1
|
Butt M, Choi DG, Kim JM, Lee JK, Baek JH, Jeon CO. Marinomonas rhodophyticola sp. nov. and Marinomonas phaeophyticola sp. nov., isolated from marine algae. Int J Syst Evol Microbiol 2024; 74:006366. [PMID: 38700924 PMCID: PMC11165874 DOI: 10.1099/ijsem.0.006366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
Two Gram-stain-negative, facultatively aerobic, and motile rod bacteria, designated as strains KJ51-3T and 15G1-11T, were isolated from marine algae collected in the Republic of Korea. Both strains exhibited catalase- and oxidase-positive activities. Optimum growth conditions for strain KJ51-3T were observed at 30 °C and pH 6.0-8.0, with 1.0-7.0 % (w/v) NaCl, whereas strain 15G1-11T exhibited optimal growth at 30 °C, pH 7.0, and 1.0-5.0 % NaCl. Major fatty acids detected in both strains included C16 : 0, C10 : 0 3-OH and summed features 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). As for polar lipids, strain KJ51-3T contained phosphatidylethanolamine (PE), phosphatidylglycerol (PG), diphosphatidylglycerol, and two unidentified phospholipids, whereas strain 15G1-11T had PE, PG, and an unidentified aminolipid. Ubiquinone-8 was the predominant respiratory quinone in both strains, with minor detection of ubiquinone-9 in strain KJ51-3T. The genomic DNA G+C contents were 44.0 mol% for strain KJ51-3T and 40.5 mol% for strain 15G1-11T. Phylogenetic analyses based on both 16S rRNA gene and genome sequences placed strains KJ51-3T and 15G1-11T into distinct lineages within the genus Marinomonas, most closely related to Marinomonas arctica 328T (98.6 %) and Marinomonas algicola SM1966T (98.3 %), respectively. Strains KJ51-3T and 15G1-11T exhibited a 94.6 % 16S rRNA gene sequence similarity and a 70.7 % average nucleotide identity (ANI), with ANI values of 91.9 and 79.3 % between them and M. arctica 328T and M. algicola SM1966T, respectively, indicating that they represent novel species. In summary, based on their phenotypic, chemotaxonomic, and phylogenetic properties, strains KJ51-3T and 15G1-11T are proposed to represent novel species within the genus Marinomonas, for which the names Marinomonas rhodophyticola sp. nov. (KJ51-3T=KACC 22756T=JCM 35591T) and Marinomonas phaeophyticola sp. nov. (15G1-11T=KACC 22593T=JCM 35412T) are respectively proposed.
Collapse
Affiliation(s)
- Mahrukh Butt
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dae Gyu Choi
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jeong Min Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jae Kyeong Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ju Hye Baek
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
2
|
Lucas-Elío P, ElAlami T, Martínez A, Sanchez-Amat A. Marinomonas mediterranea synthesizes an R-type bacteriocin. Appl Environ Microbiol 2024; 90:e0127323. [PMID: 38169292 PMCID: PMC10870725 DOI: 10.1128/aem.01273-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024] Open
Abstract
Prophages integrated into bacterial genomes can become cryptic or defective prophages, which may evolve to provide various traits to bacterial cells. Previous research on Marinomonas mediterranea MMB-1 demonstrated the production of defective particles. In this study, an analysis of the genomes of three different strains (MMB-1, MMB-2, and MMB-3) revealed the presence of a region named MEDPRO1, spanning approximately 52 kb, coding for a defective prophage in strains MMB-1 and MMB-2. This prophage seems to have been lost in strain MMB-3, possibly due to the presence of spacers recognizing this region in an I-F CRISPR array in this strain. However, all three strains produce remarkably similar defective particles. Using strain MMB-1 as a model, mass spectrometry analyses indicated that the structural proteins of the defective particles are encoded by a second defective prophage situated within the MEDPRO2 region, spanning approximately 13 kb. This finding was further validated through the deletion of this second defective prophage. Genomic region analyses and the detection of antimicrobial activity of the defective prophage against other Marinomonas species suggest that it is an R-type bacteriocin. Marinomonas mediterranea synthesizes antimicrobial proteins with lysine oxidase activity, and the synthesis of an R-type bacteriocin constitutes an additional mechanism in microbial competition for the colonization of habitats such as the surface of marine plants.IMPORTANCEThe interactions between bacterial strains inhabiting the same environment determine the final composition of the microbiome. In this study, it is shown that some extracellular defective phage particles previously observed in Marinomonas mediterranea are in fact R-type bacteriocins showing antimicrobial activity against other Marinomonas strains. The operon coding for the R-type bacteriocin has been identified.
