1
|
Li ZL, Li SF, Zhang ZM, Chen XQ, Li XQ, Zu YX, Chen F, Wang AJ. Extracellular electron transfer-dependent bioremediation of uranium-contaminated groundwater: Advancements and challenges. WATER RESEARCH 2025; 272:122957. [PMID: 39708382 DOI: 10.1016/j.watres.2024.122957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
Efficient and sustainable remediation of uranium-contaminated groundwater is critical for groundwater safety and the sustainable development of nuclear energy, particularly in the context of global carbon neutrality goals. This review explores the potential of microbial reduction processes that utilize extracellular electron transfer (EET) to convert soluble uranium (U(VI)) into its insoluble form (U(IV)), presenting a promising approach to groundwater remediation. The review first outlines the key processes and factors influencing the effectiveness of dissimilatory metal-reducing bacteria (DMRB), such as Geobacter and Shewanella, during uranium bioremediation and recovery. The cutting-edge progress on the molecular mechanism of EET-driven U(VI) reduction mediated by c-type cytochromes, conductive pili, and electron mediators, is critically reviewed. Additionally, advanced strategies such as optimizing electron transfer, leveraging synthetic biology approach, and integration with machine learning are discussed to enhance the efficiency of EET-driven processes. The review also considers the integration of EET processes into practical engineering applications, highlighting the need for optimization and innovation in bioremediation technologies. By providing a comprehensive overview of current progress and challenges, this review aims to inspire novel research and practical advancements in the field of uranium-contaminated groundwater remediation.
Collapse
Affiliation(s)
- Zhi-Ling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Sheng-Fang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zi-Meng Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xue-Qi Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xi-Qi Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yun-Xia Zu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fan Chen
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
2
|
Gonzalez V, Abarca-Hurtado J, Arancibia A, Claverías F, Guevara MR, Orellana R. Novel Insights on Extracellular Electron Transfer Networks in the Desulfovibrionaceae Family: Unveiling the Potential Significance of Horizontal Gene Transfer. Microorganisms 2024; 12:1796. [PMID: 39338472 PMCID: PMC11434368 DOI: 10.3390/microorganisms12091796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/30/2024] Open
Abstract
Some sulfate-reducing bacteria (SRB), mainly belonging to the Desulfovibrionaceae family, have evolved the capability to conserve energy through microbial extracellular electron transfer (EET), suggesting that this process may be more widespread than previously believed. While previous evidence has shown that mobile genetic elements drive the plasticity and evolution of SRB and iron-reducing bacteria (FeRB), few have investigated the shared molecular mechanisms related to EET. To address this, we analyzed the prevalence and abundance of EET elements and how they contributed to their differentiation among 42 members of the Desulfovibrionaceae family and 23 and 59 members of Geobacteraceae and Shewanellaceae, respectively. Proteins involved in EET, such as the cytochromes PpcA and CymA, the outer membrane protein OmpJ, and the iron-sulfur cluster-binding CbcT, exhibited widespread distribution within Desulfovibrionaceae. Some of these showed modular diversification. Additional evidence revealed that horizontal gene transfer was involved in the acquiring and losing of critical genes, increasing the diversification and plasticity between the three families. The results suggest that specific EET genes were widely disseminated through horizontal transfer, where some changes reflected environmental adaptations. These findings enhance our comprehension of the evolution and distribution of proteins involved in EET processes, shedding light on their role in iron and sulfur biogeochemical cycling.
Collapse
Affiliation(s)
- Valentina Gonzalez
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (V.G.); (J.A.-H.); (A.A.)
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay-Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
- Departamento de Química y Medio Ambiente, Sede Viña del Mar, Universidad Técnica Federico Santa María, Avenida Federico Santa María 6090, Viña del Mar 2520000, Chile
| | - Josefina Abarca-Hurtado
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (V.G.); (J.A.-H.); (A.A.)
| | - Alejandra Arancibia
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (V.G.); (J.A.-H.); (A.A.)
- HUB Ambiental UPLA, Universidad de Playa Ancha, Leopoldo Carvallo 207, Playa Ancha, Valparaíso 2340000, Chile
| | - Fernanda Claverías
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay-Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
| | - Miguel R. Guevara
- Laboratorio de Data Science, Facultad de Ingeniería, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2340000, Chile;
| | - Roberto Orellana
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (V.G.); (J.A.-H.); (A.A.)
- HUB Ambiental UPLA, Universidad de Playa Ancha, Leopoldo Carvallo 207, Playa Ancha, Valparaíso 2340000, Chile
- Núcleo Milenio BioGEM, Valparaíso 2390123, Chile
| |
Collapse
|
3
|
Singh S, Keating C, Ijaz UZ, Hassard F. Molecular insights informing factors affecting low temperature anaerobic applications: Diversity, collated core microbiomes and complexity stability relationships in LCFA-fed systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162420. [PMID: 36842571 DOI: 10.1016/j.scitotenv.2023.162420] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/31/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Fats, oil and grease, and their hydrolyzed counterparts-long chain fatty acids (LCFA) make up a large fraction of numerous wastewaters and are challenging to degrade anaerobically, more so, in low temperature anaerobic digestion (LtAD) systems. Herein, we perform a comparative analysis of publicly available Illumina 16S rRNA datasets generated from LCFA-degrading anaerobic microbiomes at low temperatures (10 and 20 °C) to comprehend the factors affecting microbial community dynamics. The various factors considered were the inoculum, substrate and operational characteristics, the reactor operation mode and reactor configuration, and the type of nucleic acid sequenced. We found that LCFA-degrading anaerobic microbiomes were differentiated primarily by inoculum characteristics (inoculum source and morphology) in comparison to the other factors tested. Inoculum characteristics prominently shaped the species richness, species evenness and beta-diversity patterns in the microbiomes even after long term operation of continuous reactors up to 150 days, implying the choice of inoculum needs careful consideration. The generalised additive models represented through beta diversity contour plots revealed that psychrophilic bacteria RBG-13-54-9 from family Anaerolineae, and taxa WCHB1-41 and Williamwhitmania were highly abundant in LCFA-fed microbial niches, suggesting their role in anaerobic treatment of LCFAs at low temperatures of 10-20 °C. Overall, we showed that the following bacterial genera: uncultured Propionibacteriaceae, Longilinea, Christensenellaceae R7 group, Lactivibrio, candidatus Caldatribacterium, Aminicenantales, Syntrophus, Syntrophomonas, Smithella, RBG-13-54-9, WCHB1-41, Trichococcus, Proteiniclasticum, SBR1031, Lutibacter and Lentimicrobium have prominent roles in LtAD of LCFA-rich wastewaters at 10-20 °C. This study provides molecular insights of anaerobic LCFA degradation under low temperatures from collated datasets and will aid in improving LtAD systems for treating LCFA-rich wastewaters.
Collapse
Affiliation(s)
- Suniti Singh
- Cranfield Water Science Institute, Cranfield University, College Way, Bedfordshire MK43 0AL, UK.
| | - Ciara Keating
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Umer Zeeshan Ijaz
- Infrastructure and Environment Research Division, James Watt School of Engineering, University of Glasgow, UK; Department of Molecular and Clinical Cancer Medicine, University of Liverpool, UK; College of Science and Engineering, NUI Galway, Ireland.
| | - Francis Hassard
- Cranfield Water Science Institute, Cranfield University, College Way, Bedfordshire MK43 0AL, UK; Institute for Nanotechnology and Water Sustainability, University of South Africa, UNISA Science Campus, 1710 Roodepoort, Johannesburg, South Africa.
| |
Collapse
|
4
|
Zelenina D, Kuzmenkova N, Sobolev D, Boldyrev K, Namsaraev Z, Artemiev G, Samylina O, Popova N, Safonov A. Biogeochemical Factors of Cs, Sr, U, Pu Immobilization in Bottom Sediments of the Upa River, Located in the Zone of Chernobyl Accident. BIOLOGY 2022; 12:biology12010010. [PMID: 36671703 PMCID: PMC9854679 DOI: 10.3390/biology12010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Laboratory modeling of Cs, Sr, U, Pu immobilization by phytoplankton of the river Upa, affected after the Chernobyl accident, has been carried out. Certain conditions are selected for strong fixation of radionuclides in bottom sediments due to biogeochemical processes. The process of radionuclide removal from the water phase via precipitation was based on their accumulation by phytoplankton, stimulated by nitrogen and phosphorus sources. After eight days of stimulation, planktonic phototrophic biomass, dominated by cyanobacteria of the genus Planktothrix, appears in the water sample. The effectiveness of U, Pu and Sr purification via their transfer to bottom sediment was observed within one month. The addition of ammonium sulfate and phosphate (Ammophos) led to the activation of sulfate- and iron-reducing bacteria of the genera Desulfobacterota, Desulfotomaculum, Desulfosporomusa, Desulfosporosinus, Thermodesulfobium, Thiomonas, Thiobacillus, Sulfuritallea, Pseudomonas, which form sulphide ferrous precipitates such as pyrite, wurtzite, hydrotroillite, etc., in anaerobic bottom sediments. The biogenic mineral composition of the sediments obtained under laboratory conditions was verified via thermodynamic modeling.
Collapse
Affiliation(s)
- Darya Zelenina
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, Obrucheva Str. 40, Moscow 117342, Russia
| | - Natalia Kuzmenkova
- Radiochemistry Division, Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
- V. Vernadsky Institute of Geochemistry and Analytical Chemistry, RAS, Kosygina Str. 19, Moscow 119991, Russia
| | - Denis Sobolev
- Nuclear Safety Institute, RAS, Bolshaya Tulskaya St. 52, Moscow 115191, Russia
| | - Kirill Boldyrev
- Nuclear Safety Institute, RAS, Bolshaya Tulskaya St. 52, Moscow 115191, Russia
| | - Zorigto Namsaraev
- Kurchatov Centre for Genome Research, NRC Kurchatov Institute, Akad. Kurchatov Sq., 2, Moscow 123098, Russia
| | - Grigoriy Artemiev
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, Obrucheva Str. 40, Moscow 117342, Russia
| | - Olga Samylina
- Winogradsky Institute of Microbiology, Research Centre for Biotechnology, Russian Academy of Sciences, Prospect 60-Letiya Oktyabrya 7/2, Moscow 117312, Russia
| | - Nadezhda Popova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, Obrucheva Str. 40, Moscow 117342, Russia
| | - Alexey Safonov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, Obrucheva Str. 40, Moscow 117342, Russia
- Correspondence:
| |
Collapse
|
5
|
Yoshimi T, Fujii S, Oki H, Igawa T, Adams HR, Ueda K, Kawahara K, Ohkubo T, Hough MA, Sambongi Y. Crystal structure of thermally stable homodimeric cytochrome c'-β from Thermus thermophilus. Acta Crystallogr F Struct Biol Commun 2022; 78:217-225. [PMID: 35647678 PMCID: PMC9158659 DOI: 10.1107/s2053230x22005088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/11/2022] [Indexed: 11/10/2022] Open
Abstract
Cytochrome c'-β is a heme protein that belongs to the cytochrome P460 family and consists of homodimeric subunits with a predominantly antiparallel β-sheet fold. Here, the crystal structure of cytochrome c'-β from the thermophilic Thermus thermophilus (TTCP-β) is reported at 1.74 Å resolution. TTCP-β has a typical antiparallel β-sheet fold similar to that of cytochrome c'-β from the moderately thermophilic Methylococcus capsulatus (MCCP-β). The phenylalanine cap structure around the distal side of the heme is also similar in TTCP-β and MCCP-β, indicating that both proteins similarly bind nitric oxide and carbon monoxide, as observed spectroscopically. Notably, TTCP-β exhibits a denaturation temperature of 117°C, which is higher than that of MCCP-β. Mutational analysis reveals that the increased homodimeric interface area of TTCP-β contributes to its high thermal stability. Furthermore, 14 proline residues, which are mostly located in the TTCP-β loop regions, possibly contribute to the rigid loop structure compared with MCCP-β, which has only six proline residues. These findings, together with those from phylogenetic analysis, suggest that the structures of Thermus cytochromes c'-β, including TTCP-β, are optimized for function under the high-temperature conditions in which the source organisms live.
