling therein.
Collapse
Affiliation(s)
- Paul L E Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Droevendaalsesteeg 10, 6708PB Wageningen, The Netherlands
| | | | | | | |
Collapse
|
32
|
Rahalkar M, Bahulikar RA, Deutzmann JS, Kroth PG, Schink B. Elstera litoralis gen. nov., sp. nov., isolated from stone biofilms of Lake Constance, Germany. Int J Syst Evol Microbiol 2012; 62:1750-1754. [DOI: 10.1099/ijs.0.026609-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An alphaproteobacterium, strain Dia-1T, was isolated from algae-dominated biofilms on stones from the littoral zone of Lake Constance, Germany. This bacterium was isolated after initial enrichment in spent medium obtained after growth of a diatom culture. Numerous sugars and some organic acids and alcohols served as growth substrates. The bacterium grew slowly, was strictly aerobic but microaerophilic, and did not grow in cultures shaken under air. 16S rRNA gene sequence analysis indicated that strain Dia-1T was distantly related to representatives of the genera
Azospirillum
(90–91 % sequence similarity),
Skermanella
(88–89 %),
Rhodocista
(87–88 %) and
Dongia
(88–89 % sequence similarity). Based on this sequence comparison, on phenotypic characterization including substrate utilization patterns, and comparison of cellular fatty acids, quinones, polar lipids and polyamines, this isolate was found to be substantially different from the genera mentioned above. On the basis of these results, a novel genus and species is proposed for this strain. The name Elstera litoralis gen. nov., sp. nov. is suggested, with strain Dia-1T ( = DSM 19532T = LMG 24234T) as the type strain of the type species.
Collapse
Affiliation(s)
- Monali Rahalkar
- Fachbereich Biologie, University of Konstanz, 78457 Konstanz, Germany
| | | | - Jörg S. Deutzmann
- Fachbereich Biologie, University of Konstanz, 78457 Konstanz, Germany
| | - Peter G. Kroth
- Fachbereich Biologie, University of Konstanz, 78457 Konstanz, Germany
| | - Bernhard Schink
- Fachbereich Biologie, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
33
|
Chi Z, Lu W, Mou Z, Wang H, Long Y, Duan Z. Effect of biocover equipped with a novel passive air diffusion system on microbial methane oxidation and community of methanotrophs. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2012; 62:278-286. [PMID: 22482286 DOI: 10.1080/10473289.2011.647236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A novel biocover with passive air diffusion system (PADS) was designed in this study. Its effect on landfill gas components in the macrocosms of simulated biocover systems was also investigated. The results show that O2 concentration increased in the whole profile of the macrocosms equipped with PADS. When simulated landfill gas (SLFG) flow rate was no more than 40 mL min(-1), the methane oxidation rate was 100%. The highest CH4 oxidation capacity reached to 31.34 mol m(-3) day(-1). Molecular microbiology analysis of the soil samples taken from the above macrocosm showed that the growth of type I methanotrophs was enhanced, attributable to enhanced air diffusion and distribution, whereas the microbial diversity and population density of type II methanotrophs were not so affected, as evidenced by the absence of any difference between the biocover equipped with PADS and that of the control. According to a phylogenic analysis, Methylobacter Methylosarcinafor type I, and Methylocystis, Methylosinus for type II, were the most prevalent species in the macrocosm with PADS.
Collapse
Affiliation(s)
- Zifang Chi
- School of Environment, Tsinghua University, Beijing, China
| | | | | | | | | | | |
Collapse
|
34
|
Gupta V, Smemo KA, Yavitt JB, Basiliko N. Active methanotrophs in two contrasting North American peatland ecosystems revealed using DNA-SIP. MICROBIAL ECOLOGY 2012; 63:438-445. [PMID: 21728037 DOI: 10.1007/s00248-011-9902-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 06/20/2011] [Indexed: 05/31/2023]
Abstract
The active methanotroph community was investigated in two contrasting North American peatlands, a nutrient-rich sedge fen and nutrient-poor Sphagnum bog using in vitro incubations and (13)C-DNA stable-isotope probing (SIP) to measure methane (CH(4)) oxidation rates and label active microbes followed by fingerprinting and sequencing of bacterial and archaeal 16S rDNA and methane monooxygenase (pmoA and mmoX) genes. Rates of CH(4) oxidation were slightly, but significantly, faster in the bog and methanotrophs belonged to the class Alphaproteobacteria and were similar to other methanotrophs of the genera Methylocystis, Methylosinus, and Methylocapsa or Methylocella detected in, or isolated from, European bogs. The fen had a greater phylogenetic diversity of organisms that had assimilated (13)C, including methanotrophs from both the Alpha- and Gammaproteobacteria classes and other potentially non-methanotrophic organisms that were similar to bacteria detected in a UK and Finnish fen. Based on similarities between bacteria in our sites and those in Europe, including Russia, we conclude that site physicochemical characteristics rather than biogeography controlled the phylogenetic diversity of active methanotrophs and that differences in phylogenetic diversity between the bog and fen did not relate to measured CH(4) oxidation rates. A single crenarchaeon in the bog site appeared to be assimilating (13)C in 16S rDNA; however, its phylogenetic similarity to other CO(2)-utilizing archaea probably indicates that this organism is not directly involved in CH(4) oxidation in peat.