Collapse
Affiliation(s)
- Patricia Lucas-Elío
- Department of Genetics and Microbiology, University of Murcia, Murcia, Spain
| | - Tarik ElAlami
- Department of Genetics and Microbiology, University of Murcia, Murcia, Spain
| | - Alicia Martínez
- Department of Genetics and Microbiology, University of Murcia, Murcia, Spain
| | | |
Collapse
|
3
|
Adaptation Potential of Three Psychrotolerant Aquatic Bacteria in the Pan-Okhotsk Region. WATER 2022. [DOI: 10.3390/w14071107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Pan-Okhotsk region, which is part of the western North Pacific Ocean, is famous for its active volcanoes, which are part of the Pacific Ring of Fire and that enrich the surrounding waters with essential chemicals. Therefore, this region, including the Sea of Okhotsk and the Sea of Japan, is characterized by rich biota. Bacterioplankton plays a significant part in biological communities and is an indicator of ecosystem function. Analyzing the adaptability of three representatives of the microbiota of the Pan-Okhotsk region was the goal of our investigation. Marinomonas primoryensis KMM3633T (MP), Yersinia ruckeri KMM821 (YR), and Yersinia pseudotuberculosis 598 (YP) from the G.B. Elyakov Pacific Institute of Bioorganic Chemistry were studied by means of genomic and bioinformatic methods. The list of membrane translocator proteins, metabolism pathways, and cold shock and antifreeze proteins that were revealed in the genome of MP characterized this bacterium as being adaptable to free living in marine conditions, even at winter temperatures. The genomic potential of YR and YP makes not only survival in the environment of the Pan-Okhotsk region but also pathogenesis in eukaryotic organisms possible. The data obtained will serve as a basis for further ecosystem monitoring with the help of microbiota research.
Collapse
|
4
|
Tomco PL, Duddleston KN, Driskill A, Hatton JJ, Grond K, Wrenn T, Tarr MA, Podgorski DC, Zito P. Dissolved organic matter production from herder application and in-situ burning of crude oil at high latitudes: Bioavailable molecular composition patterns and microbial community diversity effects. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127598. [PMID: 34798546 DOI: 10.1016/j.jhazmat.2021.127598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/09/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Chemical herders and in-situ burning (ISB) are designed to mitigate the effects that oil spills may have on the high latitude marine environment. Little information exists on the water solubilization of petroleum residues stemming from chemically herded ISB and whether these bioavailable compounds have measurable impacts on marine biota. In this experiment, we investigated the effects of Siltech OP40 and crude oil ISB on a) petroleum-derived dissolved organic matter (DOMHC) composition and b) seawater microbial community diversity over 28 days at 4 °C in aquarium-scale mesocosms. Ultra-high resolution mass spectrometry and fluorescence spectroscopy revealed increases in aromaticity over time, with ISB and ISB+OP40 samples having higher % aromatic classes in the initial incubation periods. ISB+OP40 contained a nearly 12-fold increase in the number of DOMHC formulae relative to those before ISB. 16S rRNA gene sequencing identified differences in microbial alpha diversity between seawater, ISB, OP40, and ISB+OP40. Microbial betadiversity shifts were observed that correlated strongly with aromatic/condensed relative abundance and incubation time. Proteobacteria, specifically from the genera Marinomonas and Perlucidibaca experienced -22 and +24 log2-fold changes in ISB+OP40 vs. seawater, respectively. These findings provide an important opportunity to advance our understanding of chemical herders and ISB in the high latitude marine environment.
Collapse
Affiliation(s)
- Patrick L Tomco
- Department of Chemistry, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA.
| | - Khrystyne N Duddleston
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA
| | - Adrienne Driskill
- Department of Chemistry, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA
| | - Jasmine J Hatton
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA
| | - Kirsten Grond
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA
| | - Toshia Wrenn
- Department of Chemistry, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA
| | - Matthew A Tarr
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA
| | - David C Podgorski
- Department of Chemistry, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA; Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA; Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, LA 70148, USA; Pontchartrain Institute for Environmental Sciences, Shea Penland Coastal Education and Research Facility, University of New Orleans, New Orleans, LA 70148, USA
| | - Phoebe Zito
- Department of Chemistry, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA; Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA; Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
5
|
Ying JJ, Fang YC, Ye YL, Wu ZC, Xu L, Han BN, Sun C. Marinomonas vulgaris sp. nov., a marine bacterium isolated from seawater in a coastal intertidal zone of Zhoushan island. Arch Microbiol 2021; 203:5133-5139. [PMID: 34319420 DOI: 10.1007/s00203-021-02500-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/01/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
A Marinomonas-like, Gram-stain-negative, strictly aerobic and rod to ovoid-shaped bacterium, designated as strain A79T, was isolated from the seawater mixtures of oyster shells and brown algae in a coastal intertidal zone of Zhoushan, China. The strain was positive for oxidase and catalase. Colonies grown on marine agar for 48 h were round, milky white, smooth and moist with the diameter of 2-3 mm. Growth was observed at 15-30 °C (optimum, 25℃), pH 5.5-9.5 (optimum, pH 8.5) and with 0.5-8% (w/v) NaCl (optimum, 2-2.5%). The G + C content based on the genome sequence was 46.0%. The only respiratory quinone was Q-8. The main polar lipids contained phosphatidylglycerol, phosphatidylethanolamine, unidentified glycolipids, unidentified phospholipid and three unidentified lipids. The major fatty acids (> 10%) were C16:0, Summed feature 3 (comprising C16:1 ω6c and/or C16:1 ω7c) and summed feature 8 (comprising C18:1 ω6c and/or C18:1 ω7c). The 16S rRNA gene sequence similarity between strain A79T and Marinomonas pollencensis IVIA-Po-185T was 97.4%, the similarities with other type strains of the genus Marinomonas were 93.8-96.7%. Based on the results, Marinomonas vulgaris sp. nov. was proposed as a novel species. The type strain is A79T (= MCCC 1K05799T = KCTC 82519T = JCM 34473T).