Collapse
Affiliation(s)
- Taisuke Yoshimi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Sotaro Fujii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Hiroya Oki
- Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Takeshi Igawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
- Division of Bioresource Science, Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hannah R. Adams
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, United Kingdom
| | - Kengo Ueda
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Kazuki Kawahara
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Tadayasu Ohkubo
- Division of Bioresource Science, Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Japan
| | - Michael A. Hough
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, United Kingdom
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, United Kingdom
| | - Yoshihiro Sambongi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
6
|
Rogiers T, Van Houdt R, Williamson A, Leys N, Boon N, Mijnendonckx K. Molecular Mechanisms Underlying Bacterial Uranium Resistance. Front Microbiol 2022; 13:822197. [PMID: 35359714 PMCID: PMC8963506 DOI: 10.3389/fmicb.2022.822197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/27/2022] [Indexed: 11/16/2022] Open
Abstract
Environmental uranium pollution due to industries producing naturally occurring radioactive material or nuclear accidents and releases is a global concern. Uranium is hazardous for ecosystems as well as for humans when accumulated through the food chain, through contaminated groundwater and potable water sources, or through inhalation. In particular, uranium pollution pressures microbial communities, which are essential for healthy ecosystems. In turn, microorganisms can influence the mobility and toxicity of uranium through processes like biosorption, bioreduction, biomineralization, and bioaccumulation. These processes were characterized by studying the interaction of different bacteria with uranium. However, most studies unraveling the underlying molecular mechanisms originate from the last decade. Molecular mechanisms help to understand how bacteria interact with radionuclides in the environment. Furthermore, knowledge on these underlying mechanisms could be exploited to improve bioremediation technologies. Here, we review the current knowledge on bacterial uranium resistance and how this could be used for bioremediation applications.
Collapse
Affiliation(s)
- Tom Rogiers
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Rob Van Houdt
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Adam Williamson
- Centre Etudes Nucléaires de Bordeaux Gradignan (CENBG), Bordeaux, France
| | - Natalie Leys
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Kristel Mijnendonckx
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
- *Correspondence: Kristel Mijnendonckx,
| |
Collapse
|
7
|
Agudelo-Escobar LM, Cabrera SE, Avignone Rossa C. A Bioelectrochemical System for Waste Degradation and Energy Recovery From Industrial Coffee Wastewater. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.814987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
The primary production of coffee involves the extensive use of water resources, since it is not only used for irrigation of coffee plantations, but it is also required in large volumes for the processing of the coffee berry to obtain high quality green beans. It is calculated that for every kg of dry coffee grain produced, up to 40 L of water are consumed, and its disposal represents a significant environmental problem, since most coffee growers are small producers with no access to efficient technologies for wastewater treatment. This situation leads to these liquid wastes to be discarded untreated in natural water sources, generating environmental pollution and public health problems. Bioelectrochemical Systems (BES) have been proposed as an alternative to conventional wastewater treatments, either as a primary bioremediation strategy or for secondary wastewater treatment systems. Among BES, microbial fuel cells (MFCs) are designed to exploit the metabolic capability of andophilic microorganisms to degrade the organic matter present in the waste. Anodophilic microorganisms use electrodes as terminal electron acceptors, generating a flow of electrons that can be used in the generation of electricity. In this work, we evaluated the ability of native microbial communities to degrade the organic matter present in wastewater from the coffee agroindustry and its electrogenic potential for the co-generation of electricity was evaluated using an MFC device developed by the authors. Wastewater samples obtained at different stages of the coffee wet process were used as inoculum and feedstocks. The system was operated in fed-batch, in both open and closed-circuit conditions, for 60 days. The degree of decontamination or bioremediation of the wastewater was assessed by measurements of physicochemical parameters. For the characterization of the native microbial community, microscopic and molecular techniques were used and the electrogenic potential was established by assessing the electrochemical performance of the system. With the proposed bioelectrochemical system, a reduction of up to 70% of the initial content of organic matter of the residual water from the coffee benefit was achieved, and open circuit voltages of up to 400 mV were recorded, comparable to those reported for conventional air breathing cathode MFC.
Collapse
|
8
|
Abstract
With obesity and type 2 diabetes (T2D) at epidemic levels, we need to understand the complex nature of these diseases to design better therapeutics. The underlying causes of both obesity and T2D are complex, but both are thought to develop, in part, based on contributions from the gut microbiota.
Collapse
|
9
|
Rogiers T, Merroun ML, Williamson A, Leys N, Houdt RV, Boon N, Mijnendonckx K. Cupriavidus metallidurans NA4 actively forms polyhydroxybutyrate-associated uranium-phosphate precipitates. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126737. [PMID: 34388922 DOI: 10.1016/j.jhazmat.2021.126737] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Cupriavidus metallidurans is a model bacterium to study molecular metal resistance mechanisms and its use for the bioremediation of several metals has been shown. However, its mechanisms for radionuclide resistance are unexplored. We investigated the interaction with uranium and associated cellular response to uranium for Cupriavidus metallidurans NA4. Strain NA4 actively captured 98 ± 1% of the uranium in its biomass after growing 24 h in the presence of 100 µM uranyl nitrate. TEM HAADF-EDX microscopy confirmed intracellular uranium-phosphate precipitates that were mainly associated with polyhydroxybutyrate. Furthermore, whole transcriptome sequencing indicated a complex transcriptional response with upregulation of genes encoding general stress-related proteins and several genes involved in metal resistance. More in particular, gene clusters known to be involved in copper and silver resistance were differentially expressed. This study provides further insights into bacterial interactions with and their response to uranium. Our results could be promising for uranium bioremediation purposes with the multi-metal resistant bacterium C. metallidurans NA4.
Collapse
Affiliation(s)
- Tom Rogiers
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium; Center for Microbial Ecology and Technology (CMET), UGent, Ghent, Belgium.
| | | | - Adam Williamson
- Center for Microbial Ecology and Technology (CMET), UGent, Ghent, Belgium.
| | - Natalie Leys
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium.
| | - Rob Van Houdt
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium.
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), UGent, Ghent, Belgium.
| | - Kristel Mijnendonckx
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium.
| |
Collapse
|
10
|
Sun W, Sun X, Häggblom MM, Kolton M, Lan L, Li B, Dong Y, Xu R, Li F. Identification of Antimonate Reducing Bacteria and Their Potential Metabolic Traits by the Combination of Stable Isotope Probing and Metagenomic-Pangenomic Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13902-13912. [PMID: 34581566 DOI: 10.1021/acs.est.1c03967] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microorganisms play an important role in altering antimony (Sb) speciation, mobility, and bioavailability, but the understanding of the microorganisms responsible for Sb(V) reduction has been limited. In this study, DNA-stable isotope probing (DNA-SIP) and metagenomics analysis were combined to identify potential Sb(V)-reducing bacteria (SbRB) and predict their metabolic pathways for Sb(V) reduction. Soil slurry cultures inoculated with Sb-contaminated paddy soils from two Sb-contaminated sites demonstrated the capability to reduce Sb(V). DNA-SIP identified bacteria belonging to the genera Pseudomonas and Geobacter as putative SbRB in these two Sb-contaminated sites. In addition, bacteria such as Lysinibacillus and Dechloromonas may potentially participate in Sb(V) reduction. Nearly complete draft genomes of putative SbRB (i.e., Pseudomonas and Geobacter) were obtained, and the genes potentially responsible for arsenic (As) and Sb reduction (i.e., respiratory arsenate reductase (arrA) and antimonate reductase (anrA)) were examined. Notably, bins affiliated with Geobacter contained arrA and anrA genes, supporting our hypothesis that they are putative SbRB. Further, pangenomic analysis indicated that various Geobacter-associated genomes obtained from diverse habitats also contained arrA and anrA genes. In contrast, Pseudomonas may use a predicted DMSO reductase closely related to sbrA (Sb(V) reductase gene) clade II to reduce Sb(V), which may need further experiments to verify. This current work represents a demonstration of using DNA-SIP and metagenomic-binning to identify SbRB and their key genes involved in Sb(V) reduction and provides valuable data sets to link bacterial identities with Sb(V) reduction.
Collapse
Affiliation(s)
- Weimin Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Xiaoxu Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Max Kolton
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Ling Lan
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Baoqin Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Yiran Dong
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430070, China
| | - Rui Xu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| |
Collapse
|
11
|
Xie L, Yoshida N, Ishii S, Meng L. Isolation and Polyphasic Characterization of Desulfuromonas versatilis sp. Nov., an Electrogenic Bacteria Capable of Versatile Metabolism Isolated from a Graphene Oxide-Reducing Enrichment Culture. Microorganisms 2021; 9:1953. [PMID: 34576847 PMCID: PMC8465243 DOI: 10.3390/microorganisms9091953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 01/11/2023] Open
Abstract
In this study, a novel electrogenic bacterium denoted as strain NIT-T3 of the genus Desulfuromonas was isolated from a graphene-oxide-reducing enrichment culture that was originally obtained from a mixture of seawater and coastal sand. Strain NIT-T3 utilized hydrogen and various organic acids as electron donors and exhibited respiration using electrodes, ferric iron, nitrate, and elemental sulfur. The strain contained C16:1ω7c, C16:0, and C15:0 as major fatty acids and MK-8, 9, and 7 as the major respiratory quinones. Strain NIT-T3 contained four 16S rRNA genes and showed 95.7% similarity to Desulfuromonasmichiganensis BB1T, the closest relative. The genome was 4.7 Mbp in size and encoded 76 putative c-type cytochromes, which included 6 unique c-type cytochromes (<40% identity) compared to those in the database. Based on the physiological and genetic uniqueness, and wide metabolic capability, strain NIT-T3 is proposed as a type strain of 'Desulfuromonas versatilis' sp. nov.
Collapse
Affiliation(s)
- Li Xie
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya 466-8555, Aichi, Japan; (L.X.); (L.M.)
| | - Naoko Yoshida
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya 466-8555, Aichi, Japan; (L.X.); (L.M.)
| | - Shun’ichi Ishii
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237-0061, Kanagawa, Japan;
| | - Lingyu Meng
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya 466-8555, Aichi, Japan; (L.X.); (L.M.)
| |
Collapse
|
12
|
Zhang Z, Xu Z, Masuda Y, Wang X, Ushijima N, Shiratori Y, Senoo K, Itoh H. Geomesophilobacter sediminis gen. nov., sp. nov., Geomonas propionica sp. nov. and Geomonas anaerohicana sp. nov., three novel members in the family Geobacterecace isolated from river sediment and paddy soil. Syst Appl Microbiol 2021; 44:126233. [PMID: 34311149 DOI: 10.1016/j.syapm.2021.126233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 11/29/2022]
Abstract
Bacteria in the family Geobacteraceae have been proven to fill important niches in a diversity of anaerobic environments and global biogeochemical processes. Here, three bacterial strains in this family, designated Red875T, Red259T, and Red421T were isolated from river sediment and paddy soils in Japan. All of them are Gram-staining-negative, strictly anaerobic, motile, flagellum-harboring cells that form red colonies on agar plates and are capable of utilizing Fe(III)-NTA, Fe(III) citrate, ferrihydrite, MnO2, fumarate, and nitrate as electron acceptors with acetate, propionate, pyruvate, and glucose as electron donors. Phylogenetic analysis based on the 16S rRNA gene and 92 concatenated core proteins sequences revealed that strains Red259T and Red421T clustered with the type strains of Geomonas species, whereas strain Red875T formed an independent lineage within the family Geobacteraceae. Genome comparison based on average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values clearly distinguished these three strains from other Geobacteraceae members, with lower values than the thresholds for species delineation. Moreover, strain Red875T also shared low average amino acid identity (AAI) and percentage of conserved proteins (POCP) values with the type species of the family Geobacteraceae. Based on these physiological, chemotaxonomic, and phylogenetic distinctions, we propose that strain Red875T (=NBRC 114290T = MCCC 1K04407T) represents a novel genus in the family Geobacteraceae, namely, Geomesophilobacter sediminis gen. nov., sp. nov., and strains Red259T (=NBRC 114288T = MCCC 1K05016T) and Red421T (=NBRC 114289T = MCCC 1K06216T) represent two novel independent species in the genus Geomonas, namely, Geomonas propionica sp. nov. and Geomonas anaerohicana sp. nov., respectively.
