1
|
Xiang MX, Miao CP, Zhang DY, Wang J, Li YQ, Yin M, Tang S. Description and genomic characterization of Cohnella caldifontis sp. nov., isolated from hot springs in Yunnan province, south-west China. Antonie Van Leeuwenhoek 2024; 117:20. [PMID: 38189996 DOI: 10.1007/s10482-023-01908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/06/2023] [Indexed: 01/09/2024]
Abstract
A bacterial strain, Gram staining positive, strictly aerobic, rod-shaped, motile bacterium with flagellum and endospore-forming, designated strain YIM B05605T, was isolated from soil sampled in Hamazui hot springs, Tengchong City, Yunnan province, China. Optimum growth for the strain occurred at pH 7.0 and 45 °C. MK-7 was the main menaquinone in the strain YIM B05605T. The diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. Diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), phosphatidylmonomethylethanolamine (PME), unidentified glycolipid (GL), three unknown aminophospholipids (APLs) and unidentified polarlipid (PL) were part of the polar lipid profile. The major fatty acids were anteiso-C15:0 and iso-C16:0. The DNA G + C content of the type strain was 58.76%. Genome-based phylogenetic analysis confirmed that strain YIM B05605T formed a distinct phylogenetic cluster within the genus Cohnella. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values of strain YIM B05605T with the most related species C. fontinalis YT-1101T were 73.42% and 15.7%. Functional analysis by NR, Swiss-prot, Pfam, eggNOG, GO, KEGG databases revealed that strain YIM B05605T has 13 genes related to the sulfur cycle, 2 genes related to the nitrogen cycle. Based on phylogenomic and phylogenetic analyses coupled with phenotypic and chemotaxonomic characterizations, strain YIM B05605T could be classified as a novel species of the genus Cohnella, for which the name Cohnella caldifontis sp. nov., is proposed. The type strain is YIM B05605T (= CGMCC 1.60052T = KCTC 43462T = NBRC 115921T).
Collapse
Affiliation(s)
- Ming-Xian Xiang
- Yunnan Institute of Microbiology, Key Laboratory for Conservation and Utilization of Bio-Resource, and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
| | - Cui-Ping Miao
- Yunnan Institute of Microbiology, Key Laboratory for Conservation and Utilization of Bio-Resource, and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
| | - Dian-Yan Zhang
- Yunnan Institute of Microbiology, Key Laboratory for Conservation and Utilization of Bio-Resource, and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
| | - Juan Wang
- Yunnan Institute of Microbiology, Key Laboratory for Conservation and Utilization of Bio-Resource, and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
| | - Yi-Qing Li
- Yunnan Institute of Microbiology, Key Laboratory for Conservation and Utilization of Bio-Resource, and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
| | - Min Yin
- School of Medicine, Yunnan University, Kunming, 650091, People's Republic of China.
| | - ShuKun Tang
- Yunnan Institute of Microbiology, Key Laboratory for Conservation and Utilization of Bio-Resource, and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China.
- Yunnan Key Laboratory of Fermented Vegetables, Honghe, 661100, People's Republic of China.
| |
Collapse
|
2
|
Gilvanova EA, Aktuganov GE, Safina VR, Milman PY, Lopatin SA, Melentiev AI, Galimzianova NF, Kuzmina LY, Boyko TF. Characterization of Thermotolerant Chitinase from the Strain Cohnella sp. IB P-192 and Its Application for the Production of Bioactive Chitosan Oligomers. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
De Rose SA, Kuprat T, Isupov MN, Reinhardt A, Schönheit P, Littlechild JA. Biochemical and Structural Characterisation of a Novel D-Lyxose Isomerase From the Hyperthermophilic Archaeon Thermofilum sp. Front Bioeng Biotechnol 2021; 9:711487. [PMID: 34422783 PMCID: PMC8378251 DOI: 10.3389/fbioe.2021.711487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022] Open
Abstract
A novel D-lyxose isomerase has been identified within the genome of a hyperthermophilic archaeon belonging to the Thermofilum species. The enzyme has been cloned and over-expressed in Escherichia coli and biochemically characterised. This enzyme differs from other enzymes of this class in that it is highly specific for the substrate D-lyxose, showing less than 2% activity towards mannose and other substrates reported for lyxose isomerases. This is the most thermoactive and thermostable lyxose isomerase reported to date, showing activity above 95°C and retaining 60% of its activity after 60 min incubation at 80°C. This lyxose isomerase is stable in the presence of 50% (v/v) of solvents ethanol, methanol, acetonitrile and DMSO. The crystal structure of the enzyme has been resolved to 1.4–1.7 A. resolution in the ligand-free form and in complexes with both of the slowly reacting sugar substrates mannose and fructose. This thermophilic lyxose isomerase is stabilised by a disulfide bond between the two monomers of the dimeric enzyme and increased hydrophobicity at the dimer interface. These overall properties of high substrate specificity, thermostability and solvent tolerance make this lyxose isomerase enzyme a good candidate for potential industrial applications.
Collapse
Affiliation(s)
- Simone Antonio De Rose
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Tom Kuprat
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Michail N Isupov
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Andreas Reinhardt
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Peter Schönheit
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Jennifer A Littlechild
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
4
|
Cohnella pontilimi sp. nov., isolated from tidal-flat mud. Arch Microbiol 2021; 203:2445-2451. [PMID: 33666688 DOI: 10.1007/s00203-021-02266-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/14/2021] [Accepted: 02/25/2021] [Indexed: 10/22/2022]
Abstract
A Gram-positive, aerobic, endospore-forming, rod-shaped bacterial strain, CAU 1483 T, was isolated from tidal-flat mud in the Republic of Korea. It grew optimally at 30 °C, in a pH 7.0 medium with 2% (w/v) NaCl. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain CAU 1483 T formed a separate clade within Paenibacillaceae together with members of the genus Cohnella. Strain CAU 1483 T exhibited the highest 16S rRNA gene sequence similarity (97.1%) to C. candidum 18JY8-7 T. Whole genome of strain CAU 1483 T was 4.29 Mb in size with a 53.7 mol% G + C content, and included 4046 coding sequences and included 4046 coding sequences, some of which associated with stress response. The average nucleotide identity and digital DNA-DNA hybridization similarity between strain CAU 1483 T and related members of the genus Cohnella were 71.8-74.9% and 22.6-33.9%, respectively. The major respiratory quinone present in this strain was menaquinone-7. Strain CAU 1483 T contained anteiso-C15:0 and iso-C16:0 as the major fatty acids, while its polar lipids consisted of phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, lysyl-phosphatidylglycerol, phosphatidylcholine, three unidentified aminophospholipids, two unidentified lipids and an unidentified phospholipid. Peptidoglycan type was A1γ meso-Dpm. On the basis of taxonomic characterization, strain CAU 1483 T constitutes a novel species, for which the name Cohnella pontilimi sp. nov. is proposed. The type strain of this novel species is CAU 1483 T (= KCTC 43047 T = NBRC 113953 T).