Collapse
Affiliation(s)
- Jun-Jie Ying
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Yuan-Chun Fang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Yong-Lian Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Zhi-Cheng Wu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, People's Republic of China.,Ocean College, Zhejiang University, Zhoushan, 316021, People's Republic of China
| | - Lin Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.,Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, People's Republic of China
| | - Bing-Nan Han
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Cong Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China. .,Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, People's Republic of China.
| |
Collapse
|
6
|
Statistical Optimisation and Kinetic Studies of Molybdenum Reduction Using a Psychrotolerant Marine Bacteria Isolated from Antarctica. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9060648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The extensive industrial use of the heavy metal molybdenum (Mo) has led to an emerging global pollution with its traces that can even be found in Antarctica. In response, a reduction process that transforms hexamolybdate (Mo6+) to a less toxic compound, Mo-blue, using microorganisms provides a sustainable remediation approach. The aim of this study was to investigate the reduction of Mo by a psychrotolerant Antarctic marine bacterium, Marinomonas sp. strain AQ5-A9. Mo reduction was optimised using One-Factor-At-a-Time (OFAT) and Response Surface Methodology (RSM). Subsequently, Mo reduction kinetics were further studied. OFAT results showed that maximum Mo reduction occurred in culture media conditions of pH 6.0 and 50 ppt salinity at 15 °C, with initial sucrose, nitrogen and molybdate concentrations of 2.0%, 3.0 g/L and 10 mM, respectively. Further optimization using RSM identified improved optimum conditions of pH 6.0 and 47 ppt salinity at 16 °C, with initial sucrose, nitrogen and molybdate concentrations of 1.8%, 2.25 g/L and 16 mM, respectively. Investigation of the kinetics of Mo reduction revealed Aiba as the best-fitting model. The calculated Aiba coefficient of maximum Mo reduction rate (µmax) was 0.067 h−1. The data obtained support the potential use of marine bacteria in the bioremediation of Mo.
Collapse
|
7
|
Sun XM, Chen C, Xue Z, He XY, Liu NH, Chen XL, Zhang YZ, Fan SJ, Zhang XY. Marinomonas algicola sp. nov. and Marinomonas colpomeniae sp. nov., isolated from marine macroalgae. Int J Syst Evol Microbiol 2021; 71. [PMID: 33661091 DOI: 10.1099/ijsem.0.004730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two Gram-stain-negative, aerobic, rod-shaped bacteria, polar flagellated, designated strains SM2066T and SM1966T, were respectively isolated from the surfaces of Colpomenia sinuosa and Ulva pertusa macroalgae collected off the coastal areas of Rongcheng, PR China. Strain SM2066T grew at 8-37 °C and with 0.5-7.0 % (w/v) NaCl, while strain SM1966T grew at 5-30 °C and with 0.5-8.5% (w/v) NaCl. Both of them reduced nitrate to nitrite and required Na+ for growth but neither of them hydrolysed starch and DNA. Phylogenetic analysis based on 16S rRNA gene and single-copy orthologous cluster sequences revealed that both strains SM2066T and SM1966T were affiliated with the genus Marinomonas but formed distinct phylogenetic branches from known Marinomonas species, respectively sharing the highest 16S rRNA gene sequence similarities with type strains of Marinomonas ushuaiensis (97.9 %) and Marinomonas blandensis (96.7 %). The digital DNA-DNA hybridization and average nucleotide identity values between strains SM2066T and SM1966T and type strains of closely related Marinomonas species were all below 22.9 and 79.9 mol%, respectively. The major fatty acids of the two strains were summed feature 3 (C16 : 1 ω6c/C16 : 1 ω7c), summed feature 8 (C18 : 1 ω7c) and C16 : 0, with their predominant polar lipids being phosphatidylethanolamine and phosphatidylglycerol, and their sole respiratory quinone being Q-8. The genomic DNA G+C contents of strains SM2066T and SM1966T determined from genomic sequences were 40.3 and 41.6 mol%, respectively. On the basis of the polyphasic evidence presented in this study, strains SM2066T and SM1966T are considered to represent two novel species within the genus Marinomonas, for which the names Marinomonas colpomeniae sp. nov. and Marinomonas algicola sp. nov. are proposed. The type strains are SM2066T (=MCCC 1K04390T= KCTC 82372T) and SM1966T (=MCCC 1K04387T= KCTC 72848T), respectively.