Collapse
Affiliation(s)
- Zhengcheng Zhang
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Zhenxing Xu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | - Yoko Masuda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | - Xueding Wang
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Natsumi Ushijima
- Support Section for Education and Research, Graduate School of Dental Medicine, Hokkaido University, Japan
| | | | - Keishi Senoo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Hideomi Itoh
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Hokkaido, Japan
| |
Collapse
|
13
|
Pérez-Rodríguez I, Choi JK, Abuyen K, Tyler M, Ronkowski C, Romero E, Trujillo A, Tremblay J, Viney I, Savalia P, Amend JP. Geothermobacter hydrogeniphilus sp. nov., a mesophilic, iron(III)-reducing bacterium from seafloor/subseafloor environments in the Pacific Ocean, and emended description of the genus Geothermobacter. Int J Syst Evol Microbiol 2021; 71. [PMID: 33877046 DOI: 10.1099/ijsem.0.004739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel mesophilic, anaerobic, mixotrophic bacterium, with designated strains EPR-MT and HR-1, was isolated from a semi-extinct hydrothermal vent at the East Pacific Rise and from an Fe-mat at Lō'ihi Seamount, respectively. The cells were Gram-negative, pleomorphic rods of about 2.0 µm in length and 0.5 µm in width. Strain EPR-MT grew between 25 and 45 °C (optimum, 37.5-40 °C), 10 and 50 g l-1 NaCl (optimum, 15-20 g l-1) and pH 5.5 and 8.6 (optimum, pH 6.4). Strain HR-1 grew between 20 and 45 °C (optimum, 37.5-40 °C), 10 and 50 g l-1 NaCl (optimum, 15-25 g l-1) and pH 5.5 and 8.6 (optimum, pH 6.4). Shortest generation times with H2 as the primary electron donor, CO2 as the carbon source and ferric citrate as terminal electron acceptor were 6.7 and 5.5 h for EPR-MT and HR-1, respectively. Fe(OH)3, MnO2, AsO4 3-, SO4 2-, SeO4 2-, S2O3 2-, S0 and NO3 - were also used as terminal electron acceptors. Acetate, yeast extract, formate, lactate, tryptone and Casamino acids also served as both electron donors and carbon sources. G+C content of the genomic DNA was 59.4 mol% for strain EPR-MT and 59.2 mol% for strain HR-1. Phylogenetic and phylogenomic analyses indicated that both strains were closely related to each other and to Geothermobacter ehrlichii, within the class δ-Proteobacteria (now within the class Desulfuromonadia). Based on phylogenetic and phylogenomic analyses in addition to physiological and biochemical characteristics, both strains were found to represent a novel species within the genus Geothermobacter, for which the name Geothermobacter hydrogeniphilus sp. nov. is proposed. Geothermobacter hydrogeniphilus is represented by type strain EPR-MT (=JCM 32109T=KCTC 15831T=ATCC TSD-173T) and strain HR-1 (=JCM 32110=KCTC 15832).
Collapse
Affiliation(s)
- Ileana Pérez-Rodríguez
- Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, USA.,Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, USA.,Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica K Choi
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karla Abuyen
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.,Community College Cultivation Cohort, University of Southern California, Los Angeles, CA 90089, USA.,Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Madeline Tyler
- Present address: College of Pharmacy, Oregon State University, Corvallis, OR 97330, USA.,Community College Cultivation Cohort, University of Southern California, Los Angeles, CA 90089, USA
| | - Cynthia Ronkowski
- Community College Cultivation Cohort, University of Southern California, Los Angeles, CA 90089, USA
| | - Eric Romero
- Present address: Department of Nuclear Engineering, University of California, Berkeley, CA 94720, USA.,Community College Cultivation Cohort, University of Southern California, Los Angeles, CA 90089, USA
| | - Anthony Trujillo
- Community College Cultivation Cohort, University of Southern California, Los Angeles, CA 90089, USA
| | - Jason Tremblay
- Community College Cultivation Cohort, University of Southern California, Los Angeles, CA 90089, USA
| | - Isabella Viney
- Present address: Department of Microbiology, University of Arizona, Tucson, AZ 85721, USA.,Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pratixaben Savalia
- Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Jan P Amend
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.,Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
14
|
Kuippers G, Morris K, Townsend LT, Bots P, Kvashnina K, Bryan ND, Lloyd JR. Biomineralization of Uranium-Phosphates Fueled by Microbial Degradation of Isosaccharinic Acid (ISA). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4597-4606. [PMID: 33755437 DOI: 10.1021/acs.est.0c03594] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Geological disposal is the globally preferred long-term solution for higher activity radioactive wastes (HAW) including intermediate level waste (ILW). In a cementitious disposal system, cellulosic waste items present in ILW may undergo alkaline hydrolysis, producing significant quantities of isosaccharinic acid (ISA), a chelating agent for radionuclides. Although microbial degradation of ISA has been demonstrated, its impact upon the fate of radionuclides in a geological disposal facility (GDF) is a topic of ongoing research. This study investigates the fate of U(VI) in pH-neutral, anoxic, microbial enrichment cultures, approaching conditions similar to the far field of a GDF, containing ISA as the sole carbon source, and elevated phosphate concentrations, incubated both (i) under fermentation and (ii) Fe(III)-reducing conditions. In the ISA-fermentation experiment, U(VI) was precipitated as insoluble U(VI)-phosphates, whereas under Fe(III)-reducing conditions, the majority of the uranium was precipitated as reduced U(IV)-phosphates, presumably formed via enzymatic reduction mediated by metal-reducing bacteria, including Geobacter species. Overall, this suggests the establishment of a microbially mediated "bio-barrier" extending into the far field geosphere surrounding a GDF is possible and this biobarrier has the potential to evolve in response to GDF evolution and can have a controlling impact on the fate of radionuclides.
Collapse
Affiliation(s)
- Gina Kuippers
- Research Centre for Radwaste Disposal & Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Katherine Morris
- Research Centre for Radwaste Disposal & Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Luke T Townsend
- Research Centre for Radwaste Disposal & Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Pieter Bots
- Research Centre for Radwaste Disposal & Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
- Civil and Environmental Engineering, University of Strathclyde, Glasgow, G11XQ, U.K
| | - Kristina Kvashnina
- The Rossendorf Beamline at ESRF-The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France
- Helmholtz Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, P.O. Box 510119, 01314 Dresden, Germany
| | - Nicholas D Bryan
- National Nuclear Laboratory Limited, Chadwick House, Warrington Road, Birchwood Park, Warrington, WA3 6AE, U.K
| | - Jonathan R Lloyd
- Research Centre for Radwaste Disposal & Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
15
|
Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P, Wagner M, Loy A, Naganuma T, Nakai R, Whitman WB, Hahn MW, Kuever J, Hugenholtz P. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evol Microbiol 2020; 70:5972-6016. [DOI: 10.1099/ijsem.0.004213] [Citation(s) in RCA: 696] [Impact Index Per Article: 139.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The class
Deltaproteobacteria
comprises an ecologically and metabolically diverse group of bacteria best known for dissimilatory sulphate reduction and predatory behaviour. Although this lineage is the fourth described class of the phylum
Proteobacteria
, it rarely affiliates with other proteobacterial classes and is frequently not recovered as a monophyletic unit in phylogenetic analyses. Indeed, one branch of the class
Deltaproteobacteria
encompassing Bdellovibrio-like predators was recently reclassified into a separate proteobacterial class, the
Oligoflexia
. Here we systematically explore the phylogeny of taxa currently assigned to these classes using 120 conserved single-copy marker genes as well as rRNA genes. The overwhelming majority of markers reject the inclusion of the classes
Deltaproteobacteria
and
Oligoflexia
in the phylum
Proteobacteria
. Instead, the great majority of currently recognized members of the class
Deltaproteobacteria
are better classified into four novel phylum-level lineages. We propose the names Desulfobacterota phyl. nov. and Myxococcota phyl. nov. for two of these phyla, based on the oldest validly published names in each lineage, and retain the placeholder name SAR324 for the third phylum pending formal description of type material. Members of the class
Oligoflexia
represent a separate phylum for which we propose the name Bdellovibrionota phyl. nov. based on priority in the literature and general recognition of the genus Bdellovibrio. Desulfobacterota phyl. nov. includes the taxa previously classified in the phylum
Thermodesulfobacteria
, and these reclassifications imply that the ability of sulphate reduction was vertically inherited in the
Thermodesulfobacteria
rather than laterally acquired as previously inferred. Our analysis also indicates the independent acquisition of predatory behaviour in the phyla Myxococcota and Bdellovibrionota, which is consistent with their distinct modes of action. This work represents a stable reclassification of one of the most taxonomically challenging areas of the bacterial tree and provides a robust framework for future ecological and systematic studies.
Collapse
Affiliation(s)
- David W Waite
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Maria Chuvochina
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Claus Pelikan
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Donovan H Parks
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | | | - Michael Wagner
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Alexander Loy
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | | | - Ryosuke Nakai
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
| | - William B Whitman
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Martin W Hahn
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - Jan Kuever
- Department of Microbiology, Bremen Institute for Materials Testing, Bremen, Germany
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
16
|
Yuan C, Qiao J, Li F, Zhang X, Du Y, Hu M, Sun W. Community dynamics of As(V)-reducing and As(III)-oxidizing genes during a wet-dry cycle in paddy soil amended with organic matter, gypsum, or iron oxide. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122485. [PMID: 32193132 DOI: 10.1016/j.jhazmat.2020.122485] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Microbe-mediated redox transformations regulate arsenic mobility in paddy soil. However, the community dynamics of the related genes, which might be affected by soil ameliorants, have not been systematically investigated during a wet-dry cycle. This study incubated arsenic-contaminated paddy soil amended with organic matter (OM), gypsum, or hematite in microcosms under alternate watering conditions. Added gypsum and hematite reduced arsenic mobility in the soil by 8-60% during the wet and dry periods. However, added OM increased arsenic mobility by 70-130% during the first 4 weeks (not the last 4 weeks) of submergence and the dry period. The results of quantitative real-time polymerase chain reaction (qPCR) depended heavily on the primers used, so the contribution of relevant genes to arsenic transformation cannot be compared using only the gene abundance assessed by qPCR. However, correlation analyses showed that the abundance and community members of the arrA gene, which mediates dissimilatory As(V) reduction [i.e., As(V) respiration], were related to soil arsenic concentrations. This was not the case for the arsC gene, which mediates cytoplasmic As(V) reduction, or the aioA gene, which mediates As(III) oxidation. These suggest that the dissimilatory pathway was mainly responsible for arsenic reduction and release in the soil studied.
Collapse
Affiliation(s)
- Chaolei Yuan
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, China
| | - Jiangtao Qiao
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, China.
| | - Xiaofeng Zhang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, China
| | - Yanhong Du
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, China
| | - Min Hu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, China
| | - Weimin Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, China
| |
Collapse
|
17
|
Xu Z, Masuda Y, Itoh H, Ushijima N, Shiratori Y, Senoo K. Geomonas oryzae gen. nov., sp. nov., Geomonas edaphica sp. nov., Geomonas ferrireducens sp. nov., Geomonas terrae sp. nov., Four Ferric-Reducing Bacteria Isolated From Paddy Soil, and Reclassification of Three Species of the Genus Geobacter as Members of the Genus Geomonas gen. nov. Front Microbiol 2019; 10:2201. [PMID: 31608033 PMCID: PMC6773877 DOI: 10.3389/fmicb.2019.02201] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/09/2019] [Indexed: 11/13/2022] Open
Abstract
In paddy soil, bacteria from the family Geobacteraceae have been shown to strongly contribute to the biogeochemical cycle. However, no Geobacteraceae species with validly published names have been isolated from paddy soil. In this study, we isolated and characterized four novel ferric reducing bacteria in the family Geobacteraceae from the paddy soils of three different fields in Japan. The four strains, S43T, Red53T, S62T, and Red111T, were Gram-stain negative, strictly anaerobic, chemoheterotrophic, and motile with peritrichous flagella. Phylogenetic studies based on 16S rRNA gene sequences, five concatenated housekeeping genes (fusA, rpoB, recA, nifD, and gyrB) and 92 concatenated core genes revealed that the four strains belong to the family Geobacteraceae and are most closely related to Geobacter bemidjiensis BemT (97.4-98.2%, 16S rRNA gene sequence similarities) and Geobacter bremensis Dfr1T (97.1-98.0%). Genomic analysis with average nucleotide identity (ANI) and digital DNA-DNA hybridization (GGDC) calculations clearly distinguished the four isolated strains from other species of the family Geobacteraceae and indicated that strains S43T, Red53T, S62T, and Red111T represent independent species, with values below the thresholds for species delineation. Chemotaxonomic characteristics, including major fatty acid and whole cell protein profiles, showed differences among the isolates and their closest relatives, which were consistent with the results of DNA fingerprints and physiological characterization. Additionally, each of the four isolates shared a low 16S rRNA gene sequence similarity (92.4%) and average amino acid identity (AAI) with the type strain of the type species Geobacter metallireducens. Overall, strains S43T, Red53T, S62T, and Red111T represent four novel species, which we propose to classify in a novel genus of the family Geobacteraceae, and the names Geomonas oryzae gen. nov., sp. nov. (type strain S43T), Geomonas edaphica sp. nov. (type strain Red53T), Geomonas ferrireducens sp. nov. (type strain S62T), and Geomonas terrae sp. nov. (type strain Red111T) are proposed. Based on phylogenetic and genomic analyses, we also propose the reclassification of Geobacter bremensis as Geomonas bremensis comb. nov., Geobacter pelophilus as Geomonas pelophila comb. nov., and Geobacter bemidjiensis as Geomonas bemidjiensis comb. nov.