Collapse
|
5
|
Description of Cohnella zeiphila sp. nov., a bacterium isolated from maize callus cultures. Antonie van Leeuwenhoek 2021; 114:37-44. [PMID: 33392934 DOI: 10.1007/s10482-020-01495-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/23/2020] [Indexed: 10/22/2022]
Abstract
A Gram-stain positive, aerobic, motile, rod-shaped bacterium designated as strain CBP-2801T was isolated as a contaminant from a culture containing maize callus in Peoria, Illinois, United States. The strain is unique relative to other Cohnella species due to its slow growth and reduced number of sole carbon sources. Phylogenetic analysis using 16S rRNA indicated that strain CBP-2801T is a Cohnella bacterium and showed the highest similarity to Cohnella xylanilytica (96.8%). Genome-based phylogeny and genomic comparisons based on average nucleotide identity confirmed the strain to be a novel species of Cohnella. Growth occurs at 15-45 °C (optimum 40 °C), pH 5-7 (optimum pH 6) and with 0-1% NaCl. The predominant fatty acids are anteiso-15:0 and 18:1 ω6c. Genome mining for secondary metabolites identified a putative biosynthetic cluster that encodes for a novel lasso peptide. In addition, this study contributes five new genome assemblies of type strains of Cohnella species, a genus with less than 30% of the type strains sequenced. The DNA G + C content is 58.7 mol %. Based on the phenotypic, phylogenetic and biochemical data strain CBP-2801T represents a novel species, for which the name Cohnella zeiphila sp. nov. is proposed. The type strain is CBP-2801T (= DSM 111598 = ATCC TSD-230).
Collapse
|
6
|
Choi MY, Shin KC, Ho TH, Park H, Nguyen DQ, Park YS, Kim DW, Oh DK, Kang LW. Fructuronate-tagaturonate epimerase UxaE from Cohnella laeviribosi has a versatile TIM-barrel scaffold suitable for a sugar metabolizing biocatalyst. Int J Biol Macromol 2020; 163:1369-1374. [PMID: 32758598 DOI: 10.1016/j.ijbiomac.2020.07.285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
Xylan and pectin are major structural components of plant cell walls. There are two independent catabolic pathways for xylan and pectin. UxaE bridges these two pathways by reversibly epimerizing D-fructuronate and D-tagaturonate. The crystal structure of UxaE from Cohnella laeviribosi (ClUxaE) shows a core scaffold of TIM-barrel with a position-changing divalent metal cofactor. ClUxaE has the flexible metal-coordination loop to allow the metal shift and the extra domains to bind a phosphate ion in the active site, which are important for catalysis and substrate specificity. Elucidation of the structure and mechanism of ClUxaE will assist in understanding the catalytic mechanism of UxaE family members, which are useful for processing both xylan and pectin-derived carbohydrates for practical and industrial purposes, including the transformation of agricultural wastes into numerous valuable products.
Collapse
Affiliation(s)
- Moon Young Choi
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Kyung-Chul Shin
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Thien-Hoang Ho
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Hyunjae Park
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Diem Quynh Nguyen
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Yoon Sik Park
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Dae Wook Kim
- Forest Plant Industry Department, Baekdudaegan National Arboretum, Bonghwa 36209, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea.
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea.
| |
Collapse
|
7
|
Meng LJ, Tuo L, Yan XR. Cohnella endophytica sp. nov., a novel endophytic bacterium isolated from bark of Sonneratia apetala. Int J Syst Evol Microbiol 2019; 69:2004-2009. [PMID: 31063121 DOI: 10.1099/ijsem.0.003417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, aerobic, rod-shaped, endospore-forming bacterium, designated strain M2MS4P-1T, was isolated from surface-sterilized bark of Sonneratiaapetala sampled in Guangxi, China. The bacterium was characterized by a polyphasic approach to determine its taxonomic position. 16S rRNA gene sequence comparisons revealed that strain M2MS4P-1T belonged to the genus Cohnella and was most closely to Cohnella luojiensis HY-22RT (98.4 % similarity). The average nucleotide identity value and estimated DDH value between strain M2MS4P-1T and the type strain of C. luojiensis HY-22RT were 79.2 and 20.1 %, respectively. Neither substrate nor aerial mycelia were formed, and no diffusible pigments were observed on the media tested. Strain M2MS4P-1T grew in the pH range 6.0-9.0 (optimum, pH 7.0-8.0), at temperatures between 10-37 °C (30 °C) and in 0-1 % (w/v) NaCl (0 %). The predominant isoprenoid quinone in strain M2MS4P-1T was menaquinone-7. The major fatty acids were anteiso-C15 : 0 and iso-C16 : 0. The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, lysyl-phosphatidylglycerol, four unidentified aminophospholipids and two unidentified phospholipids. The DNA G+C content was 51.5 mol%. According to the phylogenetic, phenotypic and chemotaxonomic evidence, strain M2MS4P-1T was clearly distinguishable from other species with validly published names in the genus Cohnella and should therefore be classified as a novel species, for which we suggest the name Cohnellaendophytica sp. nov. The type strain is M2MS4P-1T (=KCTC 43011T=CGMCC 1.13745T).