Collapse
Affiliation(s)
- Xiao-Meng Sun
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China.,Life Science College, Shandong Normal University, Jinan 250014, PR China
| | - Cui Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China.,Life Science College, Shandong Normal University, Jinan 250014, PR China
| | - Zhao Xue
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.,Life Science College, Shandong Normal University, Jinan 250014, PR China
| | - Xiao-Yan He
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Ning-Hua Liu
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Xiu-Lan Chen
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, PR China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Shou-Jin Fan
- Life Science College, Shandong Normal University, Jinan 250014, PR China
| | - Xi-Ying Zhang
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
8
|
Liao L, Gao S, Xu Y, Su S, Wen J, Yu Y, Chen B. Complete genome sequence of Marinomonas arctica BSI20414, a giant antifreeze protein-producing bacterium isolated from Arctic sea ice. Mar Genomics 2020; 57:100829. [PMID: 33867119 DOI: 10.1016/j.margen.2020.100829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 11/26/2022]
Abstract
Sea ice in the polar oceans is a dynamic and challenging environment for life to survive, with extreme gradients of temperature, salinity and nutrients etc., as well as formation of ice crystals. Bacteria surviving in sea ice attract broad attention from academia and industry, due to fascinating mechanisms for adaptation. Here we described the complete genome sequence of Marinomonas arctica BSI20414, isolated from Arctic sea ice. The strain tolerated high salinity and low temperature. Genetic features commonly related to adaptation to oxidative stress, osmotic stress and cold stress were detected in the genome. In addition, a large adhesion protein containing a putative antifreeze protein (AFP) domain was detected in the genome, similar with the giant AFP MpIBP from M. primoryensis. The presence of the putative AFP could facilitate M. arctica BSI20414 to bind to sea ice for favorable conditions and protect it from freezing. The genome sequence and the AFP reported here can provide insights into adaptation to sea ice and can be explored further for biotechnological applications.
Collapse
Affiliation(s)
- Li Liao
- Key Laboratory for Polar Science, MNR, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| | - Shanhui Gao
- Key Laboratory for Polar Science, MNR, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China; School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yi Xu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shiyuan Su
- Key Laboratory for Polar Science, MNR, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China
| | - Jiao Wen
- Key Laboratory for Polar Science, MNR, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China
| | - Yong Yu
- Key Laboratory for Polar Science, MNR, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China
| | - Bo Chen
- Key Laboratory for Polar Science, MNR, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China
| |
Collapse
|
9
|
Li Y, Sun XM, Li J, Song XY, Qin QL, Su HN, Chen XL, Zhang YZ, Fan SJ, Zhang XY. Marinomonas profundi sp. nov., isolated from deep seawater of the Mariana Trench. Int J Syst Evol Microbiol 2020; 70:5747-5752. [PMID: 32945763 DOI: 10.1099/ijsem.0.004472] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, aerobic, polarly flagellated, straight or curved rod-shaped bacterium, designated strain M1K-6T, was isolated from deep seawater samples collected from the Mariana Trench. The strain grew at -4 to 37 °C (optimum, 25-30 °C), at pH 5.5-10.0 (optimum, pH 7.0) and with 0.5-14.0 % (w/v) NaCl (optimum, 2.0 %). It did not reduce nitrate to nitrite nor hydrolyse gelatin or starch. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain M1K-6T was affiliated with the genus Marinomonas, sharing 93.1-97.0 % sequence similarity with the type strains of recognized Marinomonas species. The major cellular fatty acids were summed feature 3 (C16 : 1 ω6c/C16 : 1 ω7c), summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c), C16 : 0, C10 : 0 3-OH and C18 : 0. The predominant respiratory quinone was ubiquinone-8. Polar lipids of strain M1K-6T included phosphatidylethanolamine, phosphatidylglycerol and two unidentified lipids. The genomic G+C content of strain M1K-6T was 46.0 mol%. Based on data from the present polyphasic study, strain M1K-6T was considered to represent a novel species within the genus Marinomonas, for which the name Marinomonas profundi sp. nov. is proposed. The type strain is M1K-6T (=KCTC 72501T=MCCC 1K03890T).
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.,College of Life Sciences, Shanxi Agricultural University, Taigu 030801, PR China
| | - Xiao-Meng Sun
- College of Life Science, Shandong Normal University, Jinan 250014, PR China.,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Jian Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Hai-Nan Su
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Xiu-Lan Chen
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, PR China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Shou-Jin Fan
- College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Xi-Ying Zhang
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
10
|
John MS, Nagoth JA, Ramasamy KP, Ballarini P, Mozzicafreddo M, Mancini A, Telatin A, Liò P, Giuli G, Natalello A, Miceli C, Pucciarelli S. Horizontal gene transfer and silver nanoparticles production in a new Marinomonas strain isolated from the Antarctic psychrophilic ciliate Euplotes focardii. Sci Rep 2020; 10:10218. [PMID: 32576860 PMCID: PMC7311414 DOI: 10.1038/s41598-020-66878-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 05/23/2020] [Indexed: 01/23/2023] Open
Abstract
We isolated a novel bacterial strain from a prokaryotic consortium associated to the psychrophilic marine ciliate Euplotes focardii, endemic of the Antarctic coastal seawater. The 16S rDNA sequencing and the phylogenetic analysis revealed the close evolutionary relationship to the Antarctic marine bacterium Marinomonas sp. BSw10506 and the sub antarctic Marinomonas polaris. We named this new strain Marinomonas sp. ef1. The optimal growth temperature in LB medium was 22 °C. Whole genome sequencing and analysis showed a reduced gene loss limited to regions encoding for transposases. Additionally, five genomic islands, e.g. DNA fragments that facilitate horizontal gene transfer phenomena, were identified. Two open reading frames predicted from the genomic islands coded for enzymes belonging to the Nitro-FMN-reductase superfamily. One of these, the putative NAD(P)H nitroreductase YfkO, has been reported to be involved in the bioreduction of silver (Ag) ions and the production of silver nanoparticles (AgNPs). After the Marinomonas sp. ef1 biomass incubation with 1 mM of AgNO3 at 22 °C, we obtained AgNPs within 24 h. The AgNPs were relatively small in size (50 nm) and had a strong antimicrobial activity against twelve common nosocomial pathogenic microorganisms including Staphylococcus aureus and two Candida strains. To our knowledge, this is the first report of AgNPs biosynthesis by a Marinomonas strain. This biosynthesis may play a dual role in detoxification from silver nitrate and protection from pathogens for the bacterium and potentially for the associated ciliate. Biosynthetic AgNPs also represent a promising alternative to conventional antibiotics against common pathogens.