Collapse
Affiliation(s)
- Zhenxing Xu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoko Masuda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hideomi Itoh
- Bioproduction Research Institute, National Institute of Advanced Industrial Sciences and Technology, Hokkaido, Japan
| | - Natsumi Ushijima
- Support Section for Education and Research, Graduate School of Dental Medicine, Hokkaido University, Hokkaido, Japan
| | | | - Keishi Senoo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
Sun W, Sun X, Li B, Häggblom MM, Han F, Xiao E, Zhang M, Wang Q, Li F. Bacterial response to antimony and arsenic contamination in rice paddies during different flooding conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 675:273-285. [PMID: 31030134 DOI: 10.1016/j.scitotenv.2019.04.146] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/31/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Rice is more vulnerable to arsenic (As) and antimony (Sb) contamination than other cereals due to the special cultivation methods, during which irrigation conditions are adjusted depending upon the growth stages. The changes in irrigation conditions may alter the oxidation states of Sb and As, which influences their mobility and bioavailability and hence uptake by rice. In this study, bacterial responses to As and Sb contamination in rice fields were investigated during two different stages of rice growth: the vegetative stage (flooded conditions), and the ripening stage (drained conditions). The substantial changes in the irrigation conditions caused a variation in geochemical parameters including the As- and Sb-extractable fractions. As and Sb were more mobile and bioaccessible during the flooded than under drained conditions. The microbial communities varied during two irrigation conditions, suggesting that the geochemical conditions may have different effects on the innate paddy microbiota. Therefore, various statistical tools including co-occurrence network and random forest (RF) were performed to reveal the environment-microbe interactions in two different irrigation conditions. One of the notable findings is that Sb- and As-related parameters exerted more influences during the flooded than under drained conditions. Furthermore, a detailed RF analysis indicated that the individual bacterial taxa may also respond differently to contaminant fractions during the two irrigation conditions. Notably, RF indicated that individual taxa such as Clostridiaceae and Geobacter may be responsible for biotransformation of As and Sb (e.g., As and Sb reduction). The results provided knowledge for As and Sb transformation during contrasting irrigation conditions and the potential mitigation strategy for contaminant removal.
Collapse
Affiliation(s)
- Weimin Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China.
| | - Xiaoxu Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Baoqin Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Feng Han
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Enzong Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Miaomiao Zhang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Qi Wang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| |
Collapse
|
19
|
Nash MV, Anesio AM, Barker G, Tranter M, Varliero G, Eloe-Fadrosh EA, Nielsen T, Turpin-Jelfs T, Benning LG, Sánchez-Baracaldo P. Metagenomic insights into diazotrophic communities across Arctic glacier forefields. FEMS Microbiol Ecol 2019; 94:5036517. [PMID: 29901729 PMCID: PMC6054269 DOI: 10.1093/femsec/fiy114] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 06/11/2018] [Indexed: 11/30/2022] Open
Abstract
Microbial nitrogen fixation is crucial for building labile nitrogen stocks and facilitating higher plant colonisation in oligotrophic glacier forefield soils. Here, the diazotrophic bacterial community structure across four Arctic glacier forefields was investigated using metagenomic analysis. In total, 70 soil metagenomes were used for taxonomic interpretation based on 185 nitrogenase (nif) sequences, extracted from assembled contigs. The low number of recovered genes highlights the need for deeper sequencing in some diverse samples, to uncover the complete microbial populations. A key group of forefield diazotrophs, found throughout the forefields, was identified using a nifH phylogeny, associated with nifH Cluster I and III. Sequences related most closely to groups including Alphaproteobacteria, Betaproteobacteria, Cyanobacteria and Firmicutes. Using multiple nif genes in a Last Common Ancestor analysis revealed a diverse range of diazotrophs across the forefields. Key organisms identified across the forefields included Nostoc, Geobacter, Polaromonas and Frankia. Nitrogen fixers that are symbiotic with plants were also identified, through the presence of root associated diazotrophs, which fix nitrogen in return for reduced carbon. Additional nitrogen fixers identified in forefield soils were metabolically diverse, including fermentative and sulphur cycling bacteria, halophiles and anaerobes.
Collapse
Affiliation(s)
- Maisie V Nash
- School of Geographical Sciences, University of Bristol, UK
| | | | - Gary Barker
- School of Life Sciences, University of Bristol, UK
| | - Martyn Tranter
- School of Geographical Sciences, University of Bristol, UK
| | | | | | - Torben Nielsen
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, US
| | | | - Liane G Benning
- GFZ German Research Centre for Geosciences, Telegrafenenberg, 14473 Potsdam, Germany.,School of Earth and Environment, University of Leeds, LS2 9JT, Leeds, UK.,Department of Earth Sciences, Free University of Berlin, Malteserstr, 74-100, Building A, 12249, Berlin, Germany
| | | |
Collapse
|
20
|
Abstract
The family Geobacteraceae, with its only valid genus Geobacter, comprises deltaproteobacteria ubiquitous in soil, sediments, and subsurface environments where metal reduction is an active process. Research for almost three decades has provided novel insights into environmental processes and biogeochemical reactions not previously known to be carried out by microorganisms. At the heart of the environmental roles played by Geobacter bacteria is their ability to integrate redox pathways and regulatory checkpoints that maximize growth efficiency with electron donors derived from the decomposition of organic matter while respiring metal oxides, particularly the often abundant oxides of ferric iron. This metabolic specialization is complemented by versatile metabolic reactions, respiratory chains, and sensory networks that allow specific members to adaptively respond to environmental cues to integrate organic and inorganic contaminants in their oxidative and reductive metabolism, respectively. Thus, Geobacteraceae are important members of the microbial communities that degrade hydrocarbon contaminants under iron-reducing conditions and that contribute, directly or indirectly, to the reduction of radionuclides, toxic metals, and oxidized species of nitrogen. Their ability to produce conductive pili as nanowires for discharging respiratory electrons to solid-phase electron acceptors and radionuclides, or for wiring cells in current-harvesting biofilms highlights the unique physiological traits that make these organisms attractive biological platforms for bioremediation, bioenergy, and bioelectronics application. Here we review some of the most notable physiological features described in Geobacter species since the first model representatives were recovered in pure culture. We provide a historical account of the environmental research that has set the foundation for numerous physiological studies and the laboratory tools that had provided novel insights into the role of Geobacter in the functioning of microbial communities from pristine and contaminated environments. We pay particular attention to latest research, both basic and applied, that has served to expand the field into new directions and to advance interdisciplinary knowledge. The electrifying physiology of Geobacter, it seems, is alive and well 30 years on.
Collapse
|
21
|
Zheng T, Deng Y, Wang Y, Jiang H, O'Loughlin EJ, Flynn TM, Gan Y, Ma T. Seasonal microbial variation accounts for arsenic dynamics in shallow alluvial aquifer systems. JOURNAL OF HAZARDOUS MATERIALS 2019; 367:109-119. [PMID: 30594709 DOI: 10.1016/j.jhazmat.2018.12.087] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/19/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Determining the temporal variation of microbial communities in groundwater systems is essential to improve our understanding of hydrochemical dynamics in aquifers, particularly as it relates to the fate of redox-sensitive contaminants like arsenic (As). Therefore, a high-resolution hydrobiogeochemical investigation was conducted in the As-affected alluvial aquifer systems of the Jianghan Plain. In two 25 m-deep monitoring wells, the seasonal variation in the composition of groundwater microbial communities was positively correlated with the change in groundwater level (R = 0.47 and 0.39 in NH03B and NH05B, respectively, P < 0.01), implying that the latter could be a primary driver of the seasonal microbial dynamics. In response to the fluctuating groundwater level, iron (Fe) reducers within the Desulfuromonadales were dominant (9.9 ± 4.7% among different sampling sites) in groundwater microbial communities during the monsoon season and associated with high concentrations of Fe(II) and As, while the predominance (16.7 ± 15.2% among different sampling sites) of iron-oxidizers the Gallionellaceae was accompanied by low Fe(II) and As in the non-monsoon season. These results suggest that microbially-mediated iron reduction/oxidation may have governed the seasonal mobilization/scavenging of As in groundwater. Our results provide new insights into mechanisms responsible for seasonal variations in groundwater As concentrations in similar aquifer systems.
Collapse
Affiliation(s)
- Tianliang Zheng
- Geological Survey, China University of Geosciences, Wuhan, 430074, PR China
| | - Yamin Deng
- Geological Survey, China University of Geosciences, Wuhan, 430074, PR China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China.
| | - Yanxin Wang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China.
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| | - Edward J O'Loughlin
- Biosciences Division, Argonne National Laboratory, Argonne, IL, 60439-4843, United States
| | - Theodore M Flynn
- Biosciences Division, Argonne National Laboratory, Argonne, IL, 60439-4843, United States
| | - Yiqun Gan
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| | - Teng Ma
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| |
Collapse
|
22
|
Sutcliffe B, Chariton AA, Harford AJ, Hose GC, Stephenson S, Greenfield P, Midgley DJ, Paulsen IT. Insights from the Genomes of Microbes Thriving in Uranium-Enriched Sediments. MICROBIAL ECOLOGY 2018; 75:970-984. [PMID: 29128951 DOI: 10.1007/s00248-017-1102-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/26/2017] [Indexed: 06/07/2023]
Abstract
Elevated uranium dose (4 g kg-1) causes a shift in billabong sediment communities that result in the enrichment of five bacterial species. These taxa include Geobacter, Geothrix and Dyella species, as well as a novel-potentially predatory-Bacteroidetes species, and a new member of class Anaerolineae (Chloroflexi). Additionally, a population of methanogenic Methanocella species was also identified. Genomic reconstruction and metabolic examination of these taxa reveal a host of divergent life strategies and putative niche partitioning. Resistance-nodulation-division heavy metal efflux (RND-HME) transporters are implicated as potential uranium tolerance strategies among the bacterial taxa. Potential interactions, uranium tolerance and ecologically relevant catabolism are presented in a conceptual model of life in this environment.
Collapse
Affiliation(s)
- Brodie Sutcliffe
- Macquarie University, Sydney, NSW, 2109, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), PO BOX 52, North Ryde, NSW, 1670, Australia
| | | | - Andrew J Harford
- Supervising Scientist Branch, Department of the Environment and Energy, Darwin, NT, Australia
| | - Grant C Hose
- Macquarie University, Sydney, NSW, 2109, Australia
| | - Sarah Stephenson
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), PO BOX 52, North Ryde, NSW, 1670, Australia
| | - Paul Greenfield
- Macquarie University, Sydney, NSW, 2109, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), PO BOX 52, North Ryde, NSW, 1670, Australia
| | - David J Midgley
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), PO BOX 52, North Ryde, NSW, 1670, Australia
| | | |
Collapse
|
23
|
Qiao JT, Li XM, Hu M, Li FB, Young LY, Sun WM, Huang W, Cui JH. Transcriptional Activity of Arsenic-Reducing Bacteria and Genes Regulated by Lactate and Biochar during Arsenic Transformation in Flooded Paddy Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:61-70. [PMID: 29188998 DOI: 10.1021/acs.est.7b03771] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Organic substrates and biochar are important in controlling arsenic release from sediments and soils; however, little is known about their impact on arsenic-reducing bacteria and genes during arsenic transformation in flooded paddy soils. In this study, microcosm experiments were established to profile transcriptional activity of As(V)-respiring gene (arrA) and arsenic resistance gene (arsC) as well as the associated bacteria regulated by lactate and/or biochar in anaerobic arsenic-contaminated paddy soils. Chemical analyses revealed that lactate as the organic substrate stimulated microbial reduction of As(V) and Fe(III), which was simultaneously promoted by lactate+biochar, due to biochar's electron shuttle function that facilitates electron transfer from bacteria to As(V)/Fe(III). Sequencing and phylogenetic analyses demonstrated that both arrA closely associated with Geobacter (>60%, number of identical sequences/number of the total sequences) and arsC related to Enterobacteriaceae (>99%) were selected by lactate and lactate+biochar. Compared with the lactate microcosms, transcriptions of the bacterial 16S rRNA gene, Geobacter spp., and Geobacter arrA and arsC genes were increased in the lactate+biochar microcosms, where transcript abundances of Geobacter and Geobacter arrA closely tracked with dissolved As(V) concentrations. Our findings indicated that lactate and biochar in flooded paddy soils can stimulate the active As(V)-respiring bacteria Geobacter species for arsenic reduction and release, which probably increases arsenic bioavailability to rice plants.