Collapse
Affiliation(s)
- Ling-Jie Meng
- 1Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, PR China
| | - Li Tuo
- 3Zunyi Engineering Research Center of Physical Testing and Chemical Analysis, Zunyi Medical University, Zunyi, PR China
- 2Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, PR China
| | - Xiao-Rui Yan
- 2Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, PR China
- 3Zunyi Engineering Research Center of Physical Testing and Chemical Analysis, Zunyi Medical University, Zunyi, PR China
| |
Collapse
|
8
|
Maeng S, Kim MK, Jang JH, Yi H, Subramani G. Cohnella candidum sp. nov., radiation-resistant bacterium from soil. Antonie van Leeuwenhoek 2019; 112:1029-1037. [DOI: 10.1007/s10482-019-01233-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/18/2019] [Indexed: 02/08/2023]
|
9
|
Draft genome and description of Cohnella massiliensis sp. nov., a new bacterial species isolated from the blood culture of a hemodialysis patient. Arch Microbiol 2019; 201:305-312. [DOI: 10.1007/s00203-018-1612-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
|
10
|
Lee Y, Jeon CO. Cohnella algarum sp. nov., isolated from a freshwater green alga Paulinella chromatophora. Int J Syst Evol Microbiol 2017; 67:4767-4772. [PMID: 28984547 DOI: 10.1099/ijsem.0.002377] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, facultatively aerobic and endospore-forming bacterium, designated strain Pch-40T, was isolated from a freshwater green alga, Paulinella chromatophora. Cells were motile rods with a monotrichous polar flagellum showing catalase- and oxidase-positive reactions. Strain Pch-40T grew at 20-50 °C (optimum, 37-40 °C), at pH 5.0-11.0 (optimum, pH 7.0) and in the presence of 0-4.0 % (w/v) NaCl (optimum, 0 %). Menaquinone-7 was detected as the sole isoprenoid quinone. The genomic DNA G+C content of strain Pch-40T was 55.6 mol%. The major cellular fatty acids of strain Pch-40T were C16 : 0, iso-C16 : 0, anteiso-C15 : 0 and anteiso-C17 : 0. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Pch-40T clearly belonged to the genus Cohnella of the family Paenibacillaceae. Strain Pch-40T was most closely related to Cohnella rhizosphaerae CSE-5610T with a 96.1 % 16S rRNA gene sequence similarity. The phenotypic and chemotaxonomic features and the phylogenetic inference clearly suggested that strain Pch-40T represents a novel species of the genus Cohnella, for which the name Cohnellaalgarum sp. nov. is proposed. The type strain is strain Pch-40T (=KACC 19279T=JCM 32033T).
Collapse
Affiliation(s)
- Yunho Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
11
|
Kämpfer P, Glaeser SP, Busse HJ. Cohnella lubricantis sp. nov., isolated from a coolant lubricant solution. Int J Syst Evol Microbiol 2017; 67:466-471. [PMID: 27902352 DOI: 10.1099/ijsem.0.001654] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, aerobic, non-endospore-forming organism, isolated from a coolant lubricant solution was studied for its taxonomic position. On the basis of 16S rRNA gene sequence similarity comparisons, strain KSS-154-50T was grouped into the genus Cohnella, most closely related to Cohnella formosensisCC-ALFALFA-35T (97.3 % 16S rRNA gene sequence similarity), Cohnella rhizosphaerae CSE-5610T (97.1 %) and Cohnella nanjingensis D45T (97.0 %); the 16S rRNA gene sequence similarity to other species of the genus Cohnella was <97.0 %. The fatty acid profile from whole cell hydrolysates was very similar to those reported for other species of the genus Cohnella and supported the allocation to the genus Cohnella. In the fatty acid profiles, iso- and anteiso-branched fatty acids were found as major compounds. The quinone system consisted predominantly of menaquinone MK-7. The polar lipid profile contained the major lipids diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid. The major polyamine is spermidine. The results of physiological and biochemical characterization allowed in addition a phenotypic differentiation of strain KSS-154-50T from the three most closely related species. Hence, strain KSS-154-50T represents a novel species of the genus Cohnella, for which the name Cohnella lubricantis sp. nov. is proposed. The type strain is KSS-154-50T (=LMG 29763T=CCM 8707T).
Collapse
Affiliation(s)
- Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - Stefanie P Glaeser
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - Hans-Jürgen Busse
- Division of Clinical Microbiology and Infection Biology, Institut für Bakteriologie, Mykologie und Hygiene, Veterinärmedizinische Universität, Wien, Austria
| |
Collapse
|
12
|
Choi JH, Seok JH, Jang HJ, Cha JH, Cha CJ. Cohnella saccharovorans sp. nov., isolated from ginseng soil. Int J Syst Evol Microbiol 2016; 66:1713-1717. [PMID: 26813106 DOI: 10.1099/ijsem.0.000933] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel bacterial strain, CJ22T, was isolated from soil of a ginseng field located in Anseong, Korea. Cells of strain CJ22T were aerobic, Gram-stain-positive, endospore-forming, motile, oxidase- and catalase-positive and rod-shaped. The isolate grew optimally at pH 7 and 30 °C. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain CJ22T belonged to the genus Cohnella, displaying highest sequence similarity of 97.3% with Cohnella panacarvi Gsoil 349T. DNA-DNA relatedness between strain CJ22T and its closest relative was 35.5 % (reciprocal value, 23.8%). The phenotypic features of strain CJ22T also distinguished it from related species of the genus Cohnella. The diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. The major isoprenoid quinone was menaquinone MK-7 and the major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, lysyl-phosphatidylglycerol, two unidentified phospholipids and two unidentified aminophospholipids. The predominant cellular fatty acids of strain CJ22T were anteiso-C15 : 0, iso-C16:0 and C16:0. The DNA G+C content was 63.1 mol%. Based on data from this polyphasic taxonomic study, strain CJ22T is considered to represent a novel species of the genus Cohnella, for which the name Cohnella saccharovorans sp. nov. is proposed. The type strain is CJ22T (=KACC 17501T=JCM 19227T).