Collapse
Affiliation(s)
- Maria Sindhura John
- School of Bioscience and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 1, 62032, Camerino, Italy
| | - Joseph Amruthraj Nagoth
- School of Bioscience and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 1, 62032, Camerino, Italy
| | - Kesava Priyan Ramasamy
- School of Bioscience and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 1, 62032, Camerino, Italy
| | - Patrizia Ballarini
- School of Bioscience and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 1, 62032, Camerino, Italy
| | - Matteo Mozzicafreddo
- School of Bioscience and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 1, 62032, Camerino, Italy
| | - Alessio Mancini
- School of Bioscience and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 1, 62032, Camerino, Italy
| | - Andrea Telatin
- Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Program, Norwich Research Park, Norwich, UK
| | - Pietro Liò
- Computer Laboratory, University of Cambridge, 15 JJ Thomson Avenue, Cambridge, UK
| | - Gabriele Giuli
- School of Science and Technology, University of Camerino, Via Gentile III da Varano, 1, 62032, Camerino, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
| | - Cristina Miceli
- School of Bioscience and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 1, 62032, Camerino, Italy
| | - Sandra Pucciarelli
- School of Bioscience and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 1, 62032, Camerino, Italy.
| |
Collapse
|
11
|
Yu WN, Du ZZ, Chang YQ, Mu DS, Du ZJ. Marinomonas agarivorans sp. nov., an agar-degrading marine bacterium isolated from red algae. Int J Syst Evol Microbiol 2020; 70:100-104. [DOI: 10.1099/ijsem.0.003723] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Wen-Nan Yu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
- College of Marine Science, Shandong University, Weihai 264209, PR China
| | - Zhao-Zhong Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
- College of Marine Science, Shandong University, Weihai 264209, PR China
| | - Ya-Qi Chang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
- College of Marine Science, Shandong University, Weihai 264209, PR China
| | - Da-Shuai Mu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
- College of Marine Science, Shandong University, Weihai 264209, PR China
| | - Zong-Jun Du
- College of Marine Science, Shandong University, Weihai 264209, PR China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
12
|
Characterization of amylase produced by cold-adapted bacteria from Antarctic samples. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101452] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Hu M, Zhai Y, Zhang Y, Han X, Fang W, Fang Z, Xiao Y. Marinomonas flavescens sp. nov., isolated from seawater adjacent to Fildes Peninsula, Antarctica. Int J Syst Evol Microbiol 2019; 69:3414-3419. [DOI: 10.1099/ijsem.0.003631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Miaomiao Hu
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, PR China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, PR China
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China
| | - Yanwu Zhai
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, PR China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, PR China
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China
| | - Yanfeng Zhang
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, PR China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, PR China
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China
| | - Xiaoyan Han
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, PR China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, PR China
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China
| | - Wei Fang
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, PR China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, PR China
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China
| | - Zemin Fang
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, PR China
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, PR China
| | - Yazhong Xiao
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, PR China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, PR China
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China
| |
Collapse
|
14
|
Wei Y, Cao J, Mao H, Pei J, Liu R, Fang J. Marinomonas shanghaiensis sp. nov., isolated from the junction between an ocean and a freshwater lake. Int J Syst Evol Microbiol 2019; 69:805-810. [DOI: 10.1099/ijsem.0.003241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yuli Wei
- 2National Engineering Research Centre for Oceanic Fisheries, Shanghai Ocean University, Shanghai 201306, PR China
- 3The Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, PR China
- 1Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Junwei Cao
- 1Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Haiyan Mao
- 1Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Jiahao Pei
- 1Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Rulong Liu
- 1Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Jiasong Fang
- 5Department of Natural Sciences, Hawaii Pacific University, Honolulu, HI 96813, USA
- 4Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
- 1Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| |
Collapse
|
15
|
Kristyanto S, Chaudhary DK, Lee SS, Kim J. Characterization of Marinomonas algicida sp. nov., a novel algicidal marine bacterium isolated from seawater. Int J Syst Evol Microbiol 2017; 67:4777-4784. [DOI: 10.1099/ijsem.0.002374] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sylvia Kristyanto
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| | - Dhiraj Kumar Chaudhary
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| | - Sang-Seob Lee
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| | - Jaisoo Kim
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| |
Collapse
|
16
|
Ojha AK, Verma A, Pal Y, Bhatt D, Mayilraj S, Krishnamurthi S. Marinomonas epiphytica sp. nov., isolated from a marine intertidal macroalga. Int J Syst Evol Microbiol 2017; 67:2746-2751. [PMID: 28771118 DOI: 10.1099/ijsem.0.002014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-negative, aerobic marine bacterial strain, SAB-3T, was isolated from brown macroalgae (Dictyota sp.) growing in the Arabian sea, Goa, India. The strain grew optimally at 30 °C, with 2.0-4.0 % (w/v) NaCl and at pH 7.0 on marine agar medium. Strain SAB-3T was unable to hydrolyse aesculin and did not grow in the presence of rifamycin but showed resistance to antibiotics such as cefadroxil and co-trimoxazole. The major fatty acids were summed feature 8 (C18 : 1ω7c/C18 : 1ω6c), summed feature 3 (C16 : 1ω7c/C16 : 1ω6c) and C16 : 0, and Q-8 was the major ubiquinone. The major polar lipids were phosphatidylglycerol and phosphatidylethanolamine. The DNA G+C content was 41.0 mol%. 16S rRNA gene sequencing and phylogenetic analysis indicated that the strain was a member of the genus Marinomonas with Marinomonas aquiplantarum IVIA-Po-159T (97.6 % similarity), Marinomonas posidonica IVIA-Po-181T (97.5 %) and Marinomonas dokdonensis DSM 17202T (97.4 %) as the closest relatives. Whole genome relatedness determined through DNA-DNA hybridization revealed values of 40-50 % (below the 70 % threshold recommended for species delineation) with the above three species, thus confirming it as representing a distinct and novel species of the genus Marinomonas for which the name Marinomonas epiphytica sp. nov. is proposed. The type strain is SAB-3T (=JCM 31365T=KCTC 52293T=MTCC 12569T).