Collapse
Affiliation(s)
- Jiang-Tao Qiao
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology , Guangzhou 510650, P. R. China
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiao-Min Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology , Guangzhou 510650, P. R. China
| | - Min Hu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology , Guangzhou 510650, P. R. China
| | - Fang-Bai Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology , Guangzhou 510650, P. R. China
| | - Lily Y Young
- Department of Environmental Sciences, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Wei-Min Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology , Guangzhou 510650, P. R. China
| | - Weilin Huang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology , Guangzhou 510650, P. R. China
- Department of Environmental Sciences, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Jiang-Hu Cui
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology , Guangzhou 510650, P. R. China
| |
Collapse
|
24
|
Pous N, Balaguer MD, Colprim J, Puig S. Opportunities for groundwater microbial electro-remediation. Microb Biotechnol 2017; 11:119-135. [PMID: 28984425 PMCID: PMC5743827 DOI: 10.1111/1751-7915.12866] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 12/01/2022] Open
Abstract
Groundwater pollution is a serious worldwide concern. Aromatic compounds, chlorinated hydrocarbons, metals and nutrients among others can be widely found in different aquifers all over the world. However, there is a lack of sustainable technologies able to treat these kinds of compounds. Microbial electro‐remediation, by the means of microbial electrochemical technologies (MET), can become a promising alternative in the near future. MET can be applied for groundwater treatment in situ or ex situ, as well as for monitoring the chemical state or the microbiological activity. This document reviews the current knowledge achieved on microbial electro‐remediation of groundwater and its applications.
Collapse
Affiliation(s)
- Narcís Pous
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Campus Montilivi, Carrer Maria Aurèlia Capmany, 69, E-17003, Girona, Spain
| | - Maria Dolors Balaguer
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Campus Montilivi, Carrer Maria Aurèlia Capmany, 69, E-17003, Girona, Spain
| | - Jesús Colprim
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Campus Montilivi, Carrer Maria Aurèlia Capmany, 69, E-17003, Girona, Spain
| | - Sebastià Puig
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Campus Montilivi, Carrer Maria Aurèlia Capmany, 69, E-17003, Girona, Spain
| |
Collapse
|
25
|
Shu C, Xiao K, Cao C, Ding D, Sun X. Predicting and Interpreting the Structure of Type IV Pilus of Electricigens by Molecular Dynamics Simulations. Molecules 2017; 22:E1342. [PMID: 28805699 PMCID: PMC6152092 DOI: 10.3390/molecules22081342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/07/2017] [Accepted: 08/10/2017] [Indexed: 11/17/2022] Open
Abstract
Nanowires that transfer electrons to extracellular acceptors are important in organic matter degradation and nutrient cycling in the environment. Geobacter pili of the group of Type IV pilus are regarded as nanowire-like biological structures. However, determination of the structure of pili remains challenging due to the insolubility of monomers, presence of surface appendages, heterogeneity of the assembly, and low-resolution of electron microscopy techniques. Our previous study provided a method to predict structures for Type IV pili. In this work, we improved on our previous method using molecular dynamics simulations to optimize structures of Neisseria gonorrhoeae (GC), Neisseria meningitidis and Geobacter uraniireducens pilus. Comparison between the predicted structures for GC and Neisseria meningitidis pilus and their native structures revealed that proposed method could predict Type IV pilus successfully. According to the predicted structures, the structural basis for conductivity in G.uraniireducens pili was attributed to the three N-terminal aromatic amino acids. The aromatics were interspersed within the regions of charged amino acids, which may influence the configuration of the aromatic contacts and the rate of electron transfer. These results will supplement experimental research into the mechanism of long-rang electron transport along pili of electricigens.
Collapse
Affiliation(s)
- Chuanjun Shu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, SoutheastUniversity, Nanjing 210096, China.
| | - Ke Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, SoutheastUniversity, Nanjing 210096, China.
| | - Changchang Cao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, SoutheastUniversity, Nanjing 210096, China.
| | - Dewu Ding
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, SoutheastUniversity, Nanjing 210096, China.
| | - Xiao Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, SoutheastUniversity, Nanjing 210096, China.
| |
Collapse
|
26
|
Harding T, Roger AJ, Simpson AGB. Adaptations to High Salt in a Halophilic Protist: Differential Expression and Gene Acquisitions through Duplications and Gene Transfers. Front Microbiol 2017; 8:944. [PMID: 28611746 PMCID: PMC5447177 DOI: 10.3389/fmicb.2017.00944] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/11/2017] [Indexed: 11/13/2022] Open
Abstract
The capacity of halophiles to thrive in extreme hypersaline habitats derives partly from the tight regulation of ion homeostasis, the salt-dependent adjustment of plasma membrane fluidity, and the increased capability to manage oxidative stress. Halophilic bacteria, and archaea have been intensively studied, and substantial research has been conducted on halophilic fungi, and the green alga Dunaliella. By contrast, there have been very few investigations of halophiles that are phagotrophic protists, i.e., protozoa. To gather fundamental knowledge about salt adaptation in these organisms, we studied the transcriptome-level response of Halocafeteria seosinensis (Stramenopiles) grown under contrasting salinities. We provided further evolutionary context to our analysis by identifying genes that underwent recent duplications. Genes that were highly responsive to salinity variations were involved in stress response (e.g., chaperones), ion homeostasis (e.g., Na+/H+ transporter), metabolism and transport of lipids (e.g., sterol biosynthetic genes), carbohydrate metabolism (e.g., glycosidases), and signal transduction pathways (e.g., transcription factors). A significantly high proportion (43%) of duplicated genes were also differentially expressed, accentuating the importance of gene expansion in adaptation by H. seosinensis to high salt environments. Furthermore, we found two genes that were lateral acquisitions from bacteria, and were also highly up-regulated and highly expressed at high salt, suggesting that this evolutionary mechanism could also have facilitated adaptation to high salt. We propose that a transition toward high-salt adaptation in the ancestors of H. seosinensis required the acquisition of new genes via duplication, and some lateral gene transfers (LGTs), as well as the alteration of transcriptional programs, leading to increased stress resistance, proper establishment of ion gradients, and modification of cell structure properties like membrane fluidity.
Collapse
Affiliation(s)
- Tommy Harding
- Department of Biochemistry and Molecular Biology, Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie UniversityHalifax, NS, Canada
| | - Andrew J. Roger
- Department of Biochemistry and Molecular Biology, Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie UniversityHalifax, NS, Canada
| | - Alastair G. B. Simpson
- Department of Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie UniversityHalifax, NS, Canada
| |
Collapse
|
27
|
Wufuer R, Wei Y, Lin Q, Wang H, Song W, Liu W, Zhang D, Pan X, Gadd GM. Uranium Bioreduction and Biomineralization. ADVANCES IN APPLIED MICROBIOLOGY 2017; 101:137-168. [PMID: 29050665 DOI: 10.1016/bs.aambs.2017.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Following the development of nuclear science and technology, uranium contamination has been an ever increasing concern worldwide because of its potential for migration from the waste repositories and long-term contaminated environments. Physical and chemical techniques for uranium pollution are expensive and challenging. An alternative to these technologies is microbially mediated uranium bioremediation in contaminated water and soil environments due to its reduced cost and environmental friendliness. To date, four basic mechanisms of uranium bioremediation-uranium bioreduction, biosorption, biomineralization, and bioaccumulation-have been established, of which uranium bioreduction and biomineralization have been studied extensively. The objective of this review is to provide an understanding of recent developments in these two fields in relation to relevant microorganisms, mechanisms, influential factors, and obstacles.
Collapse
|
28
|
Enrichment of dissimilatory Fe(III)-reducing bacteria from groundwater of the Siklós BTEX-contaminated site (Hungary). Folia Microbiol (Praha) 2016; 62:63-71. [PMID: 27680983 DOI: 10.1007/s12223-016-0473-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/15/2016] [Indexed: 10/20/2022]
Abstract
Dissimilatory iron-reducing bacteria are commonly found in microbial communities of aromatic hydrocarbon-contaminated subsurface environments where they often play key role in the degradation of the contaminants. The Siklós benzene, toluene, ethylbenzene, and xylene (BTEX)-contaminated area is one of the best characterized petroleum hydrocarbon-contaminated sites of Hungary. Continuous monitoring of the microbial community in the center of the contaminant plume indicated the presence of an emerging Geobacter population and a Rhodoferax phylotype highly associated with aromatic hydrocarbon-contaminated subsurface environments. The aim of the present study was to make an initial effort to enrich Rhodoferax-related and other dissimilatory iron-reducing bacteria from this environment. Accordingly, four slightly different freshwater media were used to enrich Fe(III) reducers, differing only in the form of nitrogen source (organic, inorganic nitrogen or gaseous headspace nitrogen). Although enrichment of the desired Rhodoferax phylotype was not succeeded, Geobacter-related bacteria were readily enriched. Moreover, the different nitrogen sources caused the enrichment of different Geobacter species. Investigation of the diversity of benzylsuccinate synthase gene both in the enrichments and in the initial groundwater sample indicated that the Geobacter population in the center of the contaminant plume may not play a significant role in the anaerobic degradation of toluene.
Collapse
|
29
|
Şengör SS, Singh G, Dohnalkova A, Spycher N, Ginn TR, Peyton BM, Sani RK. Impact of different environmental conditions on the aggregation of biogenic U(IV) nanoparticles synthesized by Desulfovibrio alaskensis G20. Biometals 2016; 29:965-980. [PMID: 27623995 DOI: 10.1007/s10534-016-9969-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/31/2016] [Indexed: 11/25/2022]
Abstract
This study investigates the impact of specific environmental conditions on the formation of colloidal U(IV) nanoparticles by the sulfate reducing bacteria (SRB, Desulfovibrio alaskensis G20). The reduction of soluble U(VI) to less soluble U(IV) was quantitatively investigated under growth and non-growth conditions in bicarbonate or 1,4-piperazinediethanesulfonic acid (PIPES) buffered environments. The results showed that under non-growth conditions, the majority of the reduced U nanoparticles aggregated and precipitated out of solution. High resolution transmission electron microscopy revealed that only a very small fraction of cells had reduced U precipitates in the periplasmic spaces in the presence of PIPES buffer, whereas in the presence of bicarbonate buffer, reduced U was also observed in the cytoplasm with greater aggregation of biogenic U(IV) particles at higher initial U(VI) concentrations. The same experiments were repeated under growth conditions using two different electron donors (lactate and pyruvate) and three electron acceptors (sulfate, fumarate, and thiosulfate). In contrast to the results of the non-growth experiments, even after 0.2 μm filtration, the majority of biogenic U(IV) remained in the aqueous phase resulting in potentially mobile biogenic U(IV) nanoparticles. Size fractionation results showed that U(IV) aggregates were between 18 and 200 nm in diameter, and thus could be very mobile. The findings of this study are helpful to assess the size and potential mobility of reduced U nanoparticles under different environmental conditions, and would provide insights on their potential impact affecting U(VI) bioremediation efforts at subsurface contaminated sites.