Collapse
Affiliation(s)
- Varun Gupta
- Department of Geography, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | | | | | | |
Collapse
|
35
|
Chi Z, Lu W, Wang H, Zhao Y. Diversity of methanotrophs in a simulated modified biocover reactor. J Environ Sci (China) 2012; 24:1076-1082. [PMID: 23505875 DOI: 10.1016/s1001-0742(11)60889-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A simulated landfill biocover microcosm consisting of a modifying ceramsite material and compost were investigated. Results show that the mixture can improve the material porosity and achieve a stable and highly efficient (100%) methane oxidation over an extended operating period. The diversity of the methanotrophic community in the microcosm was assessed. Type I methanotrophs were enhanced in the microcosm due to the increased air diffusion and distribution, whereas the microbial diversity and population density of type II methanotrophs were not significantly affected. Moreover, the type I methanotrophic community structure significantly varied with the reactor height, whereas that of type II methanotrophic communities did not exhibit a spatial variation. Phylogenetic analysis showed that type I methanotroph-based nested polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) resulted in the detection of eight different populations, most of which are related to Methylobacter sp.,whereas that of type II resulted in the detection of nine different populations, most of which are related to Methylocystaceae. Methanotrophic community analysis also indicated that a number of new methanotrophic genera not closely related to any known methanotrophic populations were present.
Collapse
Affiliation(s)
- Zifang Chi
- School of Environment, Tsinghua University, Beijing 100084, China.
| | | | | | | |
Collapse
|
36
|
Hirayama H, Suzuki Y, Abe M, Miyazaki M, Makita H, Inagaki F, Uematsu K, Takai K. Methylothermus subterraneus sp. nov., a moderately thermophilic methanotroph isolated from a terrestrial subsurface hot aquifer. Int J Syst Evol Microbiol 2011; 61:2646-2653. [DOI: 10.1099/ijs.0.028092-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel methane-oxidizing bacterium, strain HTM55T, was isolated from subsurface hot aquifer water from a Japanese gold mine. Strain HTM55T was a Gram-negative, aerobic, motile, coccoid bacterium with a single polar flagellum and the distinctive intracytoplasmic membrane arrangement of a type I methanotroph. Strain HTM55T was a moderately thermophilic, obligate methanotroph that grew on methane and methanol at 37–65 °C (optimum 55–60 °C). The isolate grew at pH 5.2–7.5 (optimum 5.8–6.3) and with 0–1 % NaCl (optimum 0–0.3 %). The ribulose monophosphate pathway was operative for carbon assimilation. The DNA G+C content was 54.4 mol% and the major fatty acids were C16 : 0 (52.0 %) and C18 : 1ω7c (34.8 %). Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain HTM55T was closely related to Methylothermus thermalis MYHTT (99.2 % 16S rRNA gene sequence similarity), which is within the class Gammaproteobacteria. However, DNA–DNA relatedness between strain HTM55T and Methylothermus thermalis MYHTT was ≤39 %. On the basis of distinct phylogenetic, chemotaxonomic and physiological characteristics, strain HTM55T represents a novel species of the genus Methylothermus, for which the name Methylothermus subterraneus sp. nov. is proposed. The type strain is HTM55T ( = JCM 13664T = DSM 19750T).