Collapse
Affiliation(s)
- Anup Kumar Ojha
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh-160036, India
| | - Ashish Verma
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh-160036, India
| | - Yash Pal
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh-160036, India
| | - Deepak Bhatt
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh-160036, India
| | - Shanmugam Mayilraj
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh-160036, India
| | - Srinivasan Krishnamurthi
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh-160036, India
| |
Collapse
|
17
|
Arahal DR, Lucena T, Macián MC, Ruvira MA, González JM, Lekumberri I, Pinhassi J, Pujalte MJ. Marinomonas blandensis sp. nov., a novel marine gammaproteobacterium. Int J Syst Evol Microbiol 2016; 66:5544-5549. [PMID: 27902199 DOI: 10.1099/ijsem.0.001554] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-staining-negative, chemoorganotrophic, moderately halophilic, strictly aerobic bacterium, strain MED121T, was isolated from a seawater sample collected at the Blanes Bay Microbial Observatory in the north-western Mediterranean Sea. Analysis of its 16S rRNA gene sequence, retrieved from the whole-genome sequence, showed that this bacterium was most closely related to Marinomonas dokdonensis and other Marinomonas species (96.3 and 93.3-95.7 % sequence similarities, respectively), within the family Oceanospirillaceae. Strain MED121T was included into a whole-genome sequencing study and, subsequently, it was characterized using a polyphasic taxonomic approach. It was found to be oxidase and catalase positive, its cells are cocci to short rods, it does not ferment carbohydrates and does not reduce nitrate to nitrite or gas and it requires at least 2.5 % (w/v) marine salts and tolerates up to 7 % (w/v) salts. Its major cellular fatty acids in order of abundance are C16 : 1ω7c/C16 : 1ω6c, C18 : 1ω7c, C16 : 0 and C10 : 0 3-OH. Its genome had an approximate length of 5.1 million bases and a DNA G+C content equal to 40.9 mol%. Analysis of the annotated genes reveals the capacity for the synthesis of ubiquinone 8 (Q8) and the polar lipids phosphatidylglycerol and phosphatidylethanolamine, in agreement with other members of the genus. All the data collected supported the creation of a novel species to accommodate this bacterium, for which the name Marinomonas blandensis sp. nov. is proposed. The type strain is MED121T (=CECT 7076T=LMG 29722T).
Collapse
Affiliation(s)
- David R Arahal
- Departamento de Microbiología y Ecología, Universitat de València, 46100 Burjassot (València), Spain.,Colección Española de Cultivos Tipo (CECT), Universitat de València, 46980 Paterna (València), Spain
| | - Teresa Lucena
- Colección Española de Cultivos Tipo (CECT), Universitat de València, 46980 Paterna (València), Spain
| | - M Carmen Macián
- Colección Española de Cultivos Tipo (CECT), Universitat de València, 46980 Paterna (València), Spain
| | - María A Ruvira
- Colección Española de Cultivos Tipo (CECT), Universitat de València, 46980 Paterna (València), Spain
| | - José M González
- Departament of Microbiology, University of La Laguna, La Laguna ES-38200, Spain
| | - Itziar Lekumberri
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial model Systems (EEMiS), Linnaeus University, Kalmar SE-39182, Sweden
| | - María J Pujalte
- Departamento de Microbiología y Ecología, Universitat de València, 46100 Burjassot (València), Spain.,Colección Española de Cultivos Tipo (CECT), Universitat de València, 46980 Paterna (València), Spain
| |
Collapse
|
18
|
Lasa A, Pichon P, Diéguez AL, Romalde JL. Marinomonas gallaica sp. nov. and Marinomonas atlantica sp. nov., isolated from reared clams (Ruditapes decussatus). Int J Syst Evol Microbiol 2016; 66:3183-3188. [DOI: 10.1099/ijsem.0.001170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Aide Lasa
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Campus Vida s/n. 15782, Santiago de Compostela, Spain
| | - Phillip Pichon
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Campus Vida s/n. 15782, Santiago de Compostela, Spain
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, PO4 9LY, Portsmouth, UK
| | - Ana L. Diéguez
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Campus Vida s/n. 15782, Santiago de Compostela, Spain
| | - Jesús L. Romalde
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Campus Vida s/n. 15782, Santiago de Compostela, Spain
| |
Collapse
|
19
|
Yoo AY, Park JK. Isolation and characterization of a serine protease-producing marine bacterium Marinomonas arctica PT-1. Bioprocess Biosyst Eng 2015; 39:307-14. [DOI: 10.1007/s00449-015-1514-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 11/24/2015] [Indexed: 10/22/2022]
|
20
|
Marinomonas profundimaris sp. nov., isolated from deep-sea sediment sample of the Arctic Ocean. Antonie van Leeuwenhoek 2014; 106:449-55. [DOI: 10.1007/s10482-014-0213-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 06/09/2014] [Indexed: 10/25/2022]
|
21
|
Abstract
Members of the genus Marinomonas in the Gammaproteobacteria are broadly distributed in marine environments where they could be infected by bacteriophages. Here we report the genome sequence of bacteriophage P12026 that can lytically infect bacterial strain IMCC12026, a member of the genus Marinomonas. To our knowledge, this is the first genome sequence of a lytic bacteriophage infecting the genus Marinomonas.
