1
|
Feng Y, Wang J, Fan W, Huang B, Qin Z, Tian Z, Geng Y, Huang X, Ouyang P, Chen D, Lai W. Exploitation of multiple host-derived nutrients by the yellow catfish epidermal environment facilitates Vibrio mimicus to sustain infection potency and susceptibility. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109707. [PMID: 38885802 DOI: 10.1016/j.fsi.2024.109707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Infection with Vibrio mimicus in the Siluriformes has demonstrated a rapid and high infectivity and mortality rate, distinct from other hosts. Our earlier investigations identified necrosis, an inflammatory storm, and tissue remodeling as crucial pathological responses in yellow catfish (Pelteobagrus fulvidraco) infected with V. mimicus. The objective of this study was to further elucidate the impact linking these pathological responses within the host during V. mimicus infection. Employing metabolomics and transcriptomics, we uncovered infection-induced dense vacuolization of perimysium; Several genes related to nucleosidase and peptidase activities were significantly upregulated in the skin and muscles of infected fish. Concurrently, the translation processes of host cells were impaired. Further investigation revealed that V. mimicus completes its infection process by enhancing its metabolism, including the utilization of oligopeptides and nucleotides. The high susceptibility of yellow catfish to V. mimicus infection was associated with the composition of its body surface, which provided a microenvironment rich in various nucleotides such as dIMP, dAMP, deoxyguanosine, and ADP, in addition to several amino acids and peptides. Some of these metabolites significantly boost V. mimicus growth and motility, thus influencing its biological functions. Furthermore, we uncovered an elevated expression of gangliosides on the surface of yellow catfish, aiding V. mimicus adhesion and increasing its infection risk. Notably, we observed that the skin and muscles of yellow catfish were deficient in over 25 polyunsaturated fatty acids, such as Eicosapentaenoic acid, 12-oxo-ETE, and 13-Oxo-ODE. These substances play a role in anti-inflammatory mechanisms, possibly contributing to the immune dysregulation observed in yellow catfish. In summary, our study reveals a host immune deviation phenomenon that promotes bacterial colonization by increasing nutrient supply. It underscores the crucial factors rendering yellow catfish highly susceptible to V. mimicus, indicating that host nutritional sources not only enable the establishment and maintenance of infection within the host but also aid bacterial survival under immune pressure, ultimately completing its lifecycle.
Collapse
Affiliation(s)
- Yang Feng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China; Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Jiao Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Wei Fan
- NeiJiang Academy of Agricultural Sciences, Neijiang, Sichuan, 641000, China
| | - Bowen Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Zhenyang Qin
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Ziqi Tian
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Weimin Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| |
Collapse
|
2
|
Diversity of Treponema denticola and Other Oral Treponeme Lineages in Subjects with Periodontitis and Gingivitis. Microbiol Spectr 2021; 9:e0070121. [PMID: 34585987 PMCID: PMC8557910 DOI: 10.1128/spectrum.00701-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
More than 75 species/species-level phylotypes belonging to the genus Treponema inhabit the human oral cavity. Treponema denticola is commonly associated with periodontal disease, but the etiological roles and ecological distributions of other oral treponemes remain more obscure. Here, we compared the clinical distributions of phylogroup 1 and 2 oral treponemes in subgingival plaque sampled from Chinese subjects with periodontitis (n = 10) and gingivitis (n = 8) via sequence analysis of the highly conserved pyrH housekeeping gene. Two PCR primer sets that targeted oral phylogroup 1 and 2 treponeme pyrH genes were used to construct plasmid clone amplicon libraries for each subject, and the libraries were sequenced for bioinformatic analysis. A total of 1,204 quality-filtered, full-length pyrH gene sequences were obtained from the cohort (median number, 61.5 cloned pyrH sequences per subject; range, 59 to 83), which were assigned to 34 pyrH genotypes (designated pyrH001 to pyrH034; 97% sequence identity cutoff). Eighteen pyrH genotypes (536 pyrH sequences) corresponded to phylogroup 1 treponeme taxa (including Treponema vincentii and Treponema medium). Sixteen pyrH genotypes (668 pyrH sequences) corresponded to T. denticola and other phylogroup 2 treponemes. Samples from periodontitis subjects contained a greater diversity of phylogroup 2 pyrH genotypes than did samples from gingivitis subjects (Mann-Whitney U test). One T. denticola pyrH genotype (pyrH001) was highly prevalent, detected in 10/10 periodontitis and 6/8 gingivitis subjects. Several subjects harbored multiple T. denticola pyrH genotypes. Nonmetric multidimensional scaling and permutational multivariate analysis of variance (PERMANOVA) revealed no significant differences in overall pyrH genotype compositions between periodontitis and gingivitis subjects. Taken together, our results show that subjects with periodontitis and gingivitis commonly harbor highly taxonomically diverse communities of oral treponemes. IMPORTANCE Periodontal diseases, such as periodontitis, are highly complex, multifactorial inflammatory infectious diseases affecting the gums and tooth-supporting structures. They are caused by chronic accumulations of dental plaque below the gum line that typically comprise hundreds of different bacterial species. Certain species of spiral-shaped bacteria known as treponemes, most notably Treponema denticola, are proposed to play key roles in the development and progression of periodontal disease. In our study, we characterized the genetic lineages of T. denticola, Treponema vincentii, Treponema medium, and related species of treponeme bacteria that were present in dental plaque samples from Chinese subjects with periodontal disease. Our results revealed that individual subjects commonly harbored multiple genetic lineages (strains) of T. denticola and other species of treponeme bacteria. Taken together, our results indicate that highly diverse and complex populations of oral treponemes may be present in dental plaque, which may potentially play important roles affecting periodontal health status.
Collapse
|
3
|
Yang Q, Wang Q, Wu J, Zhang Y, Wei D, Qu B, Liu Y, Fu S. Distinct dynamics of Vibrio parahaemolyticus populations in two farming models. J Appl Microbiol 2021; 133:1146-1155. [PMID: 34260793 DOI: 10.1111/jam.15217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/16/2021] [Accepted: 07/06/2021] [Indexed: 11/28/2022]
Abstract
AIMS Despite the recent prosperity of shrimp cultivation in China, very little is known about how different shrimp farming models influence the dynamics of Vibrio parahaemolyticus populations and the antibiotic resistance of this bacterium. METHODS AND RESULTS To this end, we conducted continuous surveillance of V. parahaemolyticus on four farms over 3 years: two traditional shrimp farms with daily water exchange and two farms operated in the recirculating aquaculture systems (RAS). No antibiotics were used in these farms to exclude the potential impacts of antibiotics on the emergence of antibacterial resistance. Multilocus sequence typing was utilized to characterize the dynamics of V. parahaemolyticus populations. Whole-genome sequencing (WGS) was conducted to determine the representative sequence types (STs) at each farm. Results revealed that the population structure of V. parahaemolyticus remained stable over time in both RAS farms, with only nine and four STs observed at each. In contrast, annual replacement of V. parahaemolyticus populations was observed in traditional farms with 26 and 28 STs identified in rearing water. WGS of 50 isolates divided them into five clusters, of which ST917a isolates harboured a genomic island that disrupted the gene recA. Pair-wised genomic comparison of isolates from the same STs showed that they were genetically related but belonged to different clones associated with geographical distribution. CONCLUSIONS These results suggested that RAS presented a specific ecological niche by minimizing the water exchanges with the external environment. In contrast, traditional farming might pose a food safety issue by introducing new V. parahaemolyticus populations with antibiotic resistance genes. SIGNIFICANCE AND IMPACT OF THE STUDY Our results expose the potential food safety issue associated with conventional agriculture and should encourage the development of preventive strategies to reduce the emergence of resistant V. parahaemolyticus populations.
Collapse
Affiliation(s)
- Qian Yang
- Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
| | - Qingyao Wang
- College of Marine Science and Environment, Dalian Ocean University, Dalian, China.,Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian, China
| | - Junmin Wu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, China.,Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian, China
| | - Yixiang Zhang
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Dawei Wei
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Baocheng Qu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, China.,Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian, China
| | - Ying Liu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, China.,Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian, China
| | - Songzhe Fu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, China.,Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian, China
| |
Collapse
|
4
|
Vidal LMR, Venas TM, Gonçalves ARP, Mattsson HK, Silva RVP, Nóbrega MS, Azevedo GPR, Garcia GD, Tschoeke DA, Vieira VV, Thompson FL, Thompson CC. Rapid screening of marine bacterial symbionts using MALDI-TOF MS. Arch Microbiol 2020; 202:2329-2336. [PMID: 32529508 DOI: 10.1007/s00203-020-01917-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 11/30/2022]
Abstract
Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) is a rapid, cost-effective and high-throughput method for bacteria characterization. However, most previous studies focused on clinical isolates. In this study, we evaluated the use of MALDI-TOF MS as a rapid screening tool for marine bacterial symbionts. A set of 255 isolates from different marine sources (corals, sponge, fish and seawater) was analyzed using cell lysates to obtain a rapid grouping. Cluster analysis of mass spectra and 16S rRNA showed 18 groups, including Vibrio, Bacillus, Pseudovibrio, Alteromonas and Ruegeria. MALDI-TOF distance similarity scores ≥ 60% and ≥ 70% correspond to ≥ 98.7% 16S rRNA gene sequence similarity and ≥ 95% pyrH gene sequence similarity, respectively. MALDI-TOF MS is a useful tool for Vibrio species groups' identification.