Collapse
Affiliation(s)
- Hisako Hirayama
- Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Yohey Suzuki
- Institute for Geo-Resources & Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8567, Japan
| | - Mariko Abe
- Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Masayuki Miyazaki
- Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Hiroko Makita
- Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Fumio Inagaki
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Monobe B200, Nankoku, Kochi, 783-8502, Japan
| | - Katsuyuki Uematsu
- Department of Technical Services, Marine Works Japan Ltd, 2-16-32 Kamariyahigashi, Kanazawa-ku, Yokohama, 236-0042, Japan
| | - Ken Takai
- Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| |
Collapse
|
37
|
Borrel G, Jézéquel D, Biderre-Petit C, Morel-Desrosiers N, Morel JP, Peyret P, Fonty G, Lehours AC. Production and consumption of methane in freshwater lake ecosystems. Res Microbiol 2011; 162:832-47. [DOI: 10.1016/j.resmic.2011.06.004] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 05/09/2011] [Indexed: 10/18/2022]
|
38
|
Srinivasan V, Morowitz HJ, Huber H. What is an autotroph? Arch Microbiol 2011; 194:135-40. [DOI: 10.1007/s00203-011-0755-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 07/24/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
|
39
|
Graef C, Hestnes AG, Svenning MM, Frenzel P. The active methanotrophic community in a wetland from the High Arctic. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:466-472. [PMID: 23761309 DOI: 10.1111/j.1758-2229.2010.00237.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The dominant terminal process of carbon mineralization in most freshwater wetlands is methanogenesis. With methane being an important greenhouse gas, the predicted warming of the Arctic may provide a positive feedback. However, the amount of methane released to the atmosphere may be controlled by the activity of methane-oxidizing bacteria (methanotrophs) living in the oxic surface layer of wetlands. Previously, methanotrophs have been isolated and identified by genetic profiling in High Arctic wetlands showing the presence of only a few genotypes. Two isolates from Solvatnet (Ny-Ålesund, Spitsbergen; 79°N) are available: Methylobacter tundripaludum (type I) and Methylocystis rosea (type II), raising the question whether the low diversity is a cultivation effect. We have revisited Solvatnet applying stable isotope probing (SIP) with (13) C-labelled methane. 16S rRNA profiling revealed active type I methanotrophs including M. tundripaludum, while no active type II methanotrophs were identified. These results indicate that the extant M. tundripaludum is an active methane oxidizer at its locus typicus; furthermore, Methylobacter seems to be the dominant active genus. Diversity of methanotrophs was low as compared, e.g. to wetland rice fields in the Mediterranean. This low diversity suggests a high vulnerability of Arctic methanotroph communities, which deserves more attention.
Collapse
Affiliation(s)
- Christiane Graef
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, University of Tromsø, N-9037 Tromsø, Norway. Max-Planck-Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | | | | | | |
Collapse
|
40
|
Detection, isolation, and characterization of acidophilic methanotrophs from Sphagnum mosses. Appl Environ Microbiol 2011; 77:5643-54. [PMID: 21724892 DOI: 10.1128/aem.05017-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphagnum peatlands are important ecosystems in the methane cycle. Methane-oxidizing bacteria in these ecosystems serve as a methane filter and limit methane emissions. Yet little is known about the diversity and identity of the methanotrophs present in and on Sphagnum mosses of peatlands, and only a few isolates are known. The methanotrophic community in Sphagnum mosses, originating from a Dutch peat bog, was investigated using a pmoA microarray. A high biodiversity of both gamma- and alphaproteobacterial methanotrophs was found. With Sphagnum mosses as the inoculum, alpha- and gammaproteobacterial acidophilic methanotrophs were isolated using established and newly designed media. The 16S rRNA, pmoA, pxmA, and mmoX gene sequences showed that the alphaproteobacterial isolates belonged to the Methylocystis and Methylosinus genera. The Methylosinus species isolated are the first acid-tolerant members of this genus. Of the acidophilic gammaproteobacterial strains isolated, strain M5 was affiliated with the Methylomonas genus, and the other strain, M200, may represent a novel genus, most closely related to the genera Methylosoma and Methylovulum. So far, no acidophilic or acid-tolerant methanotrophs in the Gammaproteobacteria class are known. All strains showed the typical features of either type I or II methanotrophs and are, to the best of our knowledge, the first isolated (acidophilic or acid-tolerant) methanotrophs from Sphagnum mosses.