Collapse
|
22
|
Jung YT, Oh TK, Yoon JH. Marinomonas hwangdonensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2012; 62:2062-2067. [DOI: 10.1099/ijs.0.036582-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, motile, rod-shaped bacterial strain, designated HDW-15T, was isolated from seawater of the Yellow Sea, Korea, and subjected to a polyphasic taxonomic study. Strain HDW-15T grew optimally at pH 7.0–8.0, at 25 °C and in the presence of 2 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain HDW-15T fell within the clade comprising
Marinomonas
species, joining the type strain of
Marinomonas arctica
, with which it exhibited highest 16S rRNA gene sequence similarity (97.7 %). The 16S rRNA gene sequence similarity values between strain HDW-15T and the type strains of other
Marinomonas
species were in the range 93.7–97.2 %. Mean DNA–DNA relatedness values between strain HDW-15T and the type strains of
M. arctica
,
Marinomonas polaris
and
Marinomonas pontica
were 5.0–9.9 %. The DNA G+C content of the isolate was 48.7 mol%. Strain HDW-15T contained Q-8 as the predominant ubiquinone and C18 : 1ω7c, summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH) and C16 : 0 as the major fatty acids. The major polar lipids found in strain HDW-15T were phosphatidylglycerol and phosphatidylethanolamine. Differential phenotypic properties, together with phylogenetic and genetic distinctiveness, showed that strain HDW-15T can be differentiated from other
Marinomonas
species. On the basis of the data presented, strain HDW-15T is considered to represent a novel species of the genus
Marinomonas
, for which the name Marinomonas hwangdonensis sp. nov. is proposed. The type strain is HDW-15T ( = KCTC 23661T = CCUG 61321T).
Collapse
Affiliation(s)
- Yong-Taek Jung
- University of Science and Technology (UST), 217 Gajungro, Yuseong, Daejeon 305-350, Republic of Korea
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), PO Box 115, Yuseong, Daejeon, Republic of Korea
| | - Tae-Kwang Oh
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), PO Box 115, Yuseong, Daejeon, Republic of Korea
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| |
Collapse
|
23
|
Enrichment of arsenic transforming and resistant heterotrophic bacteria from sediments of two salt lakes in Northern Chile. Extremophiles 2012; 16:523-38. [PMID: 22555750 DOI: 10.1007/s00792-012-0452-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/02/2012] [Indexed: 02/07/2023]
Abstract
Microbial populations are involved in the arsenic biogeochemical cycle in catalyzing arsenic transformations and playing indirect roles. To investigate which ecotypes among the diverse microbial communities could have a role in cycling arsenic in salt lakes in Northern Chile and to obtain clues to facilitate their isolation in pure culture, sediment samples from Salar de Ascotán and Salar de Atacama were cultured in diluted LB medium amended with NaCl and arsenic, at different incubation conditions. The samples and the cultures were analyzed by nucleic acid extraction, fingerprinting analysis, and sequencing. Microbial reduction of As was evidenced in all the enrichments carried out in anaerobiosis. The results revealed that the incubation factors were more important for determining the microbial community structure than arsenic species and concentrations. The predominant microorganisms in enrichments from both sediments belonged to the Firmicutes and Proteobacteria phyla, but most of the bacterial ecotypes were confined to only one system. The occurrence of an active arsenic biogeochemical cycle was suggested in the system with the highest arsenic content that included populations compatible with microorganisms able to transform arsenic for energy conservation, accumulate arsenic, produce H(2), H(2)S and acetic acid (potential sources of electrons for arsenic reduction) and tolerate high arsenic levels.