Collapse
Affiliation(s)
- Livia M R Vidal
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Tainá M Venas
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Aline R P Gonçalves
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Hannah K Mattsson
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Raphael V P Silva
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Maria S Nóbrega
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Gustavo P R Azevedo
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Gizele D Garcia
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Departamento de Ensino de Graduação, Campus UFRJ - Macaé Professor Aloisio Teixeira, Universidade Federal do Rio de Janeiro (UFRJ), Macaé, RJ, Brazil
| | - Diogo A Tschoeke
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Biomedical Engineer Program - COPPE (UFRJ), Rio de Janeiro, Brazil
| | - Verônica V Vieira
- Interdisciplinary Medical Research Laboratory, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Fabiano L Thompson
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Cristiane C Thompson
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Amalina NZ, Santha S, Zulperi D, Amal MNA, Yusof MT, Zamri-Saad M, Ina-Salwany MY. Prevalence, antimicrobial susceptibility and plasmid profiling of Vibrio spp. isolated from cultured groupers in Peninsular Malaysia. BMC Microbiol 2019; 19:251. [PMID: 31711432 PMCID: PMC6849203 DOI: 10.1186/s12866-019-1624-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/24/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Numerous prevalence studies of Vibrio spp. infection in fish have been extensively reported worldwide, including Malaysia. Unfortunately, information on the prevalence of Vibrio spp. in groupers (Epinephelus spp.) is limited. In this study, groupers obtained from nine farms located at different geographical regions in Malaysia were sampled for the presence of pathogenic Vibrio spp. and their susceptibility profiles against seven antibiotics. RESULTS Out of 270 grouper samples, 195 (72%) were detected with the presence of Vibrio spp. Vibrio communis showed highest prevalence in grouper (28%), followed by V. parahaemolyticus (25%), V. alginolyticus (19%), V. vulnificus (14%), V. rotiferianus (3%), Vibrio sp. (3%), V. campbellii (2%), V. mytili (2%), V. furnissii (2%), V. harveyi (1%), V. tubiashii (1%), V. fluvialis (0.3%) and V. diabolicus (0.3%). Assessment on the antibiotic susceptibility profiles of the Vibrio spp. revealed that majority of the isolates were susceptible to tetracycline, streptomycin, erythromycin and bacitracin, but resistance to ampicillin, penicillin G and vancomycin. The mean MAR index of the Vibrio isolates was 0.51, with 85% of the isolates showed MAR index value of higher than 0.2. Results indicate that the Vibrio spp. were continuously exposed to antibiotics. Furthermore, the plasmid profiles of Vibrio spp. showed that 38.7% of the isolates harbored plasmid with molecular weight of more than 10 kb, while 61.3% were without plasmid. During curing process, Vibrio spp. lost their plasmid, but remained resistant to ampicillin, penicillin G, bacitracin and vancomycin while a few isolates remained resistant to erythromycin, streptomycin and tetracycline. The results suggested that the resistance to antibiotics in isolated Vibrio spp. might be due to chromosomal and plasmid borne. CONCLUSIONS This study demonstrates the prevalence of Vibrio spp. in groupers and the distribution of multidrug resistance strains that could be of concern to the farmers in Malaysia. In addition, data from this study can be further used in fish disease management plan.
Collapse
Affiliation(s)
- Nor Zulkiply Amalina
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Silvaraj Santha
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Dzarifah Zulperi
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Mohammad Noor Azmai Amal
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Mohd Termizi Yusof
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Mohd Zamri-Saad
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Md Yasin Ina-Salwany
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| |
Collapse
|
6
|
Zago V, Zambon M, Civettini M, Zaltum O, Manfrin A. Virulence-associated factors in Vibrio cholerae non-O1/non-O139 and V. mimicus strains isolated in ornamental fish species. JOURNAL OF FISH DISEASES 2017; 40:1857-1868. [PMID: 28677232 DOI: 10.1111/jfd.12659] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
During recent decades, ornamental fish have proven to be one of the fastest growing categories of pets in Europe. In this framework, we evaluated both the potential pathogenic and zoonotic risks caused by 53 Vibrio cholerae non-O1/non-O139 and a Vibrio mimicus strain isolated from ornamental fish species mostly originating from South-East Asia countries between 2000 and 2015 in Italy. All the strains were firstly identified at species level by biochemical, phylogenetic and mass spectrometry (matrix-assisted laser desorption ionization time of flight) methods, and then studied to reveal the presence of the main virulence and colonization-associated factors, as ctxA, ace, zot, stn/sto, toxR, rtxA, hlyA and tcpA by multiplex and single endpoint PCR assays. Findings showed that 21 of 54 strains harboured at least one virulence factor with a predominance for the toxR+ , rtxA+ and hlyAET+ genotype. Interestingly, the V. mimicus strain harboured the colonization factor and the CTX prophage receptor, tcpA, indicating the ability to capture and integrate it in its genome increasing its pathogenicity. Although these enterotoxins can sporadically cause gastroenteritis, the results highlight their probable involvement in causing severe implications for public health, suggesting the need for an European microbiological monitoring.
Collapse
Affiliation(s)
- V Zago
- National Reference Laboratory for Fish, Mollusc and Crustacean Diseases, Istituto Zooprofilattico Sperimentale delle Venezie, Adria, RO, Italy
| | - M Zambon
- National Reference Laboratory for Fish, Mollusc and Crustacean Diseases, Istituto Zooprofilattico Sperimentale delle Venezie, Adria, RO, Italy
| | - M Civettini
- National Reference Laboratory for Fish, Mollusc and Crustacean Diseases, Istituto Zooprofilattico Sperimentale delle Venezie, Adria, RO, Italy
| | - O Zaltum
- National Reference Laboratory for Fish, Mollusc and Crustacean Diseases, Istituto Zooprofilattico Sperimentale delle Venezie, Adria, RO, Italy
| | - A Manfrin
- National Reference Laboratory for Fish, Mollusc and Crustacean Diseases, Istituto Zooprofilattico Sperimentale delle Venezie, Adria, RO, Italy
| |
Collapse
|
7
|
López-Hermoso C, de la Haba RR, Sánchez-Porro C, Papke RT, Ventosa A. Assessment of MultiLocus Sequence Analysis As a Valuable Tool for the Classification of the Genus Salinivibrio. Front Microbiol 2017; 8:1107. [PMID: 28690592 PMCID: PMC5479898 DOI: 10.3389/fmicb.2017.01107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/31/2017] [Indexed: 01/15/2023] Open
Abstract
The genus Salinivibrio includes obligatory halophilic bacteria and is commonly isolated from hypersaline habitats and salted food products. They grow optimally between 7.5 and 10% salts and are facultative anaerobes. Currently, this genus comprises four species, one of them, S. costicola, with three subspecies. In this study we isolated and characterized an additional 70 strains from solar salterns located in different locations. Comparative 16S rRNA gene sequence analysis identified these strains as belonging to the genus Salinivibrio but could not differentiate strains into species-like groups. To achieve finer phylogenetic resolution, we carried out a MultiLocus Sequence Analysis (MLSA) of the new isolates and the type strains of the species of Salinivibrio based on the individual as well as concatenated sequences of four housekeeping genes: gyrB, recA, rpoA, and rpoD. The strains formed four clearly differentiated species-like clusters called phylogroups. All of the known type and subspecies strains were associated with one of these clusters except S. sharmensis. One phylogroup had no previously described species coupled to it. Further DNA–DNA hybridization (DDH) experiments with selected representative strains from these phylogroups permitted us to validate the MLSA study, correlating the species level defined by the DDH (70%) with a 97% cut-off for the concatenated MLSA gene sequences. Based on these criteria, the novel strains forming phylogroup 1 could constitute a new species while strains constructing the other three phylogroups are members of previously recognized Salinivibrio species. S. costicola subsp. vallismortis co-occurs with S. proteolyticus in phylogroup 4, and separately from other S. costicola strains, indicating its need for reclassification. On the other hand, genome fingerprinting analysis showed that the environmental strains do not form clonal populations and did not cluster according to their site of cultivation. In future studies regarding the classification and identification of new Salinivibrio strains we recommend the following strategy: (i) initial partial sequencing of the 16S rRNA gene for genus-level identification; (ii) sequencing and concatenation of the four before mentioned housekeeping genes for species-level discrimination; (iii) DDH experiments, only required when the concatenated MLSA similarity values among a new isolate and other Salinivibrio strains are above the 97% cut-off.