Collapse
Affiliation(s)
- S Sevinç Şengör
- Department of Civil and Environmental Engineering, Southern Methodist University, Dallas, TX, 75275-0339, USA
| | - Gursharan Singh
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, 501 East St. Joseph Street, Rapid City, SD, 57701-3995, USA
| | - Alice Dohnalkova
- WR Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Nicolas Spycher
- Lawrence Berkeley National Laboratory, Earth Sciences Division, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Timothy R Ginn
- Department of Civil and Environmental Engineering, Washington State University, 405 Spokane Street, Pullman, WA, 99164, USA
| | - Brent M Peyton
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59715, USA
| | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, 501 East St. Joseph Street, Rapid City, SD, 57701-3995, USA.
| |
Collapse
|
30
|
Sancho Navarro S, Cimpoia R, Bruant G, Guiot SR. Biomethanation of Syngas Using Anaerobic Sludge: Shift in the Catabolic Routes with the CO Partial Pressure Increase. Front Microbiol 2016; 7:1188. [PMID: 27536280 PMCID: PMC4971024 DOI: 10.3389/fmicb.2016.01188] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/18/2016] [Indexed: 01/17/2023] Open
Abstract
Syngas generated by thermal gasification of biomass or coal can be steam reformed and purified into methane, which could be used locally for energy needs, or re-injected in the natural gas grid. As an alternative to chemical catalysis, the main components of the syngas (CO, CO2, and H2) can be used as substrates by a wide range of microorganisms, to be converted into gas biofuels, including methane. This study evaluates the carboxydotrophic (CO-consuming) methanogenic potential present in an anaerobic sludge from an upflow anaerobic sludge bed (UASB) reactor treating waste water, and elucidates the CO conversion routes to methane at 35 ± 3°C. Kinetic activity tests under CO at partial pressures (pCO) varying from 0.1 to 1.5 atm (0.09-1.31 mmol/L in the liquid phase) showed a significant carboxydotrophic activity potential for growing conditions on CO alone. A maximum methanogenic activity of 1 mmol CH4 per g of volatile suspended solid and per day was achieved at 0.2 atm of CO (0.17 mmol/L), and then the rate decreased with the amount of CO supplied. The intermediary metabolites such as acetate, H2, and propionate started to accumulate at higher CO concentrations. Inhibition experiments with 2-bromoethanesulfonic acid (BES), fluoroacetate, and vancomycin showed that in a mixed culture CO was converted mainly to acetate by acetogenic bacteria, which was further transformed to methane by acetoclastic methanogens, while direct methanogenic CO conversion was negligible. Methanogenesis was totally blocked at high pCO in the bottles (≥1 atm). However it was possible to achieve higher methanogenic potential under a 100% CO atmosphere after acclimation of the sludge to CO. This adaptation to high CO concentrations led to a shift in the archaeal population, then dominated by hydrogen-utilizing methanogens, which were able to take over acetoclastic methanogens, while syntrophic acetate oxidizing (SAO) bacteria oxidized acetate into CO2 and H2. The disaggregation of the granular sludge showed a negative impact on their methanogenic activity, confirming that the acetoclastic methanogens were the most sensitive to CO, and a contrario, the advantage of using granular sludge for further development toward large-scale methane production from CO-rich syngas.
Collapse
Affiliation(s)
- Silvia Sancho Navarro
- Bioengineering Group, Energy, Mining and Environment, National Research Council CanadaMontreal, QC, Canada; Department of Microbiology, Infectiology and Immunology, Université de MontréalMontreal, QC, Canada
| | - Ruxandra Cimpoia
- Bioengineering Group, Energy, Mining and Environment, National Research Council Canada Montreal, QC, Canada
| | - Guillaume Bruant
- Bioengineering Group, Energy, Mining and Environment, National Research Council Canada Montreal, QC, Canada
| | - Serge R Guiot
- Bioengineering Group, Energy, Mining and Environment, National Research Council CanadaMontreal, QC, Canada; Department of Microbiology, Infectiology and Immunology, Université de MontréalMontreal, QC, Canada
| |
Collapse
|
31
|
|
32
|
Tan Y, Adhikari RY, Malvankar NS, Ward JE, Nevin KP, Woodard TL, Smith JA, Snoeyenbos-West OL, Franks AE, Tuominen MT, Lovley DR. The Low Conductivity of Geobacter uraniireducens Pili Suggests a Diversity of Extracellular Electron Transfer Mechanisms in the Genus Geobacter. Front Microbiol 2016; 7:980. [PMID: 27446021 PMCID: PMC4923279 DOI: 10.3389/fmicb.2016.00980] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/07/2016] [Indexed: 11/30/2022] Open
Abstract
Studies on the mechanisms for extracellular electron transfer in Geobacter species have primarily focused on Geobacter sulfurreducens, but the poor conservation of genes for some electron transfer components within the Geobacter genus suggests that there may be a diversity of extracellular electron transport strategies among Geobacter species. Examination of the gene sequences for PilA, the type IV pilus monomer, in Geobacter species revealed that the PilA sequence of Geobacter uraniireducens was much longer than that of G. sulfurreducens. This is of interest because it has been proposed that the relatively short PilA sequence of G. sulfurreducens is an important feature conferring conductivity to G. sulfurreducens pili. In order to investigate the properties of the G. uraniireducens pili in more detail, a strain of G. sulfurreducens that expressed pili comprised the PilA of G. uraniireducens was constructed. This strain, designated strain GUP, produced abundant pili, but generated low current densities and reduced Fe(III) very poorly. At pH 7, the conductivity of the G. uraniireducens pili was 3 × 10-4 S/cm, much lower than the previously reported 5 × 10-2 S/cm conductivity of G. sulfurreducens pili at the same pH. Consideration of the likely voltage difference across pili during Fe(III) oxide reduction suggested that G. sulfurreducens pili can readily accommodate maximum reported rates of respiration, but that G. uraniireducens pili are not sufficiently conductive to be an effective mediator of long-range electron transfer. In contrast to G. sulfurreducens and G. metallireducens, which require direct contact with Fe(III) oxides in order to reduce them, G. uraniireducens reduced Fe(III) oxides occluded within microporous beads, demonstrating that G. uraniireducens produces a soluble electron shuttle to facilitate Fe(III) oxide reduction. The results demonstrate that Geobacter species may differ substantially in their mechanisms for long-range electron transport and that it is important to have information beyond a phylogenetic affiliation in order to make conclusions about the mechanisms by which Geobacter species are transferring electrons to extracellular electron acceptors.
Collapse
Affiliation(s)
- Yang Tan
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Ramesh Y Adhikari
- Department of Physics, University of Massachusetts Amherst Amherst, MA, USA
| | - Nikhil S Malvankar
- Department of Microbiology, University of Massachusetts Amherst,Amherst, MA, USA; Department of Physics, University of Massachusetts AmherstAmherst, MA, USA; Department of Molecular Biophysics and Biochemistry, Microbial Sciences Institute, Yale UniversityNew Haven, CT, USA
| | - Joy E Ward
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Kelly P Nevin
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Trevor L Woodard
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Jessica A Smith
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, USA
| | | | - Ashley E Franks
- Department of Microbiology, University of Massachusetts Amherst,Amherst, MA, USA; Department of Physiology, Anatomy and Microbiology, La Trobe UniversityMelbourne, VIC, Australia
| | - Mark T Tuominen
- Department of Physics, University of Massachusetts Amherst Amherst, MA, USA
| | - Derek R Lovley
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
33
|
McGuinness LR, Wilkins MJ, Williams KH, Long PE, Kerkhof LJ. Identification of Bacteria Synthesizing Ribosomal RNA in Response to Uranium Addition During Biostimulation at the Rifle, CO Integrated Field Research Site. PLoS One 2015; 10:e0137270. [PMID: 26382047 PMCID: PMC4575074 DOI: 10.1371/journal.pone.0137270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 08/15/2015] [Indexed: 11/18/2022] Open
Abstract
Understanding which organisms are capable of reducing uranium at historically contaminated sites provides crucial information needed to evaluate treatment options and outcomes. One approach is determination of the bacteria which directly respond to uranium addition. In this study, uranium amendments were made to groundwater samples from a site of ongoing biostimulation with acetate. The active microbes in the planktonic phase were deduced by monitoring ribosomes production via RT-PCR. The results indicated several microorganisms were synthesizing ribosomes in proportion with uranium amendment up to 2 μM. Concentrations of U (VI) >2 μM were generally found to inhibit ribosome synthesis. Two active bacteria responding to uranium addition in the field were close relatives of Desulfobacter postgateii and Geobacter bemidjiensis. Since RNA content often increases with growth rate, our findings suggest it is possible to rapidly elucidate active bacteria responding to the addition of uranium in field samples and provides a more targeted approach to stimulate specific populations to enhance radionuclide reduction in contaminated sites.
Collapse
Affiliation(s)
- Lora R. McGuinness
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, United States of America
| | - Michael J. Wilkins
- School of Earth Sciences, Ohio State University, Columbus, OH, United States of America
| | - Kenneth H. Williams
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Philip E. Long
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Lee J. Kerkhof
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, United States of America
- * E-mail:
| |
Collapse
|
34
|
Rotaru AE, Woodard TL, Nevin KP, Lovley DR. Link between capacity for current production and syntrophic growth in Geobacter species. Front Microbiol 2015; 6:744. [PMID: 26284037 PMCID: PMC4523033 DOI: 10.3389/fmicb.2015.00744] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 07/06/2015] [Indexed: 11/13/2022] Open
Abstract
Electrodes are unnatural electron acceptors, and it is yet unknown how some Geobacter species evolved to use electrodes as terminal electron acceptors. Analysis of different Geobacter species revealed that they varied in their capacity for current production. Geobacter metallireducens and G. hydrogenophilus generated high current densities (ca. 0.2 mA/cm(2)), comparable to G. sulfurreducens. G. bremensis, G. chapellei, G. humireducens, and G. uraniireducens, produced much lower currents (ca. 0.05 mA/cm(2)) and G. bemidjiensis was previously found to not produce current. There was no correspondence between the effectiveness of current generation and Fe(III) oxide reduction rates. Some high-current-density strains (G. metallireducens and G. hydrogenophilus) reduced Fe(III)-oxides as fast as some low-current-density strains (G. bremensis, G. humireducens, and G. uraniireducens) whereas other low-current-density strains (G. bemidjiensis and G. chapellei) reduced Fe(III) oxide as slowly as G. sulfurreducens, a high-current-density strain. However, there was a correspondence between the ability to produce higher currents and the ability to grow syntrophically. G. hydrogenophilus was found to grow in co-culture with Methanosarcina barkeri, which is capable of direct interspecies electron transfer (DIET), but not with Methanospirillum hungatei capable only of H2 or formate transfer. Conductive granular activated carbon (GAC) stimulated metabolism of the G. hydrogenophilus - M. barkeri co-culture, consistent with electron exchange via DIET. These findings, coupled with the previous finding that G. metallireducens and G. sulfurreducens are also capable of DIET, suggest that evolution to optimize DIET has fortuitously conferred the capability for high-density current production to some Geobacter species.
Collapse
Affiliation(s)
- Amelia-Elena Rotaru
- Department of Microbiology, University of Massachusetts Amherst, MA, USA ; Nordic Center for Earth Evolution, Department of Biology, University of Southern Denmark Odense, Denmark
| | - Trevor L Woodard
- Department of Microbiology, University of Massachusetts Amherst, MA, USA
| | - Kelly P Nevin
- Department of Microbiology, University of Massachusetts Amherst, MA, USA
| | - Derek R Lovley
- Department of Microbiology, University of Massachusetts Amherst, MA, USA
| |
Collapse
|
35
|
Phylogenomic analysis and predicted physiological role of the proton-translocating NADH:quinone oxidoreductase (complex I) across bacteria. mBio 2015; 6:mBio.00389-15. [PMID: 25873378 PMCID: PMC4453560 DOI: 10.1128/mbio.00389-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The proton-translocating NADH:quinone oxidoreductase (complex I) is a multisubunit integral membrane enzyme found in the respiratory chains of both bacteria and eukaryotic organelles. Although much research has focused on the enzyme's central role in the mitochondrial respiratory chain, comparatively little is known about its role in the diverse energetic lifestyles of different bacteria. Here, we used a phylogenomic approach to better understand the distribution of complex I across bacteria, the evolution of this enzyme, and its potential roles in shaping the physiology of different bacterial groups. By surveying 970 representative bacterial genomes, we predict complex I to be present in ~50% of bacteria. While this includes bacteria with a wide range of energetic schemes, the presence of complex I is associated with specific lifestyles, including aerobic respiration and specific types of phototrophy (bacteria with only a type II reaction center). A phylogeny of bacterial complex I revealed five main clades of enzymes whose evolution is largely congruent with the evolution of the bacterial groups that encode complex I. A notable exception includes the gammaproteobacteria, whose members encode one of two distantly related complex I enzymes predicted to participate in different types of respiratory chains (aerobic versus anaerobic). Comparative genomic analyses suggest a broad role for complex I in reoxidizing NADH produced from various catabolic reactions, including the tricarboxylic acid (TCA) cycle and fatty acid beta-oxidation. Together, these findings suggest diverse roles for complex I across bacteria and highlight the importance of this enzyme in shaping diverse physiologies across the bacterial domain. IMPORTANCE Living systems use conserved energy currencies, including a proton motive force (PMF), NADH, and ATP. The respiratory chain enzyme, complex I, connects these energy currencies by using NADH produced during nutrient breakdown to generate a PMF, which is subsequently used for ATP synthesis. Our goal is to better understand the role of complex I in bacteria, whose energetic diversity allows us to view its function in a range of biological contexts. We analyzed sequenced bacterial genomes to predict the presence, evolution, and function of complex I in bacteria. We identified five main classes of bacterial complex I and predict that different classes participate in different types of respiratory chains (aerobic and anaerobic). We also predict that complex I helps maintain a cellular redox state by reoxidizing NADH produced from central metabolism. Our findings suggest diverse roles for complex I in bacterial physiology, highlighting the need for future laboratory-based studies.