Collapse
Affiliation(s)
- Jung-Hye Choi
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Ji-Hye Seok
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Ho-Jin Jang
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Ju-Hee Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Chang-Jun Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| |
Collapse
|
13
|
Abstract
A novel bacterial strain, NKM-5T, was isolated from soil of a lava forest in Nokkome Oreum, Jeju, Republic of Korea. Cells of strain NKM-5T were Gram-stain-positive, motile, endospore-forming, rod-shaped and oxidase- and catalase-positive. Strain NKM-5T contained anteiso-C15 : 0 and iso-C16 : 0 as the major fatty acids; menaquinone-7 (MK-7) as the predominant isoprenoid quinone; diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, lysyl-phosphatidylglycerol, an unidentified phospholipid and three unidentified aminophospholipids as the polar lipids; and meso-diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan. The DNA G+C content was 48.3 mol%. Phylogenetic analysis, based on 16S rRNA gene sequencing, showed that strain NKM-5T was most closely related to Cohnella lupini RLAHU4BT (96.9 % sequence similarity) and fell into a clade in the genus Cohnella. On the basis of phylogenetic, chemotaxonomic and phenotypic data, strain NKM-5T represents a novel species of the genus Cohnella, for which the name Cohnella collisoli sp. nov. is proposed. The type strain is NKM-5T ( = KCTC 33634T = CECT 8805T).
Collapse
|
14
|
Sakai M, Deguchi D, Hosoda A, Kawauchi T, Ikenaga M. Ammoniibacillus agariperforans gen. nov., sp. nov., a thermophilic, agar-degrading bacterium isolated from compost. Int J Syst Evol Microbiol 2014; 65:570-577. [PMID: 25404482 DOI: 10.1099/ijs.0.067843-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A thermophilic, agar-degrading bacterium, strain FAB2(T), was isolated from sewage sludge compost. According to phylogenetic analysis based on 16S rRNA gene sequences, strain FAB2(T) belonged to the family Paenibacillaceae within the phylum Firmicutes. However, FAB2(T) was different enough at the genus level from closely related species. The percentages of 16S rRNA gene sequence similarity with related organisms were 90.4 % for Thermobacillus xylanilyticus, 91.8 % for Paenibacillus barengoltzii, 89.4 % for Cohnella lupini, 90.1 % for Fontibacillus aquaticus, and 89.0 % for Saccharibacillus sacchari. Morphological and physiological analyses revealed that the strain was motile, rod-shaped, Gram-stain-positive, aerobic and able to form oval endospores in swollen sporangia. Ammonium was required as a nitrogen source while nitrate, nitrite, urea and glutamate were not utilized. Catalase and oxidase activities were weakly positive and positive, respectively. The bacterium grew in the temperature range of 50-65 °C and in media with pH 7.5 to 9.0. Optimal growth occurred at 60 °C and pH 8.0-8.6. Growth was inhibited at pH≤7.0 and NaCl concentrations ≥2.5 % (w/v). In chemotaxonomic characterization, MK-7 was identified as the dominant menaquinone. Major fatty acids were iso-C16 : 0 and C16 : 0. Dominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Phosphatidylcholine was present in a moderate amount. The diamino acid in the cell wall was meso-diaminopimelic acid. The G+C content of the genomic DNA was 49.5 mol% in a nucleic acid study. On the basis of genetic and phenotypic characteristics, strain FAB2(T) ( = NBRC 109510(T) = KCTC 33130(T)) showed characteristics suitable for classification as the type strain of a novel species of a new genus in the family Paenibacillaceae, for which the name Ammoniibacillus agariperforans gen. nov., sp. nov. is proposed.
Collapse
Affiliation(s)
- Masao Sakai
- Faculty of Agriculture, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Japan
| | - Daigo Deguchi
- Graduate School of Agriculture, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Japan
| | - Akifumi Hosoda
- School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan
| | - Tomohiro Kawauchi
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Japan
| | - Makoto Ikenaga
- Faculty of Agriculture, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
15
|
Wang LY, Wang TS, Chen SF. Cohnella capsici sp. nov., a novel nitrogen-fixing species isolated from Capsicum annuum rhizosphere soil, and emended description of Cohnella plantaginis. Antonie van Leeuwenhoek 2014; 107:133-9. [DOI: 10.1007/s10482-014-0310-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 10/17/2014] [Indexed: 10/24/2022]
|
16
|
Huang Z, Yu YJ, Bao YY, Xia L, Sheng XF, He LY. Cohnella
nanjingensis sp. nov., an extracellular polysaccharide-producing bacterium isolated from soil. Int J Syst Evol Microbiol 2014; 64:3320-3324. [DOI: 10.1099/ijs.0.066456-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, rod-shaped, endospore-forming bacterium, strain D45T, was isolated from soil in Nanjing, China. The organism grew optimally at 30 °C, pH 7.0 and with 0 % NaCl (w/v). The 16S rRNA gene sequence of the isolate showed similarities lower than 97 % with respect to species of the genus
Cohnella
. The predominant respiratory quinone was MK-7, with MK-6 present as a minor component; anteiso-C15 : 0 and iso-C16 : 0 were the major fatty acids. The polar lipids of strain D45T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two aminophospholipids, four phospholipids, two glycolipids, one aminolipid and two lipids. The DNA G+C content was 59.5 mol%. DNA–DNA hybridization of the isolate with two reference strains showed relatedness values of 33.4 % with
Cohnella ginsengisoli
DSM 18997T and 25.8 % with
Cohnella thermotolerans
DSM 17683T. The phylogenetic, chemotaxonomic and phenotypic data supported the classification of strain D45T as a representative of a novel species of the genus
Cohnella
, for which the name Cohnella nanjingensis sp. nov. is proposed. The type strain is D45T ( = CCTCC AB 2014067T = DSM 28246T).