Collapse
Affiliation(s)
- Clara López-Hermoso
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of SevillaSevilla, Spain
| | - Rafael R de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of SevillaSevilla, Spain
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of SevillaSevilla, Spain
| | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut, StorrsCT, United States
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of SevillaSevilla, Spain
| |
Collapse
|
8
|
Menezes FGRDE, Rodriguez MTT, Carvalho FCTDE, Rebouças RH, Costa RA, Sousa OVDE, Hofer E, Vieira RHSF. Pathogenic Vibrio species isolated from estuarine environments (Ceará, Brazil) - antimicrobial resistance and virulence potential profiles. AN ACAD BRAS CIENC 2017; 89:1175-1188. [PMID: 28489191 DOI: 10.1590/0001-3765201720160191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 10/15/2016] [Indexed: 11/22/2022] Open
Abstract
Detection of virulent strains associated with aquatic environment is a current concern for the management and control of human and animal health. Thus, Vibrio diversity was investigated in four estuaries from state of Ceará (Pacoti, Choró, Pirangi and Jaguaribe) followed by antimicrobial susceptibility to different antimicrobials used in aquaculture and detection of main virulence factors to human health. Isolation and identification were performed on TCBS agar (selective medium) and dichotomous key based on biochemical characteristics, respectively. Nineteen strains of genus Vibrio were catalogued. Vibrio parahaemolyticus (Choró River) and V. alginolyticus (Pacoti River) were the most abundant species in the four estuaries. All strains were submitted to disk diffusion technique (15 antimicrobials were tested). Resistance was found to: penicillin (82%), ampicillin (54%), cephalotin (7%), aztreonan (1%), gentamicin, cefotaxime and ceftriaxone (0.5%). Five pathogenic strains were chosen to verification of virulence factors. Four estuaries showed a high abundance of species. High number of tested positive strains for virulence is concerning, since some of those strains are associated to human diseases, while others are known pathogens of aquatic organisms.
Collapse
Affiliation(s)
- Francisca G R DE Menezes
- Universidade Federal do Ceará, Departamento de Engenharia de Pesca, Av. Mister Hull, s/n, Campus Universitário do Pici - UFC, Antônio Bezerra, 60455-460 Fortaleza, CE, Brazil
| | - Marina T T Rodriguez
- Universidade Federal do Ceará, Instituto de Ciências do Mar/LABOMAR, Av. da Abolição, 3207, Meireles, 60165-081 Fortaleza, CE, Brazil
| | - Fátima C T DE Carvalho
- Universidade Federal do Ceará, Departamento de Engenharia de Pesca, Av. Mister Hull, s/n, Campus Universitário do Pici - UFC, Antônio Bezerra, 60455-460 Fortaleza, CE, Brazil
| | - Rosa H Rebouças
- Universidade Federal do Ceará, Instituto de Ciências do Mar/LABOMAR, Av. da Abolição, 3207, Meireles, 60165-081 Fortaleza, CE, Brazil
| | - Renata A Costa
- Instituto Superior de Teologia Aplicada/INTA, R. Antônio Rodrigues Magalhães, 359, Dom Expedito, 62050-100 Sobral, CE, Brazil
| | - Oscarina V DE Sousa
- Universidade Federal do Ceará, Instituto de Ciências do Mar/LABOMAR, Av. da Abolição, 3207, Meireles, 60165-081 Fortaleza, CE, Brazil
| | - Ernesto Hofer
- Instituto Oswaldo Cruz/FIOCRUZ, Av. Brasil, 4365, Manguinhos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Regine H S F Vieira
- Universidade Federal do Ceará, Instituto de Ciências do Mar/LABOMAR, Av. da Abolição, 3207, Meireles, 60165-081 Fortaleza, CE, Brazil
| |
Collapse
|
9
|
Pretzer C, Druzhinina IS, Amaro C, Benediktsdóttir E, Hedenström I, Hervio-Heath D, Huhulescu S, Schets FM, Farnleitner AH, Kirschner AKT. High genetic diversity of Vibrio cholerae in the European lake Neusiedler See is associated with intensive recombination in the reed habitat and the long-distance transfer of strains. Environ Microbiol 2017; 19:328-344. [PMID: 27871138 PMCID: PMC5718291 DOI: 10.1111/1462-2920.13612] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 10/27/2016] [Accepted: 11/10/2016] [Indexed: 11/29/2022]
Abstract
Coastal marine Vibrio cholerae populations usually exhibit high genetic diversity. To assess the genetic diversity of abundant V. cholerae non-O1/non-O139 populations in the Central European lake Neusiedler See, we performed a phylogenetic analysis based on recA, toxR, gyrB and pyrH loci sequenced for 472 strains. The strains were isolated from three ecologically different habitats in a lake that is a hot-spot of migrating birds and an important bathing water. We also analyzed 76 environmental and human V. cholerae non-O1/non-O139 isolates from Austria and other European countries and added sequences of seven genome-sequenced strains. Phylogenetic analysis showed that the lake supports a unique endemic diversity of V. cholerae that is particularly rich in the reed stand. Phylogenetic trees revealed that many V. cholerae isolates from European countries were genetically related to the strains present in the lake belonging to statistically supported monophyletic clades. We hypothesize that the observed phenomena can be explained by the high degree of genetic recombination that is particularly intensive in the reed stand, acting along with the long distance transfer of strains most probably via birds and/or humans. Thus, the Neusiedler See may serve as a bioreactor for the appearance of new strains with new (pathogenic) properties.
Collapse
Affiliation(s)
- Carina Pretzer
- Medical University Vienna, Institute for Hygiene and Applied Immunology, Vienna, Austria.,Vienna University of Technology, Institute of Chemical Engineering, Vienna, Austria
| | - Irina S Druzhinina
- Vienna University of Technology, Institute of Chemical Engineering, Vienna, Austria
| | - Carmen Amaro
- ERI BioTecMed University of Valencia, Valencia, Spain
| | - Eva Benediktsdóttir
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | | | | | | | - Franciska M Schets
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Andreas H Farnleitner
- Vienna University of Technology, Institute of Chemical Engineering, Vienna, Austria.,Interuniversity Cooperation Centre for Water & Health, (www.waterandhealth.at), Vienna, Austria
| | - Alexander K T Kirschner
- Medical University Vienna, Institute for Hygiene and Applied Immunology, Vienna, Austria.,Interuniversity Cooperation Centre for Water & Health, (www.waterandhealth.at), Vienna, Austria
| |
Collapse
|
10
|
Multilocus Sequence Analysis of Phylogroup 1 and 2 Oral Treponeme Strains. Appl Environ Microbiol 2017; 83:AEM.02499-16. [PMID: 27864174 DOI: 10.1128/aem.02499-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/14/2016] [Indexed: 02/08/2023] Open
Abstract
More than 75 "species-level" phylotypes of spirochete bacteria belonging to the genus Treponema reside within the human oral cavity. The majority of these oral treponeme phylotypes correspond to as-yet-uncultivated taxa or strains of uncertain standing in taxonomy. Here, we analyze phylogenetic and taxonomic relationships between oral treponeme strains using a multilocus sequence analysis (MLSA) scheme based on the highly conserved 16S rRNA, pyrH, recA, and flaA genes. We utilized this MLSA scheme to analyze genetic data from a curated collection of oral treponeme strains (n = 71) of diverse geographical origins. This comprises phylogroup 1 (n = 23) and phylogroup 2 (n = 48) treponeme strains, including all relevant American Type Culture Collection reference strains. The taxonomy of all strains was confirmed or inferred via the analysis of ca. 1,450-bp 16S rRNA gene sequences using a combination of bioinformatic and phylogenetic approaches. Taxonomic and phylogenetic relationships between the respective treponeme strains were further investigated by analyzing individual and concatenated flaA (1,074-nucleotide [nt]), recA (1,377-nt), and pyrH (696-nt) gene sequence data sets. Our data confirmed the species differentiation between Treponema denticola (n = 41) and Treponema putidum (n = 7) strains. Notably, our results clearly supported the differentiation of the 23 phylogroup 1 treponeme strains into five distinct "species-level" phylotypes. These respectively corresponded to "Treponema vincentii" (n = 11), Treponema medium (n = 1), "Treponema sinensis" (Treponema sp. IA; n = 4), Treponema sp. IB (n = 3), and Treponema sp. IC (n = 4). In conclusion, our MLSA-based approach can be used to effectively discriminate oral treponeme taxa, confirm taxonomic assignment, and enable the delineation of species boundaries with high confidence. IMPORTANCE Periodontal diseases are caused by persistent polymicrobial biofilm infections of the gums and underlying tooth-supporting structures and have a complex and variable etiology. Although Treponema denticola is strongly associated with periodontal diseases, the etiological roles of other treponeme species/phylotypes are less well defined. This is due to a paucity of formal species descriptions and a poor understanding of genetic relationships between oral treponeme taxa. Our study directly addresses these issues. It represents one of the most comprehensive analyses of oral treponeme strains performed to date, including isolates from North America, Europe, and Asia. We envisage that our results will greatly facilitate future metagenomic efforts aimed at characterizing the clinical distributions of oral treponeme species/phylotypes, helping investigators to establish a more detailed understanding of their etiological roles in periodontal diseases and other infectious diseases. Our results are also directly relevant to various polymicrobial tissue infections in animals, which also involve treponeme populations.