Collapse
|
24
|
Lucas-Elío P, Marco-Noales E, Espinosa E, Ordax M, López MM, Garcías-Bonet N, Marbà N, Duarte CM, Sanchez-Amat A. Marinomonas alcarazii sp. nov., M. rhizomae sp. nov., M. foliarum sp. nov., M. posidonica sp. nov. and M. aquiplantarum sp. nov., isolated from the microbiota of the seagrass Posidonia oceanica. Int J Syst Evol Microbiol 2011; 61:2191-2196. [DOI: 10.1099/ijs.0.027227-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Five novel Gram-reaction-negative aerobic marine bacterial strains with DNA G+C contents <50 mol% were isolated from the seagrass Posidonia oceanica. 16S rRNA sequence analysis indicated that they belonged to the genus Marinomonas. Major fatty acid compositions, comprising C10 : 0 3-OH, C16 : 0, C16 : 1ω7c and C18 : 1ω7c, supported the affiliation of these strains to the genus Marinomonas. Strains IVIA-Po-14bT, IVIA-Po-145T and IVIA-Po-155T were closely related to Marinomonas pontica 46-16T, according to phylogenetic analysis. However, DNA–DNA hybridization values <35 % among these strains revealed that they represented different species. Further differences in the phenotypes and minor fatty acid compositions were also found among the strains. Another two strains, designated IVIA-Po-181T and IVIA-Po-159T, were found to be closely related to M. dokdonensis DSW10-10T but DNA–DNA relatedness levels <40 % in pairwise comparisons, as well as some additional differences in phenotypes and fatty acid compositions supported the creation of two novel species. Accordingly, strains IVIA-Po-14bT ( = CECT 7730T = NCIMB 14671T), IVIA-Po-145T ( = CECT 7377T = NCIMB 14431T), IVIA-Po-155T ( = CECT 7731T = NCIMB 14672T), IVIA-Po-181T ( = CECT 7376T = NCIMB 14433T) and IVIA-Po-159T ( = CECT 7732T = NCIMB 14673T) represent novel species, for which the names Marinomonas alcarazii sp. nov., Marinomonas rhizomae sp. nov., Marinomonas foliarum sp. nov., Marinomonas posidonica sp. nov. and Marinomonas aquiplantarum sp. nov. are proposed, respectively.
Collapse
Affiliation(s)
- Patricia Lucas-Elío
- Department of Genetics and Microbiology, University of Murcia, Murcia 30100, Spain
| | - Ester Marco-Noales
- Centro de Protección Vegetal y Biotecnología, IVIA, 46113 Moncada (Valencia), Spain
| | - Elena Espinosa
- Department of Genetics and Microbiology, University of Murcia, Murcia 30100, Spain
| | - Mónica Ordax
- Centro de Protección Vegetal y Biotecnología, IVIA, 46113 Moncada (Valencia), Spain
| | - María M. López
- Centro de Protección Vegetal y Biotecnología, IVIA, 46113 Moncada (Valencia), Spain
| | - Neus Garcías-Bonet
- Department of Global Change Research, Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), 07190 Esporles, Mallorca, Spain
| | - Nuria Marbà
- Department of Global Change Research, Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), 07190 Esporles, Mallorca, Spain
| | - Carlos M. Duarte
- Department of Global Change Research, Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), 07190 Esporles, Mallorca, Spain
| | - Antonio Sanchez-Amat
- Department of Genetics and Microbiology, University of Murcia, Murcia 30100, Spain
| |
Collapse
|
25
|
Marinomonas brasilensis sp. nov., isolated from the coral Mussismilia hispida, and reclassification of Marinomonas basaltis as a later heterotypic synonym of Marinomonas communis. Int J Syst Evol Microbiol 2011; 61:1170-1175. [DOI: 10.1099/ijs.0.024661-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, aerobic bacterium, designated strain R-40503T, was isolated from mucus of the reef-builder coral Mussismilia hispida, located in the São Sebastião Channel, São Paulo, Brazil. Phylogenetic analyses revealed that strain R-40503T belongs to the genus Marinomonas. The 16S rRNA gene sequence similarity of R-40503T was above 97 % with the type strains of Marinomonas vaga, M. basaltis, M. communis and M. pontica, and below 97 % with type strains of the other Marinomonas species. Strain R-40503T showed less than 35 % DNA–DNA hybridization (DDH) with the type strains of the phylogenetically closest Marinomonas species, demonstrating that it should be classified into a novel species. Amplified fragment length polymorphism (AFLP), chemotaxonomic and phenotypic analyses provided further evidence for the proposal of a novel species. Concurrently, a close genomic relationship between M. basaltis and M. communis was observed. The type strains of these two species showed 78 % DDH and 63 % AFLP pattern similarity. Their phenotypic features were very similar, and their DNA G+C contents were identical (46.3 mol%). Collectively, these data demonstrate unambiguously that Marinomonas basaltis is a later heterotypic synonym of Marinomonas communis. Several phenotypic features can be used to discriminate between Marinomonas species. The novel strain R-40503T is clearly distinguishable from its neighbours. For instance, it shows oxidase and urease activity, utilizes l-asparagine and has the fatty acid C12 : 1 3-OH but lacks C10 : 0 and C12 : 0. The name Marinomonas brasilensis sp. nov. is proposed, with the type strain R-40503T ( = R-278T = LMG 25434T = CAIM 1459T). The DNA G+C content of strain R-40503T is 46.5 mol%.
Collapse
|
26
|
Romanenko LA, Tanaka N, Frolova GM. Marinomonas arenicola sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2009; 59:2834-8. [DOI: 10.1099/ijs.0.011304-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|