Collapse
|
36
|
Koribanics NM, Tuorto SJ, Lopez-Chiaffarelli N, McGuinness LR, Häggblom MM, Williams KH, Long PE, Kerkhof LJ. Spatial distribution of an uranium-respiring betaproteobacterium at the Rifle, CO field research site. PLoS One 2015; 10:e0123378. [PMID: 25874721 PMCID: PMC4395306 DOI: 10.1371/journal.pone.0123378] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/13/2015] [Indexed: 11/21/2022] Open
Abstract
The Department of Energy’s Integrated Field-Scale Subsurface Research Challenge Site (IFRC) at Rifle, Colorado was created to address the gaps in knowledge on the mechanisms and rates of U(VI) bioreduction in alluvial sediments. Previous studies at the Rifle IFRC have linked microbial processes to uranium immobilization during acetate amendment. Several key bacteria believed to be involved in radionuclide containment have been described; however, most of the evidence implicating uranium reduction with specific microbiota has been indirect. Here, we report on the cultivation of a microorganism from the Rifle IFRC that reduces uranium and appears to utilize it as a terminal electron acceptor for respiration with acetate as electron donor. Furthermore, this bacterium constitutes a significant proportion of the subsurface sediment community prior to biostimulation based on TRFLP profiling of 16S rRNA genes. 16S rRNA gene sequence analysis indicates that the microorganism is a betaproteobacterium with a high similarity to Burkholderia fungorum. This is, to our knowledge, the first report of a betaproteobacterium capable of uranium respiration. Our results indicate that this microorganism occurs commonly in alluvial sediments located between 3-6 m below ground surface at Rifle and may play a role in the initial reduction of uranium at the site.
Collapse
Affiliation(s)
- Nicole M. Koribanics
- Inst. of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Steven J. Tuorto
- Inst. of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Nora Lopez-Chiaffarelli
- Inst. of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, United States of America
- Dept. of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Lora R. McGuinness
- Inst. of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Max M. Häggblom
- Dept. of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Kenneth H. Williams
- Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Philip E. Long
- Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Lee J. Kerkhof
- Inst. of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
37
|
Wang ZJ, Liu QQ, Zhao LH, Du ZJ, Chen GJ. Bradymonas sediminis gen. nov., sp. nov., isolated from coastal sediment, and description of Bradymonadaceae fam. nov. and Bradymonadales ord. nov. Int J Syst Evol Microbiol 2015; 65:1542-1549. [PMID: 25713043 DOI: 10.1099/ijs.0.000135] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A novel Gram-stain-negative, rod-shaped, gliding, facultatively anaerobic, oxidase-negative and catalase-positive bacterium, designated FA350(T), was isolated from coastal sediment from Xiaoshi Island, Weihai, China. Strain FA350(T) showed growth on modified nutrient agar supplemented with 0.1% d-(+)-trehalose and with distilled water replaced by seawater. Optimal growth occurred at 33 °C and pH 8.5 with 4% NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain FA350(T) belongs to a novel bacterial order in the class Deltaproteobacteria , and the most closely related type strains belong to the order Desulfuromonadales , with 85.1-85.6% 16S rRNA gene sequence similarity. The polar lipid profile of the novel strain consisted of phosphatidylethanolamine, phosphatidylglycerol and two unknown phospholipids. Major cellular fatty acids were iso-C15 : 0, iso-C17 : 0 and iso-C17 : 1ω10c and menaquinone MK-7 was the sole respiratory quinone. The DNA G+C content of strain FA350(T) was 60.3 mol%. The isolate and closely related environmental clones formed a novel order-level clade in the class Deltaproteobacteria . Comparative analysis of 16S rRNA gene sequences and characterization indicated that strain FA350(T) may represent a novel order of the Deltaproteobacteria . Here, we propose the name Bradymonas sediminis gen. nov., sp. nov. to accommodate strain FA350(T). The type strain of Bradymonas sediminis is FA350(T) ( =DSM 28820(T) =CICC 10904(T)); Bradymonadales ord. nov. and Bradymonadaceae fam. nov. are also proposed to accommodate the novel taxon.
Collapse
Affiliation(s)
- Zong-Jie Wang
- College of Marine Science, Shandong University at Weihai, Weihai 264209, PR China
| | - Qian-Qian Liu
- College of Marine Science, Shandong University at Weihai, Weihai 264209, PR China
| | - Li-Hua Zhao
- College of Marine Science, Shandong University at Weihai, Weihai 264209, PR China
| | - Zong-Jun Du
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China.,College of Marine Science, Shandong University at Weihai, Weihai 264209, PR China
| | - Guan-Jun Chen
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China.,College of Marine Science, Shandong University at Weihai, Weihai 264209, PR China
| |
Collapse
|
38
|
Holmes DE, Giloteaux L, Chaurasia AK, Williams KH, Luef B, Wilkins MJ, Wrighton KC, Thompson CA, Comolli LR, Lovley DR. Evidence of Geobacter-associated phage in a uranium-contaminated aquifer. THE ISME JOURNAL 2015; 9:333-46. [PMID: 25083935 PMCID: PMC4303627 DOI: 10.1038/ismej.2014.128] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 05/27/2014] [Accepted: 06/14/2014] [Indexed: 11/08/2022]
Abstract
Geobacter species may be important agents in the bioremediation of organic and metal contaminants in the subsurface, but as yet unknown factors limit the in situ growth of subsurface Geobacter well below rates predicted by analysis of gene expression or in silico metabolic modeling. Analysis of the genomes of five different Geobacter species recovered from contaminated subsurface sites indicated that each of the isolates had been infected with phage. Geobacter-associated phage sequences were also detected by metagenomic and proteomic analysis of samples from a uranium-contaminated aquifer undergoing in situ bioremediation, and phage particles were detected by microscopic analysis in groundwater collected from sediment enrichment cultures. Transcript abundance for genes from the Geobacter-associated phage structural proteins, tail tube Gp19 and baseplate J, increased in the groundwater in response to the growth of Geobacter species when acetate was added, and then declined as the number of Geobacter decreased. Western blot analysis of a Geobacter-associated tail tube protein Gp19 in the groundwater demonstrated that its abundance tracked with the abundance of Geobacter species. These results suggest that the enhanced growth of Geobacter species in the subsurface associated with in situ uranium bioremediation increased the abundance and activity of Geobacter-associated phage and show that future studies should focus on how these phages might be influencing the ecology of this site.
Collapse
Affiliation(s)
- Dawn E Holmes
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, USA
- Western New England University, Springfield, MA, USA
| | - Ludovic Giloteaux
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Akhilesh K Chaurasia
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, USA
| | | | - Birgit Luef
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA, USA
| | | | - Kelly C Wrighton
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Courtney A Thompson
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Luis R Comolli
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Derek R Lovley
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
39
|
Orellana R, Hixson KK, Murphy S, Mester T, Sharma ML, Lipton MS, Lovley DR. Proteome of Geobacter sulfurreducens in the presence of U(VI). Microbiology (Reading) 2014; 160:2607-2617. [DOI: 10.1099/mic.0.081398-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Geobacter species often play an important role in the in situ bioremediation of uranium-contaminated groundwater, but little is known about how these microbes avoid uranium toxicity. To evaluate this further, the proteome of Geobacter sulfurreducens exposed to 100 µM U(VI) acetate was compared to control cells not exposed to U(VI). Of the 1363 proteins detected from these cultures, 203 proteins had higher abundance during exposure to U(VI) compared with the control cells and 148 proteins had lower abundance. U(VI)-exposed cultures expressed lower levels of proteins involved in growth, protein and amino acid biosynthesis, as well as key central metabolism enzymes as a result of the deleterious effect of U(VI) on the growth of G. sulfurreducens. In contrast, proteins involved in detoxification, such as several efflux pumps belonging to the RND (resistance–nodulation–cell division) family, and membrane protection, and other proteins, such as chaperones and proteins involved in secretion systems, were found in higher abundance in cells exposed to U(VI). Exposing G. sulfurreducens to U(VI) resulted in a higher abundance of many proteins associated with the oxidative stress response, such as superoxide dismutase and superoxide reductase. A strain in which the gene for superoxide dismutase was deleted grew more slowly than the WT strain in the presence of U(VI), but not in its absence. The results suggested that there is no specific mechanism for uranium detoxification. Rather, multiple general stress responses are induced, which presumably enable Geobacter species to tolerate high uranium concentrations.
Collapse
Affiliation(s)
- Roberto Orellana
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Kim K. Hixson
- Environmental Molecular Sciences Laboratory and Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Sean Murphy
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Tünde Mester
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Kellogg Eye Center, Ann Arbor, MI 48105, USA
| | - Manju L. Sharma
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Mary S. Lipton
- Environmental Molecular Sciences Laboratory and Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Derek R. Lovley
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
40
|
|
41
|
Ding D, Xu F, Hu N, Li S, Tan X, Li G. Uranium speciation in sediments in microcosms before and after incubation under anoxic conditions. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3516-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Zhou S, Yang G, Lu Q, Wu M. Geobacter soli sp. nov., a dissimilatory Fe(III)-reducing bacterium isolated from forest soil. Int J Syst Evol Microbiol 2014; 64:3786-3791. [PMID: 25139417 DOI: 10.1099/ijs.0.066662-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Fe(III)-reducing bacterium, designated GSS01(T), was isolated from a forest soil sample using a liquid medium containing acetate and ferrihydrite as electron donor and electron acceptor, respectively. Cells of strain GSS01(T) were strictly anaerobic, Gram-stain-negative, motile, non-spore-forming and slightly curved rod-shaped. Growth occurred at 16-40 °C and optimally at 30 °C. The DNA G+C content was 60.9 mol%. The major respiratory quinone was MK-8. The major fatty acids were C(16:0), C(18:0) and C(16:1)ω7c/C(16:1)ω6c. Strain GSS01(T) was able to grow with ferrihydrite, Fe(III) citrate, Mn(IV), sulfur, nitrate or anthraquinone-2,6-disulfonate, but not with fumarate, as sole electron acceptor when acetate was the sole electron donor. The isolate was able to utilize acetate, ethanol, glucose, lactate, butyrate, pyruvate, benzoate, benzaldehyde, m-cresol and phenol but not toluene, p-cresol, propionate, malate or succinate as sole electron donor when ferrihydrite was the sole electron acceptor. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain GSS01(T) was most closely related to Geobacter sulfurreducens PCA(T) (98.3% sequence similarity) and exhibited low similarities (94.9-91.8%) to the type strains of other species of the genus Geobacter. The DNA-DNA relatedness between strain GSS01(T) and G. sulfurreducens PCA(T) was 41.4 ± 1.1%. On the basis of phylogenetic analysis, phenotypic characterization and physiological tests, strain GSS01(T) is believed to represent a novel species of the genus Geobacter, and the name Geobacter soli sp. nov. is proposed. The type strain is GSS01(T) ( =KCTC 4545(T) =MCCC 1K00269(T)).