Collapse
Affiliation(s)
- Zhi Huang
- Key Laboratory of Microbiology of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ya-jun Yu
- Key Laboratory of Microbiology of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuan-yuan Bao
- Key Laboratory of Microbiology of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Li Xia
- Key Laboratory of Microbiology of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xia-fang Sheng
- Key Laboratory of Microbiology of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lin-yan He
- Key Laboratory of Microbiology of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
17
|
Kämpfer P, Glaeser SP, McInroy JA, Busse HJ. Cohnella rhizosphaerae sp. nov., isolated from the rhizosphere environment of Zea mays. Int J Syst Evol Microbiol 2014; 64:1811-1816. [PMID: 24556632 DOI: 10.1099/ijs.0.060814-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-staining-positive, aerobic, non-endospore forming organism, isolated as a seed endophyte (colonizing the internal healthy tissue of plant seed) of sweet corn (Zea mays), strain CSE-5610T, was studied for its taxonomic allocation. On the basis of 16S rRNA gene sequence comparisons, strain CSE-5610T was grouped into the genus Cohnella, most closely related to Cohnella ginsengisoli GR21-5T (98.1%) and 'Cohnella plantaginis' YN-83 (97.5%). The 16S rRNA gene sequence similarity to other members of the genus Cohnella was <96.6%. DNA-DNA hybridization of strain CSE-5610T with C. ginsengisoli DSM 18997T and 'C. plantaginis' DSM 25424 was 58% (reciprocal 24%) and 30% (reciprocal 27%), respectively. The fatty acid profile from whole cell hydrolysates supported the allocation of the strain to the genus Cohnella; iso- and anteiso-branched fatty acids were found as major compounds. meso-Diaminopimelic acid was identified as the cell-wall diamino acid. The quinone system consisted predominantly of menaquinone MK-7. The polar lipid profile was composed of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two aminophospholipids, a phospholipid and minor amounts of two polar lipids. In the polyamine pattern, spermidine was the major polyamine. The G+C content of the genomic DNA was 60 mol%. In addition, the results of physiological and biochemical tests also allowed phenotypic differentiation of strain CSE-5610T from the two closely related strains. Hence, CSE-5610T represents a novel species of the genus Cohnella, for which we propose the name Cohnella rhizosphaerae sp. nov., with CSE-5610T (=LMG 28080T=CIP 110695T) as the type strain.
Collapse
Affiliation(s)
- Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - Stefanie P Glaeser
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | | | - Hans-Jürgen Busse
- Division of Clinical Microbiology and Infection Biology, Institut für Bakteriologie, Mykologie und Hygiene, Veterinärmedizinische Universität, Wien, Austria
| |
Collapse
|
18
|
Hameed A, Hung MH, Lin SY, Hsu YH, Liu YC, Shahina M, Lai WA, Huang HC, Young LS, Young CC. Cohnella formosensis sp. nov., a xylanolytic bacterium isolated from the rhizosphere of Medicago sativa L. Int J Syst Evol Microbiol 2013; 63:2806-2812. [PMID: 23315409 DOI: 10.1099/ijs.0.045831-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-positive, spore-forming, aerobic, rod-shaped, xylanolytic bacterium designated strain CC-Alfalfa-35(T) was isolated from the rhizosphere of Medicago sativa L. in Taiwan. Phylogenetic analysis based on 16S rRNA gene sequence showed that strain CC-Alfalfa-35(T) was affiliated to the genus Cohnella. Strain CC-Alfalfa-35(T) shared 95.3 % pairwise 16S rRNA gene sequence similarity to the type strain of the type species of the genus Cohnella (Cohnella thermotolerans DSM 17683(T)) besides showing a similarity of 97.4-93.6 % with other recognized species of the genus Cohnella. The DNA-DNA hybridization value between CC-Alfalfa-35(T) and Cohnella thailandensis KCTC 22296(T) was 37.7 % ± 1.7 % (reciprocal value, 55.7 % ± 3.0 %). Predominant cellular fatty acids were iso-C16 : 0 and anteiso-C15 : 0. The polar lipid profile constituted diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, lysyl-phosphatidylglycerol, three unidentified phospholipids and three unidentified aminophospholipids. The major respiratory quinone was MK-7 and the DNA G+C content was 58.3 mol%. Strain CC-Alfalfa-35(T) contained meso-diaminopimelic acid as the major diamino acid in the cell-wall peptidoglycan. Based on the polar lipid and fatty acid profiles, which were in line with those of C. thermotolerans DSM 17683(T), coupled with additional distinguishing genotypic, phenotypic and chemotaxonomic features, strain CC-Alfalfa-35(T) is proposed to represent a novel species within the genus Cohnella, for which the name Cohnella formosensis sp. nov. is proposed. The type strain is CC-Alfalfa-35(T) ( = JCM 18405(T) = BCRC 80428(T)).
Collapse
Affiliation(s)
- Asif Hameed
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - Mei-Hua Hung
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - Shih-Yao Lin
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - Yi-Han Hsu
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - You-Cheng Liu
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - Mariyam Shahina
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - Wei-An Lai
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - Hsin-Chieh Huang
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - Li-Sen Young
- Department of Biotechnology, College of Applied Arts and Sciences, National Formosa University, Yunlin, Taiwan, ROC
| | - Chiu-Chung Young
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan, ROC.,Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402, Taiwan, ROC
| |
Collapse
|
19
|
Khianngam S, Tanasupawat S, Akaracharanya A, Kim KK, Lee KC, Lee JS. Cohnella cellulosilytica sp. nov., isolated from buffalo faeces. Int J Syst Evol Microbiol 2012; 62:1921-1925. [DOI: 10.1099/ijs.0.032607-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A cellulose-degrading bacterium, strain FCN3-3T, was isolated from buffalo faeces collected in Nakhonnayok province, Thailand. The strain was characterized based on its phenotypic and genotypic characteristics. Strain FCN3-3T was a Gram-positive, aerobic, spore-forming, rod-shaped bacterium. It contained meso-diaminopimelic acid in cell-wall peptidoglycan. The major menaquinone was MK-7. Anteiso-C15 : 0 (52.5 %), iso-C16 : 0 (18.9 %) and C16 : 0 (9.1 %) were the predominant cellular fatty acids, and diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and lysyl-phosphatidylglycerol were the major phospholipids. The DNA G+C content was 58.0 mol%. Phylogenetic analysis using 16S rRNA gene sequences showed that strain FCN3-3T was affiliated to the genus
Cohnella
and was closely related to
Cohnella phaseoli
GSPC1T,
Cohnella luojiensis
HY-22RT and
Cohnella hongkongensis
HKU3T, with 97.2, 96.8 and 96.3 % sequence similarity, respectively. Strain FCN3-3T could be clearly distinguished from all known species of the genus
Cohnella
by its physiological and biochemical characteristics as well as its phylogenetic position and level of DNA–DNA relatedness. Therefore, the strain represents a novel species of the genus
Cohnella
, for which the name Cohnella cellulosilytica sp. nov. is proposed; the type strain is FCN3-3T ( = KCTC 13645T = TISTR 1996T = PCU 323T).