Collapse
|
11
|
Hazen TH, Lafon PC, Garrett NM, Lowe TM, Silberger DJ, Rowe LA, Frace M, Parsons MB, Bopp CA, Rasko DA, Sobecky PA. Insights into the environmental reservoir of pathogenic Vibrio parahaemolyticus using comparative genomics. Front Microbiol 2015; 6:204. [PMID: 25852665 PMCID: PMC4371758 DOI: 10.3389/fmicb.2015.00204] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/26/2015] [Indexed: 12/29/2022] Open
Abstract
Vibrio parahaemolyticus is an aquatic halophilic bacterium that occupies estuarine and coastal marine environments, and is a leading cause of seafood-borne food poisoning cases. To investigate the environmental reservoir and potential gene flow that occurs among V. parahaemolyticus isolates, the virulence-associated gene content and genome diversity of a collection of 133 V. parahaemolyticus isolates were analyzed. Phylogenetic analysis of housekeeping genes, and pulsed-field gel electrophoresis, demonstrated that there is genetic similarity among V. parahaemolyticus clinical and environmental isolates. Whole-genome sequencing and comparative analysis of six representative V. parahaemolyticus isolates was used to identify genes that are unique to the clinical and environmental isolates examined. Comparative genomics demonstrated an O3:K6 environmental isolate, AF91, which was cultured from sediment collected in Florida in 2006, has significant genomic similarity to the post-1995 O3:K6 isolates. However, AF91 lacks the majority of the virulence-associated genes and genomic islands associated with these highly virulent post-1995 O3:K6 genomes. These findings demonstrate that although they do not contain most of the known virulence-associated regions, some V. parahaemolyticus environmental isolates exhibit significant genetic similarity to clinical isolates. This highlights the dynamic nature of the V. parahaemolyticus genome allowing them to transition between aquatic and host-pathogen states.
Collapse
Affiliation(s)
- Tracy H Hazen
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA ; Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention Atlanta, GA, USA
| | - Patricia C Lafon
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention Atlanta, GA, USA
| | - Nancy M Garrett
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention Atlanta, GA, USA
| | - Tiffany M Lowe
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| | | | - Lori A Rowe
- Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention Atlanta, GA, USA
| | - Michael Frace
- Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention Atlanta, GA, USA
| | - Michele B Parsons
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention Atlanta, GA, USA
| | - Cheryl A Bopp
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention Atlanta, GA, USA
| | - David A Rasko
- Institute for Genome Sciences, University of Maryland School of Medicine Baltimore, MD, USA ; Department of Microbiology and Immunology, University of Maryland Baltimore, MD, USA
| | | |
Collapse
|
12
|
Nguyen VD, Pham TT, Nguyen THT, Nguyen TTX, Hoj L. Screening of marine bacteria with bacteriocin-like activities and probiotic potential for ornate spiny lobster (Panulirus ornatus) juveniles. FISH & SHELLFISH IMMUNOLOGY 2014; 40:49-60. [PMID: 24969424 DOI: 10.1016/j.fsi.2014.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/12/2014] [Accepted: 06/16/2014] [Indexed: 05/21/2023]
Abstract
Bacteriocins are ribosomally synthesized antimicrobial peptides, which have been found in diverse bacterial species of terrestrial origins and some from the sea. New bacteriocins with new characteristics, new origins and new applications are likely still awaiting discovery. The present study screened bacteria isolated from marine animals of interest to the aquaculture industry for antimicrobial and bacteriocin-like activities in order to uncover biodiversity of bacteriocin producers, and explore the potential application in aquaculture. In total, 24 of 100 screened isolates showed antimicrobial activities and 7 of these exerted bacteriocin-like activities. Sequencing of 16S rRNA genes identified the isolates as members of the six genera Proteus, Providencia, Klebsiella, Alcaligenes, Bacillus and Enterococcus. In some cases, further analysis of housekeeping genes, rpoB for Proteus and recA for Klebsiella, as well as biochemical tests was necessary for identification to species level, and some of the Proteus isolates may represent novel species. The seven bacteriocinogenic isolates showed a wide antimicrobial spectrum against foodborne and animal pathogens, which opens the way to their potential use as marine drugs and probiotics in food, aquaculture, livestock and clinical settings. As a case study, the protective effect of shortlisted bacteriocinogenic isolates were tested in aquaculture-raised spiny lobster (Panulirus ornatus) juveniles. A single-strain (Bacillus pumilus B3.10.2B) and a three-strain (B. pumilus B3.10.2B, Bacillus cereus D9, Lactobacillus plantarum T13) probiotic preparation were added to the feed of Panulirus ornatus juveniles, which were subsequently challenged with the pathogen Vibrio owensii DY05. Juveniles in the probiotic treatments displayed increased growth and reduced feed conversion rates after 60 days, and increased survival rate after pathogen challenge relative to the control. This study represents the first evidence of bacteriocin production by bacteria associated with lobster, tiger shrimp, snubnose pompano and cobia and the first description of V. owensii as a pathogen in P. ornatus juveniles.
Collapse
Affiliation(s)
- Van Duy Nguyen
- Institute of Biotechnology and Environment, Nha Trang University, Nha Trang, Khanh Hoa, Vietnam.
| | - Thu Thuy Pham
- Institute of Biotechnology and Environment, Nha Trang University, Nha Trang, Khanh Hoa, Vietnam
| | - Thi Hai Thanh Nguyen
- Institute of Biotechnology and Environment, Nha Trang University, Nha Trang, Khanh Hoa, Vietnam
| | - Thi Thanh Xuan Nguyen
- Institute of Biotechnology and Environment, Nha Trang University, Nha Trang, Khanh Hoa, Vietnam
| | - Lone Hoj
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| |
Collapse
|
13
|
Tsai TT, Liu JK, Chang YM, Chen KF, Kao CM. Application of polycolloid-releasing substrate to remediate trichloroethylene-contaminated groundwater: a pilot-scale study. JOURNAL OF HAZARDOUS MATERIALS 2014; 268:92-101. [PMID: 24468531 DOI: 10.1016/j.jhazmat.2014.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/30/2013] [Accepted: 01/05/2014] [Indexed: 06/03/2023]
Abstract
The objectives of this pilot-scale study were to (1) evaluate the effectiveness of bioremediation of trichloroethylene (TCE)-contaminated groundwater with the supplement of slow polycolloid-releasing substrate (SPRS) (contained vegetable oil, cane molasses, surfactants) under reductive dechlorinating conditions, (2) apply gene analyses to confirm the existence of TCE-dechlorinating genes, and (3) apply the real-time polymerase chain reaction (PCR) to evaluate the variations in TCE-dechlorinating bacteria (Dehalococcoides spp.). Approximately 350L of SPRS solution was supplied into an injection well (IW) and groundwater samples were collected and analyzed from IW and monitor wells periodically. Results show that the SPRS caused a rapid increase of the total organic carbon concentration (up to 5794mg/L), and reductive dechlorination of TCE was significantly enhanced. TCE dechlorination byproducts were observed and up to 99% of TCE removal (initial TCE concentration=1872μg/L) was observed after 50 days of operation. The population of Dehalococcoides spp. increased from 4.6×10(1) to 3.41×10(7)cells/L after 20 days of operation. DNA sequencing results show that there were 31 bacterial species verified, which might be related to TCE biodegradation. Results demonstrate that the microbial analysis and real-time PCR are useful tools to evaluate the effectiveness of TCE reductive dechlorination.
Collapse
Affiliation(s)
- T T Tsai
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - J K Liu
- Department of Biological Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Y M Chang
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei, Taiwan
| | - K F Chen
- Department of Civil Engineering, National Chi Nan University, Nantou, Taiwan
| | - C M Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
14
|
Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E, Thompson FL. Microbial genomic taxonomy. BMC Genomics 2013; 14:913. [PMID: 24365132 PMCID: PMC3879651 DOI: 10.1186/1471-2164-14-913] [Citation(s) in RCA: 264] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/18/2013] [Indexed: 01/23/2023] Open
Abstract
A need for a genomic species definition is emerging from several independent studies worldwide. In this commentary paper, we discuss recent studies on the genomic taxonomy of diverse microbial groups and a unified species definition based on genomics. Accordingly, strains from the same microbial species share >95% Average Amino Acid Identity (AAI) and Average Nucleotide Identity (ANI), >95% identity based on multiple alignment genes, <10 in Karlin genomic signature, and > 70% in silico Genome-to-Genome Hybridization similarity (GGDH). Species of the same genus will form monophyletic groups on the basis of 16S rRNA gene sequences, Multilocus Sequence Analysis (MLSA) and supertree analysis. In addition to the established requirements for species descriptions, we propose that new taxa descriptions should also include at least a draft genome sequence of the type strain in order to obtain a clear outlook on the genomic landscape of the novel microbe. The application of the new genomic species definition put forward here will allow researchers to use genome sequences to define simultaneously coherent phenotypic and genomic groups.