Collapse
Affiliation(s)
- Shungui Zhou
- Guangdong Institute of Eco-environmental and Soil Sciences, Guangzhou 510650, PR China
| | - Guiqin Yang
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
- Guangdong Institute of Eco-environmental and Soil Sciences, Guangzhou 510650, PR China
| | - Qin Lu
- Guangdong Institute of Eco-environmental and Soil Sciences, Guangzhou 510650, PR China
| | - Min Wu
- Guangdong Institute of Eco-environmental and Soil Sciences, Guangzhou 510650, PR China
| |
Collapse
|
43
|
Zhang T, Tremblay PL, Chaurasia AK, Smith JA, Bain TS, Lovley DR. Identification of genes specifically required for the anaerobic metabolism of benzene in Geobacter metallireducens. Front Microbiol 2014; 5:245. [PMID: 24904558 PMCID: PMC4033198 DOI: 10.3389/fmicb.2014.00245] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/05/2014] [Indexed: 11/13/2022] Open
Abstract
Although the biochemical pathways for the anaerobic degradation of many of the hydrocarbon constituents in petroleum reservoirs have been elucidated, the mechanisms for anaerobic activation of benzene, a very stable molecule, are not known. Previous studies have demonstrated that Geobacter metallireducens can anaerobically oxidize benzene to carbon dioxide with Fe(III) as the sole electron acceptor and that phenol is an intermediate in benzene oxidation. In an attempt to identify enzymes that might be involved in the conversion of benzene to phenol, whole-genome gene transcript abundance was compared in cells metabolizing benzene and cells metabolizing phenol. Eleven genes had significantly higher transcript abundance in benzene-metabolizing cells. Five of these genes had annotations suggesting that they did not encode proteins that could be involved in benzene metabolism and were not further studied. Strains were constructed in which one of the remaining six genes was deleted. The strain in which the monocistronic gene Gmet 0232 was deleted metabolized phenol, but not benzene. Transcript abundance of the adjacent monocistronic gene, Gmet 0231, predicted to encode a zinc-containing oxidoreductase, was elevated in cells metabolizing benzene, although not at a statistically significant level. However, deleting Gmet 0231 also yielded a strain that could metabolize phenol, but not benzene. Although homologs of Gmet 0231 and Gmet 0232 are found in microorganisms not known to anaerobically metabolize benzene, the adjacent localization of these genes is unique to G. metallireducens. The discovery of genes that are specifically required for the metabolism of benzene, but not phenol in G. metallireducens is an important step in potentially identifying the mechanisms for anaerobic benzene activation.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Microbiology, University of Massachusetts Amherst, MA, USA ; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark Hørsholm, Denmark
| | - Pier-Luc Tremblay
- Department of Microbiology, University of Massachusetts Amherst, MA, USA ; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark Hørsholm, Denmark
| | | | - Jessica A Smith
- Department of Microbiology, University of Massachusetts Amherst, MA, USA
| | - Timothy S Bain
- Department of Microbiology, University of Massachusetts Amherst, MA, USA
| | - Derek R Lovley
- Department of Microbiology, University of Massachusetts Amherst, MA, USA
| |
Collapse
|
44
|
Abstract
Butyrate-producing bacteria have recently gained attention, since they are important for a healthy colon and when altered contribute to emerging diseases, such as ulcerative colitis and type II diabetes. This guild is polyphyletic and cannot be accurately detected by 16S rRNA gene sequencing. Consequently, approaches targeting the terminal genes of the main butyrate-producing pathway have been developed. However, since additional pathways exist and alternative, newly recognized enzymes catalyzing the terminal reaction have been described, previous investigations are often incomplete. We undertook a broad analysis of butyrate-producing pathways and individual genes by screening 3,184 sequenced bacterial genomes from the Integrated Microbial Genome database. Genomes of 225 bacteria with a potential to produce butyrate were identified, including many previously unknown candidates. The majority of candidates belong to distinct families within the Firmicutes, but members of nine other phyla, especially from Actinobacteria, Bacteroidetes, Fusobacteria, Proteobacteria, Spirochaetes, and Thermotogae, were also identified as potential butyrate producers. The established gene catalogue (3,055 entries) was used to screen for butyrate synthesis pathways in 15 metagenomes derived from stool samples of healthy individuals provided by the HMP (Human Microbiome Project) consortium. A high percentage of total genomes exhibited a butyrate-producing pathway (mean, 19.1%; range, 3.2% to 39.4%), where the acetyl-coenzyme A (CoA) pathway was the most prevalent (mean, 79.7% of all pathways), followed by the lysine pathway (mean, 11.2%). Diversity analysis for the acetyl-CoA pathway showed that the same few firmicute groups associated with several Lachnospiraceae and Ruminococcaceae were dominating in most individuals, whereas the other pathways were associated primarily with Bacteroidetes. IMPORTANCE Microbiome research has revealed new, important roles of our gut microbiota for maintaining health, but an understanding of effects of specific microbial functions on the host is in its infancy, partly because in-depth functional microbial analyses are rare and publicly available databases are often incomplete/misannotated. In this study, we focused on production of butyrate, the main energy source for colonocytes, which plays a critical role in health and disease. We have provided a complete database of genes from major known butyrate-producing pathways, using in-depth genomic analysis of publicly available genomes, filling an important gap to accurately assess the butyrate-producing potential of complex microbial communities from "-omics"-derived data. Furthermore, a reference data set containing the abundance and diversity of butyrate synthesis pathways from the healthy gut microbiota was established through a metagenomics-based assessment. This study will help in understanding the role of butyrate producers in health and disease and may assist the development of treatments for functional dysbiosis.
Collapse
|
45
|
Kimura N. Metagenomic approaches to understanding phylogenetic diversity in quorum sensing. Virulence 2014; 5:433-42. [PMID: 24429899 DOI: 10.4161/viru.27850] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Quorum sensing, a form of cell-cell communication among bacteria, allows bacteria to synchronize their behaviors at the population level in order to control behaviors such as luminescence, biofilm formation, signal turnover, pigment production, antibiotics production, swarming, and virulence. A better understanding of quorum-sensing systems will provide us with greater insight into the complex interaction mechanisms used widely in the Bacteria and even the Archaea domain in the environment. Metagenomics, the use of culture-independent sequencing to study the genomic material of microorganisms, has the potential to provide direct information about the quorum-sensing systems in uncultured bacteria. This article provides an overview of the current knowledge of quorum sensing focused on phylogenetic diversity, and presents examples of studies that have used metagenomic techniques. Future technologies potentially related to quorum-sensing systems are also discussed.
Collapse
Affiliation(s)
- Nobutada Kimura
- Bioproduction Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba, Ibaraki Japan
| |
Collapse
|
46
|
Wee SK, Burns JL, DiChristina TJ. Identification of a molecular signature unique to metal-reducingGammaproteobacteria. FEMS Microbiol Lett 2013; 350:90-9. [DOI: 10.1111/1574-6968.12304] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/08/2013] [Accepted: 10/11/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
- Seng K. Wee
- School of Biology; Georgia Institute of Technology; Atlanta GA USA
| | - Justin L. Burns
- School of Biology; Georgia Institute of Technology; Atlanta GA USA
| | | |
Collapse
|
47
|
Comparative metagenomics of anode-associated microbiomes developed in rice paddy-field microbial fuel cells. PLoS One 2013; 8:e77443. [PMID: 24223712 PMCID: PMC3815305 DOI: 10.1371/journal.pone.0077443] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/10/2013] [Indexed: 11/30/2022] Open
Abstract
In sediment-type microbial fuel cells (sMFCs) operating in rice paddy fields, rice-root exudates are converted to electricity by anode-associated rhizosphere microbes. Previous studies have shown that members of the family Geobacteraceae are enriched on the anodes of rhizosphere sMFCs. To deepen our understanding of rhizosphere microbes involved in electricity generation in sMFCs, here, we conducted comparative analyses of anode-associated microbiomes in three MFC systems: a rice paddy-field sMFC, and acetate- and glucose-fed MFCs in which pieces of graphite felt that had functioned as anodes in rice paddy-field sMFC were used as rhizosphere microbe-bearing anodes. After electric outputs became stable, microbiomes associated with the anodes of these MFC systems were analyzed by pyrotag sequencing of 16S rRNA gene amplicons and Illumina shotgun metagenomics. Pyrotag sequencing showed that Geobacteraceae bacteria were associated with the anodes of all three systems, but the dominant Geobacter species in each MFC were different. Specifically, species closely related to G. metallireducens comprised 90% of the anode Geobacteraceae in the acetate-fed MFC, but were only relatively minor components of the rhizosphere sMFC and glucose-fed MFC, whereas species closely related to G. psychrophilus were abundantly detected. This trend was confirmed by the phylogenetic assignments of predicted genes in shotgun metagenome sequences of the anode microbiomes. Our findings suggest that G. psychrophilus and its related species preferentially grow on the anodes of rhizosphere sMFCs and generate electricity through syntrophic interactions with organisms that excrete electron donors.
Collapse
|
48
|
Yelton AP, Williams KH, Fournelle J, Wrighton KC, Handley KM, Banfield JF. Vanadate and acetate biostimulation of contaminated sediments decreases diversity, selects for specific taxa, and decreases aqueous V5+ concentration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:6500-9. [PMID: 23713472 DOI: 10.1021/es4006674] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Vanadium is a commercially important metal that is released into the environment by fossil fuel combustion and mining. Despite its prevalence as a contaminant, the potential for vanadium bioremediation has not been widely studied. Injection of acetate (as a carbon source) directly into an aquifer to biostimulate contaminated sediments in Colorado, United States, resulted in prolonged removal of aqueous vanadium for a period of at least two years. To further investigate this process, we simultaneously added acetate and vanadate (V(5+)) to columns that were packed with aquifer sediment and inserted into groundwater wells installed on the Colorado River floodplain. This allowed evaluation of the microbial response to amendments in columns that received an influx of natural groundwater. Our results demonstrate the removal of up to 99% of the added V(5+)(aq) and suggest microbial mediation. Most probable number measurements demonstrate up to a 50-fold increase in numbers of V(5+)-reducing cells in vanadium-amended columns compared to controls. 16S rRNA gene sequencing indicates decreased diversity and selection for specific taxa in columns that received vanadate compared to those that did not. Overall, our results demonstrate that acetate amendment can be an effective strategy for V removal, and that V bioremediation may be a viable technology.
Collapse
Affiliation(s)
- Alexis P Yelton
- Department of Environmental Science, University of California, Berkeley, California 94720, United States
| | | | | | | | | | | |
Collapse
|
49
|
Dar SA, Tan H, Peacock AD, Jaffe P, N'Guessan L, Williams KH, Strycharz-Glaven S. Spatial Distribution of Geobacteraceae
and Sulfate-Reducing Bacteria During In Situ
Bioremediation of Uranium-Contaminated Groundwater. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/rem.21347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Giloteaux L, Holmes DE, Williams KH, Wrighton KC, Wilkins MJ, Montgomery AP, Smith JA, Orellana R, Thompson CA, Roper TJ, Long PE, Lovley DR. Characterization and transcription of arsenic respiration and resistance genes during in situ uranium bioremediation. THE ISME JOURNAL 2013; 7:370-83. [PMID: 23038171 PMCID: PMC3554400 DOI: 10.1038/ismej.2012.109] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/01/2012] [Accepted: 08/01/2012] [Indexed: 11/09/2022]
Abstract
The possibility of arsenic release and the potential role of Geobacter in arsenic biogeochemistry during in situ uranium bioremediation was investigated because increased availability of organic matter has been associated with substantial releases of arsenic in other subsurface environments. In a field experiment conducted at the Rifle, CO study site, groundwater arsenic concentrations increased when acetate was added. The number of transcripts from arrA, which codes for the α-subunit of dissimilatory As(V) reductase, and acr3, which codes for the arsenic pump protein Acr3, were determined with quantitative reverse transcription-PCR. Most of the arrA (>60%) and acr3-1 (>90%) sequences that were recovered were most similar to Geobacter species, while the majority of acr3-2 (>50%) sequences were most closely related to Rhodoferax ferrireducens. Analysis of transcript abundance demonstrated that transcription of acr3-1 by the subsurface Geobacter community was correlated with arsenic concentrations in the groundwater. In contrast, Geobacter arrA transcript numbers lagged behind the major arsenic release and remained high even after arsenic concentrations declined. This suggested that factors other than As(V) availability regulated the transcription of arrA in situ, even though the presence of As(V) increased the transcription of arrA in cultures of Geobacter lovleyi, which was capable of As(V) reduction. These results demonstrate that subsurface Geobacter species can tightly regulate their physiological response to changes in groundwater arsenic concentrations. The transcriptomic approach developed here should be useful for the study of a diversity of other environments in which Geobacter species are considered to have an important influence on arsenic biogeochemistry.
Collapse
Affiliation(s)
- Ludovic Giloteaux
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003-9298, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|