Collapse
Affiliation(s)
- Saowapar Khianngam
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ancharida Akaracharanya
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kwang Kyu Kim
- Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Keun Chul Lee
- Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Jung-Sook Lee
- Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| |
Collapse
|
20
|
Wang LY, Chen SF, Wang L, Zhou YG, Liu HC. Cohnella plantaginis sp. nov., a novel nitrogen-fixing species isolated from plantain rhizosphere soil. Antonie van Leeuwenhoek 2012; 102:83-9. [DOI: 10.1007/s10482-012-9715-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 02/22/2012] [Indexed: 11/30/2022]
|
21
|
Jiang F, Dai J, Wang Y, Xue X, Xu M, Li W, Fang C, Peng F. Cohnella arctica sp. nov., isolated from Arctic tundra soil. Int J Syst Evol Microbiol 2012; 62:817-821. [DOI: 10.1099/ijs.0.030247-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A psychrotolerant Gram-reaction-negative, rod-shaped and orange-pigmented bacterium, designated strain M9-62T, which was motile by means of peritrichous flagella, was isolated from tundra soil sampled near Ny-Ålesund, Svalbard Islands, Norway (78° N). Growth occurred at 4–30 °C (optimum, 25 °C) and pH 5.0–8.0 (optimum, pH 6.0–7.0). Analysis of the 16S rRNA gene sequence of strain M9-62T placed it in the genus
Cohnella
; sequence similarities of the isolate with type strains of members of related genera ranged from 92.0 to 96.3 %. Strain M9-62T contained anteiso-C15 : 0 (51.1 %), iso-C16 : 0 (7.5 %) and C16 : 0 (6.1 %) as the major cellular fatty acids and diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and lysyl-phosphatidylglycerol as the main polar lipids. The major respiratory quinone was MK-7 and the DNA G+C content was 50.3 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain M9-62T is considered to represent a novel species of the genus
Cohnella
, for which the name Cohnella arctica sp. nov. is proposed; the type strain is M9-62T ( = CCTCC AB 2010228T = NRRL B-59459T).
Collapse
Affiliation(s)
- Fan Jiang
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Jun Dai
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yang Wang
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Xiuqing Xue
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Mengbo Xu
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Wenxin Li
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Chengxiang Fang
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Fang Peng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|
22
|
Fathallh Eida M, Nagaoka T, Wasaki J, Kouno K. Isolation and characterization of cellulose-decomposing bacteria inhabiting sawdust and coffee residue composts. Microbes Environ 2012; 27:226-33. [PMID: 22353767 PMCID: PMC4036048 DOI: 10.1264/jsme2.me11299] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Clarifying the identity and enzymatic activities of microorganisms associated with the decomposition of organic materials is expected to contribute to the evaluation and improvement of composting processes. In this study, we examined the cellulolytic and hemicellulolytic abilities of bacteria isolated from sawdust compost (SDC) and coffee residue compost (CRC). Cellulolytic bacteria were isolated using Dubos mineral salt agar containing azurine cross-linked (AZCL) HE-cellulose. Bacterial identification was performed based on the sequence analysis of 16S rRNA genes, and cellulase, xylanase, β-glucanase, mannanase, and protease activities were characterized using insoluble AZCL-linked substrates. Eleven isolates were obtained from SDC and 10 isolates from CRC. DNA analysis indicated that the isolates from SDC and CRC belonged to the genera Streptomyces, Microbispora, and Paenibacillus, and the genera Streptomyces, Microbispora, and Cohnella, respectively. Microbispora was the most dominant genus in both compost types. All isolates, with the exception of two isolates lacking mannanase activity, showed cellulase, xylanase, β-glucanase, and mannanase activities. Based on enzyme activities expressed as the ratio of hydrolysis zone diameter to colony diameter, it was suggested that the species of Microbispora (SDCB8, SDCB9) and Paenibacillus (SDCB10, SDCB11) in SDC and Microbispora (CRCB2, CRCB6) and Cohnella (CRCB9, CRCB10) in CRC contribute to efficient cellulolytic and hemicellulolytic processes during composting.
Collapse
|
23
|
Kim SJ, Weon HY, Kim YS, Kwon SW. Cohnella soli sp. nov. and Cohnella suwonensis sp. nov. Isolated from soil samples in Korea. J Microbiol 2011; 49:1033-8. [DOI: 10.1007/s12275-011-1071-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 08/01/2011] [Indexed: 10/14/2022]
|
24
|
Cohnella boryungensis sp. nov., isolated from soil. Antonie van Leeuwenhoek 2011; 101:769-75. [DOI: 10.1007/s10482-011-9691-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
|
25
|
Mayilraj S, Ruckmani A, Kaur C, Kaur I, Klenk HP. Cohnella ferri sp. nov. A Novel Member of the Genus Cohnella Isolated from Haematite Ore. Curr Microbiol 2011; 62:1704-9. [DOI: 10.1007/s00284-011-9917-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 03/07/2011] [Indexed: 10/18/2022]
|
26
|
Khianngam S, Tanasupawat S, Akaracharanya A, Kim KK, Lee KC, Lee JS. Cohnella xylanilytica sp. nov. and Cohnella terrae sp. nov., xylanolytic bacteria from soil. Int J Syst Evol Microbiol 2010; 60:2913-2917. [DOI: 10.1099/ijs.0.017855-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two xylan-degrading bacteria, strains MX15-2T and MX21-2T, were isolated from soils collected in Nan province, Thailand. Cells were Gram-reaction-positive, facultatively anaerobic, spore-forming and rod-shaped. They contained meso-diaminopimelic acid in the cell-wall peptidoglycan. The major menaquinone was MK-7. iso-C16 : 0 and anteiso-C15 : 0 were the predominant cellular fatty acids. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and lysyl-phosphatidylglycerol were the major polar lipids. The genomic DNA G+C contents of strains MX15-2T and MX21-2T were 63.0 and 65.1 mol%, respectively. Phylogenetic analysis using 16S rRNA gene sequences showed that strains MX15-2T and MX21-2T were affiliated with the genus Cohnella and were closely related to Cohnella thermotolerans CCUG 47242T, with 96.5 and 95.6 % sequence similarity, respectively. The strains could be clearly distinguished from each other and from all known species of the genus Cohnella based on their physiological and biochemical characteristics as well as their phylogenetic positions and levels of DNA–DNA hybridization. Therefore, these two strains represent novel species of the genus Cohnella, for which the names Cohnella xylanilytica sp. nov. (type strain MX15-2T =KCTC 22294T =PCU 309T =TISTR 1891T) and Cohnella terrae sp. nov. (type strain MX21-2T =KCTC 22295T =PCU 310T =TISTR 1892T) are proposed.