Collapse
|
41
|
Methylovulum miyakonense gen. nov., sp. nov., a type I methanotroph isolated from forest soil. Int J Syst Evol Microbiol 2011; 61:810-815. [DOI: 10.1099/ijs.0.019604-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel methanotroph, designated strain HT12T, was isolated from forest soil in Japan. Cells of strain HT12T were Gram-reaction-negative, aerobic, non-motile, coccoid and formed pale-brown colonies. The strain grew only with methane and methanol as sole carbon and energy sources. Cells grew at 5–34 °C (optimum 24–32 °C). The strain possessed both particulate and soluble methane monooxygenases and assimilated formaldehyde using the ribulose monophosphate pathway. The major cellular fatty acids were C16 : 0 (46.9 %) and C14 : 0 (34.2 %), whereas unsaturated C16 fatty acids, typical of type I methanotrophs, were absent. Comparative 16S rRNA gene sequence analysis showed that the most closely related strains were Methylosoma difficile LC 2T (93.1 % sequence similarity) and Methylobacter tundripaludum SV96T (92.6 % similarity). Phylogenetic analysis based on the pmoA gene indicated that strain HT12T formed a distinct lineage within the type I methanotrophs and analysis of the deduced pmoA amino acid sequence of strain HT12T showed that it had a 7 % divergence from that of its most closely related species. The DNA G+C content was 49.3 mol%. Based on this evidence, strain HT12T represents a novel species and genus of the family Methylococcaceae, for which the name Methylovulum miyakonense gen. nov., sp. nov. is proposed. The type strain of the type species is HT12T ( = NBRC 106162T = DSM 23269T = ATCC BAA-2070T).
Collapse
|
42
|
|
43
|
Abstract
Methanotrophs, cells that consume methane (CH(4)) as their sole source of carbon and energy, play key roles in the global carbon cycle, including controlling anthropogenic and natural emissions of CH(4), the second-most important greenhouse gas after carbon dioxide. These cells have also been widely used for bioremediation of chlorinated solvents, and help sustain diverse microbial communities as well as higher organisms through the conversion of CH(4) to complex organic compounds (e.g. in deep ocean and subterranean environments with substantial CH(4) fluxes). It has been well-known for over 30 years that copper (Cu) plays a key role in the physiology and activity of methanotrophs, but it is only recently that we have begun to understand how these cells collect Cu, the role Cu plays in CH(4) oxidation by the particulate CH(4) monooxygenase, the effect of Cu on the proteome, and how Cu affects the ability of methanotrophs to oxidize different substrates. Here we summarize the current state of knowledge of the phylogeny, environmental distribution, and potential applications of methanotrophs for regional and global issues, as well as the role of Cu in regulating gene expression and proteome in these cells, its effects on enzymatic and whole-cell activity, and the novel Cu uptake system used by methanotrophs.
Collapse
Affiliation(s)
- Jeremy D Semrau
- Department of Civil and Environmental Engineering, The University of Michigan, Ann Arbor, MI, USA.
| | | | | |
Collapse
|
44
|
Abell GCJ, Stralis-Pavese N, Sessitsch A, Bodrossy L. Grazing affects methanotroph activity and diversity in an alpine meadow soil. ENVIRONMENTAL MICROBIOLOGY REPORTS 2009; 1:457-465. [PMID: 23765900 DOI: 10.1111/j.1758-2229.2009.00078.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The role of methane-oxidizing bacteria (MOB) in alpine environments is poorly understood, but is of importance given the abundance of alpine environments and the role of MOB in the global carbon cycle. Using a combination of approaches we examined both seasonal and land usage effects on the ecology of microbial methane oxidation in an alpine meadow soil. Analysis of the abundance and diversity of MOB demonstrated that the abundance and diversity of the dominant type II MOB, predominantly Metylocystis and relatives, was only influenced by season. Conversely type Ia MOB abundance was significantly affected by season and land usage, while diversity changes were effected predominantly by land use. Assessment of methane oxidation potential and soil physical properties demonstrated a strong link between type Ia MOB abundance and methane oxidation potential as well as a complex series of relationships between soil moisture, pH and MOB abundance, changing with season. The results of this study suggest that, while type II MOB, unaffected by land use, represent the dominant MOB, Methylobacter-related type Ia MOB appear to be responsible for the majority of methane oxidation and are strongly affected by the grazing of cattle.