Collapse
Affiliation(s)
- Cristiane C Thompson
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | | | | | | | | | | |
Collapse
|
15
|
Delcenserie V, Taminiau B, Gavini F, de Schaetzen MA, Cleenwerck I, Theves M, Mahieu M, Daube G. Detection and characterization of Bifidobacterium crudilactis and B. mongoliense able to grow during the manufacturing process of French raw milk cheeses. BMC Microbiol 2013; 13:239. [PMID: 24164698 PMCID: PMC4231354 DOI: 10.1186/1471-2180-13-239] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 10/22/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The study of a production chain of raw milk cheeses (St Marcellin, Vercors area, France) led to the isolation of two Bifidobacterium populations: B. crudilactis and B. mongoliense, that were able to grow along the production chain. The aims of this study were to further detect and characterize these bacteria along the process and evaluate the ability of some strains to survive or grow in adverse conditions. RESULTS Using PCR coupled with restriction fragment length polymorphism, B. crudilactis and B. mongoliense were detected in respectively 77% and 30% of St Marcellin cheeses from production chain after 21 days of ripening. They were present in more than half of all analyzed retail cheeses with counts going from 1.6 to 5 log cfu g-1 for B. crudilactis and 1.4 to 7 log cfu g-1 for B. mongoliense. Bifidobacterium mongoliense was sensitive to pH 2, with an observed decrease of at least 3 log for both studied strains (FR49/f/2 and FR41/2) after 1 h incubation. At pH 3, no significant decrease was observed. Good survival was observed for the same strains in presence of pancreatic juice with a decrease of less than one log. Survival of strain FR49/f/2 was better than FR41/2 with a decrease of 3 logarithms (in presence of 1% bile salts) and almost 2 logarithms (in presence of 0.5% bile salts). The genotypic analyses using total DNA-DNA hybridization, GC% content, 16S rRNA gene sequencing and multilocus sequencing analysis (MLSA) confirmed the classification of Bifidobacterium. crudilactis and B. mongoliense into two different clusters well separated from other bifidobacteria clusters. CONCLUSIONS According to the observed characteristics such as survival in adverse conditions and their ability to grow under 12 °C during the manufacturing process of the cheeses, which has never been described for bifidobacteria and which is a very interesting technological asset, these B. crudilactis and B. mongoliense strains should be further investigated for a potential use in new food or in food supplements.
Collapse
Affiliation(s)
- Veronique Delcenserie
- Food Sciences Department, Faculty of Veterinary Medicine, University of Liège, Sart Tilman, B43b, B-4000 Liege, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Theethakaew C, Feil EJ, Castillo-Ramírez S, Aanensen DM, Suthienkul O, Neil DM, Davies RL. Genetic relationships of Vibrio parahaemolyticus isolates from clinical, human carrier, and environmental sources in Thailand, determined by multilocus sequence analysis. Appl Environ Microbiol 2013; 79:2358-70. [PMID: 23377932 PMCID: PMC3623249 DOI: 10.1128/aem.03067-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 01/21/2013] [Indexed: 11/20/2022] Open
Abstract
Vibrio parahaemolyticus is a seafood-borne pathogenic bacterium that is a major cause of gastroenteritis worldwide. We investigated the genetic and evolutionary relationships of 101 V. parahaemolyticus isolates originating from clinical, human carrier, and various environmental and seafood production sources in Thailand using multilocus sequence analysis. The isolates were recovered from clinical samples (n = 15), healthy human carriers (n = 18), various types of fresh seafood (n = 18), frozen shrimp (n = 16), fresh-farmed shrimp tissue (n = 18), and shrimp farm water (n = 16). Phylogenetic analysis revealed a high degree of genetic diversity within the V. parahaemolyticus population, although isolates recovered from clinical samples and from farmed shrimp and water samples represented distinct clusters. The tight clustering of the clinical isolates suggests that disease-causing isolates are not a random sample of the environmental reservoir, although the source of infection remains unclear. Extensive serotypic diversity occurred among isolates representing the same sequence types and recovered from the same source at the same time. These findings suggest that the O- and K-antigen-encoding loci are subject to exceptionally high rates of recombination. There was also strong evidence of interspecies horizontal gene transfer and intragenic recombination involving the recA locus in a large proportion of isolates. As the majority of the intragenic recombinational exchanges involving recA occurred among clinical and carrier isolates, it is possible that the human intestinal tract serves as a potential reservoir of donor and recipient strains that is promoting horizontal DNA transfer, driving evolutionary change, and leading to the emergence of new, potentially pathogenic strains.
Collapse
Affiliation(s)
| | - Edward J. Feil
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | | - David M. Aanensen
- Department of Infectious Disease Epidemiology, Imperial College London, St. Mary's Hospital Campus, London, United Kingdom
| | - Orasa Suthienkul
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Douglas M. Neil
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| | | |
Collapse
|
17
|
Tall A, Hervio-Heath D, Teillon A, Boisset-Helbert C, Delesmont R, Bodilis J, Touron-Bodilis A. Diversity of Vibrio spp. isolated at ambient environmental temperature in the Eastern English Channel as determined by pyrH sequencing. J Appl Microbiol 2013; 114:1713-24. [PMID: 23473469 DOI: 10.1111/jam.12181] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 02/15/2013] [Accepted: 02/25/2013] [Indexed: 12/01/2022]
Abstract
AIMS To describe the diversity of the culturable mesophilic and potentially pathogenic vibrios isolated at 22 and 37°C on TCBS medium, in September 2009 from seawater and surface sediments. METHODS AND RESULTS q-PCR assays previously selected for the identification of bacterial strains isolated at 37°C were used in combination with the partial sequencing of two housekeeping genes, pyrH and toxR, to identify 315 strains isolated at 22°C. The great majority of the 37°C strains was identified by q-PCR assays, (five of the six species) with the predominance of Vibrio alginolyticus (85·9%) and V. harveyi (10·7%). The human pathogens V. parahaemolyticus and V. cholerae were rarely detected (two strains each). The 22°C strains were successfully identified by the phylogeny analysis of pyrH and toxR genes, revealing 20 Vibrio species, with the predominance of the clam pathogen V. celticus (36·8%). The Splendidus and the Harveyi groups represented the main Vibrio group at 22°C (80%) and 37°C (99·5%), respectively. CONCLUSIONS The combination of q-PCR assays and the sequencing of pyrH and toxR genes highlighted two different Vibrio communities at 22 and 37°C both dominated by pathogenic species for marine organisms. SIGNIFICANCE AND IMPACT OF THE STUDY The sequencing of the pyrH gene revealed to be a valuable tool to identify environmental Vibrio spp. strains isolated at 22°C, as 92·3% of them were identified in this study.
Collapse
Affiliation(s)
- A Tall
- Laboratoire Microbiologie-LNR, Unité Environnement, Microbiologie et Phycotoxines, Département Ressources Biologiques et Environnement, Centre de Brest, Ifremer, Plouzané, France
| | | | | | | | | | | | | |
Collapse
|
18
|
Marin MA, Thompson CC, Freitas FS, Fonseca EL, Aboderin AO, Zailani SB, Quartey NKE, Okeke IN, Vicente ACP. Cholera outbreaks in Nigeria are associated with multidrug resistant atypical El Tor and non-O1/non-O139 Vibrio cholerae. PLoS Negl Trop Dis 2013; 7:e2049. [PMID: 23459673 PMCID: PMC3573102 DOI: 10.1371/journal.pntd.0002049] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/19/2012] [Indexed: 01/18/2023] Open
Abstract
Background The current millennium has seen a steep rise in the number, size and case-fatalities of cholera outbreaks in many African countries. Over 40,000 cases of cholera were reported from Nigeria in 2010. Variants of Vibrio cholerae O1 El Tor biotype have emerged but very little is known about strains causing cholera outbreaks in West Africa, which is crucial for the implementation of interventions to control epidemic cholera. Methodology/Principal Findings V. cholerae isolates from outbreaks of acute watery diarrhea in Nigeria from December, 2009 to October, 2010 were identified by standard culture methods. Fifteen O1 and five non-O1/non-O139 strains were analyzed; PCR and sequencing targeted regions associated with virulence, resistance and biotype were performed. We also studied genetic interrelatedness among the strains by multilocus sequence analysis and pulsed-field gel electrophoresis. The antibiotic susceptibility was tested by the disk diffusion method and E-test. We found that multidrug resistant atypical El Tor strains, with reduced susceptibility to ciprofloxacin and chloramphenicol, characterized by the presence of the SXT element, and gyrASer83Ile/parCSer85Leu alleles as well CTX phage and TCP cluster characterized by rstRElTor, ctxB-7 and tcpACIRS alleles, respectively, were largely responsible for cholera outbreaks in 2009 and 2010. We also identified and characterized a V. cholerae non-O1/non-O139 lineage from cholera-like diarrhea cases in Nigeria. Conclusions/Significance The recent Nigeria outbreaks have been determined by multidrug resistant atypical El Tor and non-O1/non-O139 V. cholerae strains, and it seems that the typical El Tor, from the beginning of seventh cholera pandemic, is no longer epidemic/endemic in this country. This scenario is similar to the East Africa, Asia and Caribbean countries. The detection of a highly virulent, antimicrobial resistant lineage in Nigeria is worrisome and points to a need for vaccine-based control of the disease. This study has also revealed the putative importance of non-O1/non-O139 V. cholerae in diarrheal disease in Nigeria. Cholera is acute watery diarrhoea, severely dehydrating, caused by Vibrio cholerae, a bacterium ubiquitous in aquatic environments. Cholera is a global threat, particularly, in areas where sanitary conditions, such as drinking water and sewage, are not available. Seven cholera pandemics, all originating in Asia, occurred. The ongoing pandemic, the 7th, has been caused by V. cholerae El Tor biotype. Recently, El Tor has undergone genetic changes and the strains being referred to as “atypical” El Tor are rapidly replacing the original El Tor in many areas. The atypical El Tor is characterized by multi-antibiotic resistance and changes in the major virulence determinants. Cholera caused by atypical strains may be more clinically severe. In Africa, cholera outbreaks are occurring with increasing frequency and severity, as demonstrated by the recent major outbreaks in Nigeria, Angola, Mozambique and Zimbabwe. Here, we performed a comprehensive characterization of V. cholerae isolated from different recent outbreaks in Nigeria. Our results show that cholera outbreaks in Nigeria are driven by atypical El Tor strains, as worldwide.