Collapse
Affiliation(s)
- Saowapar Khianngam
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ancharida Akaracharanya
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kwang Kyu Kim
- Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong, Daejeon 305-806, Republic of Korea
| | - Keun Chul Lee
- Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong, Daejeon 305-806, Republic of Korea
| | - Jung-Sook Lee
- Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong, Daejeon 305-806, Republic of Korea
| |
Collapse
|
27
|
Khianngam S, Tanasupawat S, Akaracharanya A, Kim KK, Lee KC, Lee JS. Cohnella thailandensis sp. nov., a xylanolytic bacterium from Thai soil. Int J Syst Evol Microbiol 2010; 60:2284-2287. [DOI: 10.1099/ijs.0.015859-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A xylanolytic bacterium, strain S1-3T, was isolated from soil collected in Nan province, Thailand. It was characterized taxonomically based on phenotypic characteristics and 16S rRNA gene sequence comparison. The strain was a Gram-stain-positive, facultatively anaerobic, spore-forming, rod-shaped bacterium. It contained meso-diaminopimelic acid in the cell-wall peptidoglycan. The major menaquinone was MK-7. Iso-C16 : 0 (39.5 %) and anteiso-C15 : 0 (26.8 %) were predominant cellular fatty acids. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and lysyl-phosphatidylglycerol were the major polar lipids. The DNA G+C content was 53.3 mol%. Phylogenetic analysis using 16S rRNA gene sequences showed that strain S1-3T was affiliated to the genus Cohnella, and was closely related to Cohnella ginsengisoli GR21-5T and Cohnella thermotolerans CCUG 47242T with 95.7 and 95.3 % sequence similarity, respectively. Strain S1-3T could be clearly distinguished from related species of the genus Cohnella by its physiological and biochemical characteristics as well as by its phylogenetic position. Therefore, the strain represents a novel species of the genus Cohnella, for which the name Cohnella thailandensis sp. nov. is proposed. The type strain is S1-3T (=KCTC 22296T =TISTR 1890T =PCU 306T).
Collapse
Affiliation(s)
- Saowapar Khianngam
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somboon Tanasupawat
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ancharida Akaracharanya
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kwang Kyu Kim
- Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong, Daejeon 305-806, Republic of Korea
| | - Keun Chul Lee
- Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong, Daejeon 305-806, Republic of Korea
| | - Jung-Sook Lee
- Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong, Daejeon 305-806, Republic of Korea
| |
Collapse
|
28
|
Cohnella luojiensis sp. nov., isolated from soil of a Euphrates poplar forest. Int J Syst Evol Microbiol 2010; 60:1605-1608. [DOI: 10.1099/ijs.0.016790-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel strain, HY-22RT, was isolated from soil of a Euphrates poplar forest in Xinjiang, China. The cells were Gram-positive-staining, rod-shaped and motile by means of peritrichous flagella. Growth occurred at 10–37 °C (optimum 30 °C), at pH 7.0–8.0 (optimum pH 7.0) and with 0–1 % NaCl. A phylogenetic analysis based on 16S rRNA gene sequences revealed that strain HY-22RT was closely related to Cohnella phaseoli GSPC1T (96.3 % sequence similarity). The major respiratory quinone was MK-7 and the predominant fatty acids were anteiso-C15 : 0, iso-C15 : 0, iso-C16 : 0 and C16 : 0. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The DNA G+C content was 49.6 mol%. On the basis of the phylogenetic, physiological and chemotaxonomic data, strain HY-22RT represents a novel species in the genus Cohnella, for which the name Cohnella luojiensis sp. nov. is proposed. The type strain is HY-22RT (=CCTCC AB 208254T =NRRL B-59213T).
Collapse
|
29
|
Shiratori H, Tagami Y, Beppu T, Ueda K. Cohnella fontinalis sp. nov., a xylanolytic bacterium isolated from fresh water. Int J Syst Evol Microbiol 2010; 60:1344-1348. [DOI: 10.1099/ijs.0.014605-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel xylan-degrading bacterium, YT-1101T, was isolated from fresh water. The isolate was a Gram-reaction-negative, aerobic, motile, endospore-forming and rod-shaped bacterium. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain YT-1101T belonged to the genus Cohnella, sharing sequence similarities of less than 94 % with the type species. The genomic G+C content was 58.6 mol%. The predominant menaquinone was MK-7. The major fatty acids were anteiso-C15 : 0, iso-C16 : 0 and iso-C15 : 0. Major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. On the basis of morphological, physiological and phylogenetic properties, strain YT-1101T represents a novel species of the genus Cohnella, for which the name Cohnella fontinalis sp. nov. is proposed. The type strain is YT-1101T (=NBRC 104957T =DSM 21753T).