Collapse
Affiliation(s)
- Guy C J Abell
- Austrian Research Centers, Department of Bioresources, A-2444 Seibersdorf, Austria
| | | | | | | |
Collapse
|
45
|
Op den Camp HJM, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, Jetten MSM, Birkeland NK, Pol A, Dunfield PF. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. ENVIRONMENTAL MICROBIOLOGY REPORTS 2009; 1:293-306. [PMID: 23765882 DOI: 10.1111/j.1758-2229.2009.00022.x] [Citation(s) in RCA: 297] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Aerobic methanotrophic bacteria are capable of utilizing methane as their sole energy source. They are commonly found at the oxic/anoxic interfaces of environments such as wetlands, aquatic sediments, and landfills, where they feed on methane produced in anoxic zones of these environments. Until recently, all known species of aerobic methanotrophs belonged to the phylum Proteobacteria, in the classes Gammaproteobacteria and Alphaproteobacteria. However, in 2007-2008 three research groups independently described the isolation of thermoacidophilic methanotrophs that represented a distinct lineage within the bacterial phylum Verrucomicrobia. Isolates were obtained from geothermal areas in Italy, New Zealand and Russia. They are by far the most acidophilic methanotrophs known, with a lower growth limit below pH 1. Here we summarize the properties of these novel methanotrophic Verrucomicrobia, compare them with the proteobacterial methanotrophs, propose a unified taxonomic framework for them and speculate on their potential environmental significance. New genomic and physiological data are combined with existing information to allow detailed comparison of the three strains. We propose the new genus Methylacidiphilum to encompass all three newly discovered bacteria.
Collapse
Affiliation(s)
- Huub J M Op den Camp
- Department of Microbiology, IWWR, Radboud University Nijmegen, Toernooiveld 1, NL-6525 ED Nijmegen, The Netherlands. Department of Biology and Centre for Geobiology, University of Bergen, P.O. Box 7800, N-5020 Bergen, Norway. GNS Science, Extremophile Research Group, Private Bag 2000, 3352 Taupo, New Zealand. Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4. NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gregersen LH, Habicht KS, Peduzzi S, Tonolla M, Canfield DE, Miller M, Cox RP, Frigaard NU. Dominance of a clonal green sulfur bacterial population in a stratified lake. FEMS Microbiol Ecol 2009; 70:30-41. [PMID: 19656193 DOI: 10.1111/j.1574-6941.2009.00737.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
For many years, the chemocline of the meromictic Lake Cadagno, Switzerland, was dominated by purple sulfur bacteria. However, following a major community shift in recent years, green sulfur bacteria (GSB) have come to dominate. We investigated this community by performing microbial diversity surveys using FISH cell counting and population multilocus sequence typing [clone library sequence analysis of the small subunit (SSU) rRNA locus and two loci involved in photosynthesis in GSB: fmoA and csmCA]. All bacterial populations clearly stratified according to water column chemistry. The GSB population peaked in the chemocline (c. 8 x 10(6) GSB cells mL(-1)) and constituted about 50% of all cells in the anoxic zones of the water column. At least 99.5% of these GSB cells had SSU rRNA, fmoA, and csmCA sequences essentially identical to that of the previously isolated and genome-sequenced GSB Chlorobium clathratiforme strain BU-1 (DSM 5477). This ribotype was not detected in Lake Cadagno before the bloom of GSB. These observations suggest that the C. clathratiforme population that has stabilized in Lake Cadagno is clonal. We speculate that such a clonal bloom could be caused by environmental disturbance, mutational adaptation, or invasion.