Collapse
Affiliation(s)
- Michel A. Marin
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Cristiane C. Thompson
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Fernanda S. Freitas
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Erica L. Fonseca
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - A. Oladipo Aboderin
- Department of Medical Microbiology & Parasitology, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Sambo B. Zailani
- Department of Medical Microbiology and Parasitology, University of Maiduguri, Maiduguri, Nigeria
| | - Naa Kwarley E. Quartey
- Department of Biology, Haverford College, Haverford, Pennsylvania, United States of America
| | - Iruka N. Okeke
- Department of Biology, Haverford College, Haverford, Pennsylvania, United States of America
| | - Ana Carolina P. Vicente
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
19
|
Ushijima B, Smith A, Aeby GS, Callahan SM. Vibrio owensii induces the tissue loss disease Montipora white syndrome in the Hawaiian reef coral Montipora capitata. PLoS One 2012; 7:e46717. [PMID: 23056419 PMCID: PMC3466290 DOI: 10.1371/journal.pone.0046717] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/03/2012] [Indexed: 11/18/2022] Open
Abstract
Incidences of coral disease in the Indo-Pacific are increasing at an alarming rate. In particular, Montipora white syndrome, a tissue-loss disease found on corals throughout the Hawaiian archipelago, has the potential to degrade Hawaii’s reefs. To identify the etiologic agent of Montipora white syndrome, bacteria were isolated from a diseased fragment of Montipora capitata and used in a screen for virulent strains. A single isolate, designated strain OCN002, recreated disease signs in 53% of coral fragments in laboratory infection trials when added to a final concentration of 107 cells/ml of seawater. In addition to displaying similar signs of disease, diseased coral fragments from the field and those from infection trials both had a dramatic increase in the abundance of associated culturable bacteria, with those of the genus Vibiro well represented. Bacteria isolated from diseased fragments used in infection trails were shown to be descendants of the original OCN002 inocula based on both the presence of a plasmid introduced to genetically tag the strain and the sequence of a region of the OCN002 genome. In contrast, OCN002 was not re-isolated from fragments that were exposed to the strain but did not develop tissue loss. Sequencing of the rrsH gene, metabolic characterization, as well as multilocus sequence analysis indicated that OCN002 is a strain of the recently described species Vibrio owensii. This investigation of Montipora white syndrome recognizes V. owensii OCN002 as the first bacterial coral pathogen identified from Hawaii’s reefs and expands the range of bacteria known to cause disease in corals.
Collapse
Affiliation(s)
- Blake Ushijima
- Department of Microbiology, University of Hawaii, Honolulu, Hawaii, United States of America
- Hawaii Institute of Marine Biology, Kaneohe, Hawaii, United States of America
| | - Ashley Smith
- Department of Microbiology, University of Hawaii, Honolulu, Hawaii, United States of America
- Hawaii Institute of Marine Biology, Kaneohe, Hawaii, United States of America
| | - Greta S. Aeby
- Hawaii Institute of Marine Biology, Kaneohe, Hawaii, United States of America
| | - Sean M. Callahan
- Department of Microbiology, University of Hawaii, Honolulu, Hawaii, United States of America
- * E-mail:
| |
Collapse
|
20
|
A genome sequence-based approach to taxonomy of the genus Nocardia. Antonie van Leeuwenhoek 2012; 102:481-91. [DOI: 10.1007/s10482-012-9780-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
|
21
|
Tall A, Teillon A, Boisset C, Delesmont R, Touron-Bodilis A, Hervio-Heath D. Real-time PCR optimization to identify environmental Vibrio spp. strains. J Appl Microbiol 2012; 113:361-72. [DOI: 10.1111/j.1365-2672.2012.05350.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- A. Tall
- Laboratoire de Microbiologie-LNR; Département Ressources Biologiques et Environnement; Unité Environnement Microbiologie et Phycotoxines; Ifremer, Centre de Brest; ZI de la Pointe du Diable; Plouzané; France
| | - A. Teillon
- Laboratoire de Microbiologie-LNR; Département Ressources Biologiques et Environnement; Unité Environnement Microbiologie et Phycotoxines; Ifremer, Centre de Brest; ZI de la Pointe du Diable; Plouzané; France
| | - C. Boisset
- Laboratoire Biotechnologies et Molécules Marines; Département Ressources Biologiques et Environnement; Ifremer, Centre de Brest; ZI de la Pointe du Diable; Plouzané; France
| | - R. Delesmont
- Eurofins IPL Nord; Route du Grand Colombier; Gravelines; France
| | - A. Touron-Bodilis
- Laboratoire National d'Hydraulique et Environnement; EDF R&D; Chatou Cedex; France
| | - D. Hervio-Heath
- Laboratoire de Microbiologie-LNR; Département Ressources Biologiques et Environnement; Unité Environnement Microbiologie et Phycotoxines; Ifremer, Centre de Brest; ZI de la Pointe du Diable; Plouzané; France
| |
Collapse
|
22
|
Thompson CC, Freitas FS, Marin MA, Fonseca EL, Okeke IN, Vicente ACP. Vibrio cholerae O1 lineages driving cholera outbreaks during seventh cholera pandemic in Ghana. INFECTION GENETICS AND EVOLUTION 2011; 11:1951-6. [DOI: 10.1016/j.meegid.2011.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 08/05/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
|
23
|
Ecology and genetic structure of a northern temperate Vibrio cholerae population related to toxigenic isolates. Appl Environ Microbiol 2011; 77:7568-75. [PMID: 21926213 DOI: 10.1128/aem.00378-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although Vibrio cholerae is an important human pathogen, little is known about its populations in regions where the organism is endemic but where cholera disease is rare. A total of 31 independent isolates confirmed as V. cholerae were collected from water, sediment, and oysters in 2008 and 2009 from the Great Bay Estuary (GBE) in New Hampshire, a location where the organism has never been detected. Environmental analyses suggested that abundance correlates most strongly with rainfall events, as determined from data averaged over several days prior to collection. Phenotyping, genotyping, and multilocus sequence analysis (MLSA) revealed a highly diverse endemic population, with clones recurring in both years. Certain isolates were closely related to toxigenic O1 strains, yet no virulence genes were detected. Multiple statistical tests revealed evidence of recombination among strains that contributed to allelic diversity equally as mutation. This relatively isolated population discovered on the northern limit of detection for V. cholerae can serve as a model of natural population dynamics that augments predictive models for disease emergence.
Collapse
|
24
|
Dashtbani-Roozbehani A, Bakhshi B, Katouli M, Pourshafie MR. Comparative sequence analysis of recA gene among Vibrio cholerae isolates from Iran with globally reported sequences. Lett Appl Microbiol 2011; 53:313-23. [PMID: 21707677 DOI: 10.1111/j.1472-765x.2011.03108.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To study the genetic relatedness between V. cholerae isolates from Iran and other countries based on housekeeping gene recA sequence analysis. METHODS AND RESULTS A 995-bp region of the recA gene from 24 V. cholerae isolates obtained from human and surface water origins in Iran over a 5-year period was sequenced and compared with the sequence data from the isolates belonging to other places. Cluster analysis of the constructed dendrogram based on recA sequence divergence for our clinical isolates showed one sequence type (ST), whereas environmental isolates revealed eight STs. Interestingly, one of our environmental isolates was intermixed with clinical isolates in the largest cluster containing the epidemic strains. Our 24 isolates plus 198 global isolates available in the GenBank showed 77 sequence types (STs) with at least one nucleotide difference. CONCLUSIONS Our result suggested that recA sequencing is a reliable analysis method for understanding the relatedness of the local isolates with the isolates obtained elsewhere. SIGNIFICANCE AND IMPACT OF THE STUDY Understanding the genetic relatedness between V. cholerae isolates could give insights into the health care system for better control and prevention of the cholera.