Collapse
Affiliation(s)
- Hatsumi Shiratori
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan
| | - Yudai Tagami
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan
| | - Teruhiko Beppu
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan
| | - Kenji Ueda
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan
| |
Collapse
|
30
|
Kim SJ, Weon HY, Kim YS, Anandham R, Jeon YA, Hong SB, Kwon SW. Cohnella yongneupensis sp. nov. and Cohnella ginsengisoli sp. nov., isolated from two different soils. Int J Syst Evol Microbiol 2010; 60:526-530. [DOI: 10.1099/ijs.0.013581-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two aerobic, Gram-positive, rod-shaped bacterial strains, 5YN10-14T and GR21-5T, were isolated from the Yongneup wetland and ginseng soil in Korea, respectively. The two strains formed ellipsoidal or oval spores positioned centrally or paracentrally in swollen sporangia. On the basis of 16S rRNA gene sequence analysis, these strains were related to members of the genus Cohnella. 16S rRNA gene sequence similarity between strains 5YN10-14T and GR21-5T was 95.9 %. Strains 5YN10-14T and GR21-5T showed, respectively, 94.3 and 95.2 % 16S rRNA gene sequence similarity to Cohnella thermotolerans CCUG 47242T, 94.6 and 94.4 % to Cohnella hongkongensis HKU3T, 94.7 and 94.7 % to Cohnella laeviribosi RI-39T, and 95.4 and 94.8 % to Cohnella phaseoli GSPC1T. The major fatty acids of strain 5YN10-14T were anteiso-C15 : 0 (51.1 %), iso-C16 : 0 (18.5 %) and C16 : 0 (13.2 %), and the major fatty acids of strain GR21-5T were anteiso-C15 : 0 (48.9 %), iso-C16 : 0 (15.0 %) and iso-C15 : 0 (12.2 %). The two strains contained menaquinone with seven isoprene units (MK-7) as the predominant quinone, and diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine as major polar lipids; however, strain 5YN10-14T also contained lysylphosphatidylglycerol as a major polar lipid, whereas strain GR21-5T had an unknown aminophospholipid as another major polar lipid. The DNA G+C contents of strains 5YN10-14T and GR21-5T were 58.8 and 61.3 mol%, respectively. Based on the results of the phylogenetic and phenotypic data presented, it was concluded that the two strains represent two novel species of the genus Cohnella, for which the names Cohnella yongneupensis sp. nov. (type strain 5YN10-14T=KACC 11768T=DSM 18998T) and Cohnella ginsengisoli sp. nov. (type strain GR21-5T=KACC 11771T=DSM 18997T) are proposed.
Collapse
Affiliation(s)
- Soo-Jin Kim
- Korean Agricultural Culture Collection (KACC), National Agrobiodiversity Center, Suwon 441-707, Republic of Korea
| | - Hang-Yeon Weon
- Korean Agricultural Culture Collection (KACC), National Agrobiodiversity Center, Suwon 441-707, Republic of Korea
| | - Yi-Seul Kim
- Korean Agricultural Culture Collection (KACC), National Agrobiodiversity Center, Suwon 441-707, Republic of Korea
| | - Rangasamy Anandham
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Madurai, India
| | - Young-Ah Jeon
- Korean Agricultural Culture Collection (KACC), National Agrobiodiversity Center, Suwon 441-707, Republic of Korea
| | - Seung-Beom Hong
- Korean Agricultural Culture Collection (KACC), National Agrobiodiversity Center, Suwon 441-707, Republic of Korea
| | - Soon-Wo Kwon
- Korean Agricultural Culture Collection (KACC), National Agrobiodiversity Center, Suwon 441-707, Republic of Korea
| |
Collapse
|
31
|
García-Fraile P, Velázquez E, Mateos PF, Martínez-Molina E, Rivas R. Cohnella phaseoli sp. nov., isolated from root nodules of Phaseolus coccineus in Spain, and emended description of the genus Cohnella. Int J Syst Evol Microbiol 2008; 58:1855-9. [PMID: 18676468 DOI: 10.1099/ijs.0.65468-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A bacterial strain designated GSPC1 T was isolated from root nodules of Phaseolus coccineus in Segovia (Spain). The 16S rRNA gene sequence of this strain showed 95.9 and 94.7 % sequence similarity, respectively, with those of the type strains of Cohnella hongkongensis and Cohnella thermotolerans. Strain GSPC1 T presented phenotypic, chemotaxonomic and molecular differences with respect to Cohnella species which indicated that it belonged to a different species. The isolate was a Gram-positive, aerobic, sporulated rod, motile by means of peritrichous flagella. The strain was catalase-positive and showed weak oxidase activity. It grew in the presence of 2 % NaCl. MK-7 was the predominant menaquinone. anteiso-C15:0, iso-C15:0, iso-C16: 0 and C16:0 were the major fatty acids. Major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The G+C content was 60.3 mol%. The results of this study suggest that isolate GSPC1 T should be classified within a novel Cohnella species, for which the name Cohnella phaseoli sp. nov. is proposed, with strain GSPC1T (=LMG 24086T =DSM 19269T) as the type strain.
Collapse
Affiliation(s)
- Paula García-Fraile
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | | | | | | | | |
Collapse
|
32
|
Rivas R, García-Fraile P, Zurdo-Piñeiro JL, Mateos PF, Martínez-Molina E, Bedmar EJ, Sánchez-Raya J, Velázquez E. Saccharibacillus sacchari gen. nov., sp. nov., isolated from sugar cane. Int J Syst Evol Microbiol 2008; 58:1850-4. [PMID: 18676467 DOI: 10.1099/ijs.0.65499-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A bacterial strain designated GR21T was isolated from apoplastic fluid of Saccharum officinarum (sugar cane). Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate forms a separate branch within the family 'Paenibacillaceae', with Paenibacillus as the closest related genus. Within this genus, the closest related species is Paenibacillus xylanilyticus, with 93.4 % similarity to the sequence of the type strain. The isolate has Gram-variable, facultatively anaerobic, rod-shaped cells, motile by polar and subpolar flagella. Round, non-ornamented, central or subterminal spores are formed in unswollen sporangia. The strain is catalase-positive and oxidase-negative on nutrient agar medium. Cellulose and aesculin were hydrolysed, whereas xylan, starch and gelatin were not. Growth was supported by many carbohydrates as carbon sources. Strain GR21T displayed a lipid profile consisting of diphosphatidylglycerol, phosphatidylglycerol, an unknown aminophospholipid, two unknown glycolipids and an unknown phosphoglycolipid. MK-7 was the predominant menaquinone and anteiso-C15: 0 was the major fatty acid. The DNA G+C content was 57.8 mol%. Phylogenetic and phenotypic analyses, including assimilation of carbon sources and exoenzyme production commonly used for classification within the family 'Paenibacillaceae', showed that strain GR21T belongs to a new genus within this family, for which the name Saccharibacillus sacchari gen. nov., sp. nov. is proposed. The type strain of Saccharibacillus sacchari is GR21T (=LMG 24085T =DSM 19268T).
Collapse
Affiliation(s)
- Raúl Rivas
- Departamento de Microbiología y Genética, Lab 209, Edificio Departamental de Biología Campus Miguel de Unamuno, Universidad de Salamanca, Spain
| | | | | | | | | | | | | | | |
Collapse
|