Collapse
Affiliation(s)
- Lea H Gregersen
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Nishijima M, Takadera T, Imamura N, Kasai H, An KD, Adachi K, Nagao T, Sano H, Yamasato K. Microbulbifer variabilis sp. nov. and Microbulbifer epialgicus sp. nov., isolated from Pacific marine algae, possess a rod-coccus cell cycle in association with the growth phase. Int J Syst Evol Microbiol 2009; 59:1696-707. [DOI: 10.1099/ijs.0.006452-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
48
|
Liebner S, Rublack K, Stuehrmann T, Wagner D. Diversity of aerobic methanotrophic bacteria in a permafrost active layer soil of the Lena Delta, Siberia. MICROBIAL ECOLOGY 2009; 57:25-35. [PMID: 18592300 DOI: 10.1007/s00248-008-9411-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 05/20/2008] [Indexed: 05/26/2023]
Abstract
With this study, we present first data on the diversity of aerobic methanotrophic bacteria (MOB) in an Arctic permafrost active layer soil of the Lena Delta, Siberia. Applying denaturing gradient gel electrophoresis and cloning of 16S ribosomal ribonucleic acid (rRNA) and pmoA gene fragments of active layer samples, we found a general restriction of the methanotrophic diversity to sequences closely related to the genera Methylobacter and Methylosarcina, both type I MOB. In contrast, we revealed a distinct species-level diversity. Based on phylogenetic analysis of the 16S rRNA gene, two new clusters of MOB specific for the permafrost active layer soil of this study were found. In total, 8 out of 13 operational taxonomic units detected belong to these clusters. Members of these clusters were closely related to Methylobacter psychrophilus and Methylobacter tundripaludum, both isolated from Arctic environments. A dominance of MOB closely related to M. psychrophilus and M. tundripaludum was confirmed by an additional pmoA gene analysis. We used diversity indices such as the Shannon diversity index or the Chao1 richness estimator in order to compare the MOB community near the surface and near the permafrost table. We determined a similar diversity of the MOB community in both depths and suggest that it is not influenced by the extreme physical and geochemical gradients in the active layer.
Collapse
Affiliation(s)
- Susanne Liebner
- Alfred Wegener Institute for Polar and Marine Research, Research Department Potsdam, Telegrafenberg A43, 14473, Potsdam, Germany.
| | | | | | | |
Collapse
|
49
|
Abundance and activity of methanotrophic bacteria in littoral and profundal sediments of lake constance (Germany). Appl Environ Microbiol 2008; 75:119-26. [PMID: 18997033 DOI: 10.1128/aem.01350-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The abundances and activities of aerobic methane-oxidizing bacteria (MOB) were compared in depth profiles of littoral and profundal sediments of Lake Constance, Germany. Abundances were determined by quantitative PCR (qPCR) targeting the pmoA gene and by fluorescence in situ hybridization (FISH), and data were compared to methane oxidation rates calculated from high-resolution concentration profiles. qPCR using type I MOB-specific pmoA primers indicated that type I MOB represented a major proportion in both sediments at all depths. FISH indicated that in both sediments, type I MOB outnumbered type II MOB at least fourfold. Results obtained with both techniques indicated that in the littoral sediment, the highest numbers of methanotrophs were found at a depth of 2 to 3 cm, corresponding to the zone of highest methane oxidation activity, although no oxygen could be detected in this zone. In the profundal sediment, highest methane oxidation activities were found at a depth of 1 to 2 cm, while MOB abundance decreased gradually with sediment depth. In both sediments, MOB were also present at high numbers in deeper sediment layers where no methane oxidation activity could be observed.
Collapse
|
50
|
Methane oxidation at 55 degrees C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci U S A 2008; 105:300-4. [PMID: 18172218 DOI: 10.1073/pnas.0704162105] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Methanotrophic bacteria constitute a ubiquitous group of microorganisms playing an important role in the biogeochemical carbon cycle and in control of global warming through natural reduction of methane emission. These bacteria share the unique ability of using methane as a sole carbon and energy source and have been found in a great variety of habitats. Phylogenetically, known methanotrophs constitute a rather limited group and have so far only been affiliated with the Proteobacteria. Here, we report the isolation and initial characterization of a nonproteobacterial obligately methanotrophic bacterium. The isolate, designated Kam1, was recovered from an acidic hot spring in Kamchatka, Russia, and is more thermoacidophilic than any other known methanotroph, with optimal growth at approximately 55 degrees C and pH 3.5. Kam1 is only distantly related to all previously known methanotrophs and belongs to the Verrucomicrobia lineage of evolution. Genes for methane monooxygenases, essential for initiation of methane oxidation, could not be detected by using standard primers in PCR amplification and Southern blot analysis, suggesting the presence of a different methane oxidation enzyme. Kam1 also lacks the well developed intracellular membrane systems typical for other methanotrophs. The isolate represents a previously unrecognized biological methane sink, and, due to its unusual phylogenetic affiliation, it will shed important light on the origin, evolution, and diversity of biological methane oxidation and on the adaptation of this process to extreme habitats. Furthermore, Kam1 will add to our knowledge of the metabolic traits and biogeochemical roles of the widespread but poorly understood Verrucomicrobia phylum.
Collapse
|