Collapse
|
25
|
Feng Y, Cronan JE. The Vibrio cholerae fatty acid regulatory protein, FadR, represses transcription of plsB, the gene encoding the first enzyme of membrane phospholipid biosynthesis. Mol Microbiol 2011; 81:1020-33. [PMID: 21771112 DOI: 10.1111/j.1365-2958.2011.07748.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glycerol-3-phosphate (sn-glycerol-3-P, G3P) acyltransferase catalyses the first committed step in the biosynthesis of membrane phospholipids, the acylation of G3P to form 1-acyl G3P (lysophosphatidic acid). The paradigm G3P acyltransferase is the Escherichia coli plsB gene product which acylates position-1 of G3P using fatty acids in thioester linkage to either acyl carrier protein (ACP) or CoA as acyl donors. Although the E. coli plsB gene was discovered about 30 years ago, no evidence for transcriptional control of its expression has been reported. However A.E. Kazakov and co-workers (J Bacteriol 2009; 191: 52-64) reported the presence of a putative FadR binding site upstream of the candidate plsB genes of Vibrio cholerae and three other Vibrio species suggesting that plsB might be regulated by FadR, a GntR family transcription factor thus far known only to regulate fatty acid synthesis and degradation. We report that the V. cholerae plsB homologue restored growth of E. coli strain BB26-36 which is a G3P auxotroph due to an altered G3P acyltransferase activity. The plsB promoter was also mapped and the predicted FadR-binding palindrome was found to span positions -19 to -35, upstream of the transcription start site. Gel shift assays confirmed that both V. cholerae FadR and E. coli FadR bound the V. cholerae plsB promoter region and binding was reversed upon addition of long-chain fatty acyl-CoA thioesters. The expression level of the V. cholerae plsB gene was elevated two- to threefold in an E. coli fadR null mutant strain indicating that FadR acts as a repressor of V. cholerae plsB expression. In both E. coli and V. cholerae the β-galactosidase activity of transcriptional fusions of the V. cholerae plsB promoter to lacZ increased two- to threefold upon supplementation of growth media with oleic acid. Therefore, V. cholerae co-ordinates fatty acid metabolism with 1-acyl G3P synthesis.
Collapse
Affiliation(s)
- Youjun Feng
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
26
|
Recombination shapes the structure of an environmental Vibrio cholerae population. Appl Environ Microbiol 2010; 77:537-44. [PMID: 21075874 DOI: 10.1128/aem.02062-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae consists of pathogenic strains that cause sporadic gastrointestinal illness or epidemic cholera disease and nonpathogenic strains that grow and persist in coastal aquatic ecosystems. Previous studies of disease-causing strains have shown V. cholerae to be a primarily clonal bacterial species, but isolates analyzed have been strongly biased toward pathogenic genotypes, while representing only a small sample of the vast diversity in environmental strains. In this study, we characterized homologous recombination and structure among 152 environmental V. cholerae isolates and 13 other putative Vibrio isolates from coastal waters and sediments in central California, as well as four clinical V. cholerae isolates, using multilocus sequence analysis of seven housekeeping genes. Recombinant regions were identified by at least three detection methods in 72% of our V. cholerae isolates. Despite frequent recombination, significant linkage disequilibrium was still detected among the V. cholerae sequence types. Incongruent but nonrandom associations were observed for maximum likelihood topologies from the individual loci. Overall, our estimated recombination rate in V. cholerae of 6.5 times the mutation rate is similar to those of other sexual bacteria and appears frequently enough to restrict selection from purging much of the neutral intraspecies diversity. These data suggest that frequent recombination among V. cholerae may hinder the identification of ecotypes in this bacterioplankton population.
Collapse
|
27
|
Serrano W, Amann R, Rosselló-Mora R, Fischer U. Evaluation of the use of multilocus sequence analysis (MLSA) to resolve taxonomic conflicts within the genus Marichromatium. Syst Appl Microbiol 2010; 33:116-21. [DOI: 10.1016/j.syapm.2009.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/15/2009] [Accepted: 12/18/2009] [Indexed: 10/19/2022]
|
28
|
Lin B, Wang Z, Malanoski AP, O'Grady EA, Wimpee CF, Vuddhakul V, Alves Jr N, Thompson FL, Gomez-Gil B, Vora GJ. Comparative genomic analyses identify the Vibrio harveyi genome sequenced strains BAA-1116 and HY01 as Vibrio campbellii. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:81-89. [PMID: 20686623 PMCID: PMC2912166 DOI: 10.1111/j.1758-2229.2009.00100.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 10/07/2009] [Indexed: 05/12/2023]
Abstract
Three notable members of the Harveyi clade, Vibrio harveyi, Vibrio alginolyticus and Vibrio parahaemolyticus, are best known as marine pathogens of commercial and medical import. In spite of this fact, the discrimination of Harveyi clade members remains difficult due to genetic and phenotypic similarities, and this has led to misidentifications and inaccurate estimations of a species' involvement in certain environments. To begin to understand the underlying genetics that complicate species level discrimination, we compared the genomes of Harveyi clade members isolated from different environments (seawater, shrimp, corals, oysters, finfish, humans) using microarray-based comparative genomic hybridization (CGH) and multilocus sequence analyses (MLSA). Surprisingly, we found that the only two V. harveyi strains that have had their genomes sequenced (strains BAA-1116 and HY01) have themselves been misidentified. Instead of belonging to the species harveyi, they are actually members of the species campbellii. In total, 28% of the strains tested were found to be misidentified and 42% of these appear to comprise a novel species. Taken together, our findings correct a number of species misidentifications while validating the ability of both CGH and MLSA to distinguish closely related members of the Harveyi clade.
Collapse
Affiliation(s)
- Baochuan Lin
- Center for Bio/Molecular Science & Engineering, Naval Research LaboratoryWashington, DC, USA
| | - Zheng Wang
- Center for Bio/Molecular Science & Engineering, Naval Research LaboratoryWashington, DC, USA
| | - Anthony P Malanoski
- Center for Bio/Molecular Science & Engineering, Naval Research LaboratoryWashington, DC, USA
| | - Elizabeth A O'Grady
- Department of Biological Sciences, University of Wisconsin-MilwaukeeMilwaukee, WI, USA
| | - Charles F Wimpee
- Department of Biological Sciences, University of Wisconsin-MilwaukeeMilwaukee, WI, USA
| | - Varaporn Vuddhakul
- Department of Microbiology, Prince of Songkla UniversityHat Yai, Thailand
| | - Nelson Alves Jr
- Department of Genetics, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Fabiano L Thompson
- Department of Genetics, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | | | - Gary J Vora
- Center for Bio/Molecular Science & Engineering, Naval Research LaboratoryWashington, DC, USA
- *For correspondence. E-mail ; Tel. (+1) 202 767 0394; Fax (+1) 202 404 8688
| |
Collapse
|
29
|
Alves N, Neto OSM, Silva BSO, De Moura RL, Francini-Filho RB, Barreira E Castro C, Paranhos R, Bitner-Mathé BC, Kruger RH, Vicente ACP, Thompson CC, Thompson FL. Diversity and pathogenic potential of vibrios isolated from Abrolhos Bank corals. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:90-95. [PMID: 23766002 DOI: 10.1111/j.1758-2229.2009.00101.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We performed the first taxonomic characterization of vibrios and other culturable microbiota from apparently healthy and diseased Brazilian-endemic corals at the Abrolhos reef bank. The diseases affecting corals were tissue necrosis in Phyllogorgia dillatata, white plague and bleaching in Mussismilia braziliensis and bleaching in Mussismilia hispida. Bacterial isolates were obtained from mucus of 22 coral specimens originated from the Abrolhos Bank (i.e. Itacolomis reef, Recife de Fora reef and Santa Barbara Island) in 2007. Vibrios counts in the water and coral mucus were approximately 104 cfu ml(-1) and 106 cfu ml(-1) respectively. One hundred and thirty-one representative vibrio isolates were identified. Most vibrio isolates (n = 79) fell into the core group using the pyrH identification marker. According to our analysis, diseased corals did not possess a unique vibrio microbiota. Vibrio species encompassed strains originated from both apparently healthy and diseased corals. The pathogenic potential of representative vibrio isolates (V. alginolyticus 40B, V. harveyi-like 1DA3 and V. coralliilyticus 2DA3) were evaluated in a standardized bioassay using the animal model Drosophila melanogaster and caused 25-88% mortality. This is the first taxonomic characterization of the culturable microbiota from the Brazilian-endemic corals. Endemic Brazilian corals are a reservoir of the vibrio core group. Vibrio alginolyticus, V. harveyi and V. coralliilyticus are dominant in the mucus of these corals and may be a normal component of the holobiont.
Collapse
Affiliation(s)
- Nelson Alves
- Department of Genetics, Laboratory of Hydrobiology, Laboratory of Population Genetics of Drosophila Department of Genetics, Institute of Biology, and National Museum, Coral Vivo, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil. Conservation International Brazil, Marine Program, BA, Brazil. Department of Biology, Paraiba State University, Campina Grande, PB, Brazil. Department of Enzymology, University of Brasilia, DF, Brazil. Laboratory of Molecular Genetics of Microrganims, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Purdy AE, Balch D, Lizárraga-Partida ML, Islam MS, Martinez-Urtaza J, Huq A, Colwell RR, Bartlett DH. Diversity and distribution of cholix toxin, a novel ADP-ribosylating factor from Vibrio cholerae. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:198-207. [PMID: 23766017 DOI: 10.1111/j.1758-2229.2010.00139.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Non-toxigenic non-O1, non-O139 Vibrio cholerae strains isolated from both environmental and clinical settings carry a suite of virulence factors aside from cholera toxin. Among V. cholerae strains isolated from coastal waters of southern California, this includes cholix toxin, an ADP-ribosylating factor that is capable of halting protein synthesis in eukaryotic cells. The prevalence of the gene encoding cholix toxin, chxA, was assessed among a collection of 155 diverse V. cholerae strains originating from both clinical and environmental settings in Bangladesh and Mexico and other countries around the globe. The chxA gene was present in 47% of 83 non-O1, non-O139 strains and 16% of 72 O1/O139 strains screened as part of this study. A total of 86 chxA gene sequences were obtained, and phylogenetic analysis revealed that they fall into two distinct clades. These two clades were also observed in the phylogenies of several housekeeping genes, suggesting that the divergence observed in chxA extends to other regions of the V. cholerae genome, and most likely has arisen from vertical descent rather than horizontal transfer. Our results clearly indicate that ChxA is a major toxin of V. cholerae with a worldwide distribution that is preferentially associated with non-pandemic strains.
Collapse
Affiliation(s)
- Alexandra E Purdy
- Marine Biology Research Division and Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, 8750 Biological Grade, La Jolla, CA 92093-0202, USA. Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), km. 107 Carr, Tijuana-Ensenada, 22860 B.C. México. International Center for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh. Instituto de Acuicultura, Universidad de Santiago de Compostela, Santiago de Compostela, Spain. Maryland Pathogen Research Institute and 7Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Thompson CC, Vicente ACP, Souza RC, Vasconcelos ATR, Vesth T, Alves N, Ussery DW, Iida T, Thompson FL. Genomic taxonomy of Vibrios. BMC Evol Biol 2009; 9:258. [PMID: 19860885 PMCID: PMC2777879 DOI: 10.1186/1471-2148-9-258] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 10/27/2009] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Vibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful taxonomic information (i.e. data that can be used to distinguish different taxonomic levels, such as species and genera) from 32 genome sequences of different vibrio species. We use a variety of tools to explore the taxonomic relationship between the sequenced genomes, including Multilocus Sequence Analysis (MLSA), supertrees, Average Amino Acid Identity (AAI), genomic signatures, and Genome BLAST atlases. Our aim is to analyse the usefulness of these tools for species identification in vibrios. RESULTS We have generated four new genome sequences of three Vibrio species, i.e., V. alginolyticus 40B, V. harveyi-like 1DA3, and V. mimicus strains VM573 and VM603, and present a broad analyses of these genomes along with other sequenced Vibrio species. The genome atlas and pangenome plots provide a tantalizing image of the genomic differences that occur between closely related sister species, e.g. V. cholerae and V. mimicus. The vibrio pangenome contains around 26504 genes. The V. cholerae core genome and pangenome consist of 1520 and 6923 genes, respectively. Pangenomes might allow different strains of V. cholerae to occupy different niches. MLSA and supertree analyses resulted in a similar phylogenetic picture, with a clear distinction of four groups (Vibrio core group, V. cholerae-V. mimicus, Aliivibrio spp., and Photobacterium spp.). A Vibrio species is defined as a group of strains that share > 95% DNA identity in MLSA and supertree analysis, > 96% AAI, < or = 10 genome signature dissimilarity, and > 61% proteome identity. Strains of the same species and species of the same genus will form monophyletic groups on the basis of MLSA and supertree. CONCLUSION The combination of different analytical and bioinformatics tools will enable the most accurate species identification through genomic computational analysis. This endeavour will culminate in the birth of the online genomic taxonomy whereby researchers and end-users of taxonomy will be able to identify their isolates through a web-based server. This novel approach to microbial systematics will result in a tremendous advance concerning biodiversity discovery, description, and understanding.
Collapse
Affiliation(s)
- Cristiane C Thompson
- Laboratory of Molecular Genetics of Microrganims, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Ana Carolina P Vicente
- Laboratory of Molecular Genetics of Microrganims, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Rangel C Souza
- National Laboratory for Scientific Computing, Department of Applied and Computational Mathematics, Laboratory of Bioinformatics, Av. Getúlio Vargas 333, Quitandinha, 25651-070, Petropolis, RJ, Brazil
| | - Ana Tereza R Vasconcelos
- National Laboratory for Scientific Computing, Department of Applied and Computational Mathematics, Laboratory of Bioinformatics, Av. Getúlio Vargas 333, Quitandinha, 25651-070, Petropolis, RJ, Brazil
| | - Tammi Vesth
- Center for Biological Sequence Analysis, Department of Biotechnology, Building 208, The Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Nelson Alves
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, UFRJ, Brazil
| | - David W Ussery
- Center for Biological Sequence Analysis, Department of Biotechnology, Building 208, The Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Tetsuya Iida
- Laboratory of Genomic Research on Pathogenic Bacteria, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Fabiano L Thompson
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, UFRJ, Brazil
| |
Collapse
|
33
|
Pascual J, Macián MC, Arahal DR, Garay E, Pujalte MJ. Multilocus sequence analysis of the central clade of the genus Vibrio by using the 16S rRNA, recA, pyrH, rpoD, gyrB, rctB and toxR genes. Int J Syst Evol Microbiol 2009; 60:154-165. [PMID: 19648344 DOI: 10.1099/ijs.0.010702-0] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The central clade of the genus Vibrio, also called the Vibrio core group, comprises six species that are tightly related (DNA-DNA reassociation values are very close to 70 % for most species pairs). Identification of novel strains to the species level within this group is troublesome and results are quite often dependent on the methodology employed. Therefore, this group represents an excellent framework to test the robustness of multilocus sequence analysis (MLSA) not only for inferring phylogeny but also as an identification tool without the need for DNA-DNA hybridization assays. The genes selected, 16S rRNA, recA, pyrH, rpoD, gyrB, rctB and toxR, were amplified by direct PCR from 44 Vibrio core-group strains. Subsequent analysis allowed us to recognize toxR and rpoD as the most resolving individual genes and showed that concatenated sequences of rpoD, rctB and toxR were more useful than concatenated sequences of all seven genes. To validate our conclusions, MLSA similarities have been correlated with DNA-DNA relatedness values obtained in this study and values taken from the literature. Although the seven concatenated genes gave the best correlation, the concatenated sequences of rpoD, rctB and toxR have the practical advantage of showing a considerable gap between the maximal interspecies similarity and the minimal intraspecies similarity recorded, meaning that they can be used quite conveniently for species identification of vibrios.
Collapse
Affiliation(s)
- Javier Pascual
- Departamento de Microbiología y Ecología, Universidad de Valencia, Spain.,Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBiBE), Universidad de Valencia, Spain
| | - M Carmen Macián
- Colección Española de Cultivos Tipo (CECT), Universidad de Valencia, Spain.,Departamento de Microbiología y Ecología, Universidad de Valencia, Spain
| | - David R Arahal
- Colección Española de Cultivos Tipo (CECT), Universidad de Valencia, Spain.,Departamento de Microbiología y Ecología, Universidad de Valencia, Spain
| | - Esperanza Garay
- Colección Española de Cultivos Tipo (CECT), Universidad de Valencia, Spain.,Departamento de Microbiología y Ecología, Universidad de Valencia, Spain
| | - María J Pujalte
- Colección Española de Cultivos Tipo (CECT), Universidad de Valencia, Spain.,Departamento de Microbiología y Ecología, Universidad de Valencia, Spain
| |
Collapse
|
34
|
Vibrios dominate as culturable nitrogen-fixing bacteria of the Brazilian coral Mussismilia hispida. Syst Appl Microbiol 2008; 31:312-9. [DOI: 10.1016/j.syapm.2008.06.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|