1
|
Houghton KM, Carere CR, Stott MB, McDonald IR. Thermophilic methane oxidation is widespread in Aotearoa-New Zealand geothermal fields. Front Microbiol 2023; 14:1253773. [PMID: 37720161 PMCID: PMC10502179 DOI: 10.3389/fmicb.2023.1253773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
Geothermal areas represent substantial point sources for greenhouse gas emissions such as methane. While it is known that methanotrophic microorganisms act as a biofilter, decreasing the efflux of methane in most soils to the atmosphere, the diversity and the extent to which methane is consumed by thermophilic microorganisms in geothermal ecosystems has not been widely explored. To determine the extent of biologically mediated methane oxidation at elevated temperatures, we set up 57 microcosms using soils from 14 Aotearoa-New Zealand geothermal fields and show that moderately thermophilic (>40°C) and thermophilic (>60°C) methane oxidation is common across the region. Methane oxidation was detected in 54% (n = 31) of the geothermal soil microcosms tested at temperatures up to 75°C (pH 1.5-8.1), with oxidation rates ranging from 0.5 to 17.4 μmol g-1 d-1 wet weight. The abundance of known aerobic methanotrophs (up to 60.7% Methylacidiphilum and 11.2% Methylothermus) and putative anaerobic methanotrophs (up to 76.7% Bathyarchaeota) provides some explanation for the rapid rates of methane oxidation observed in microcosms. However, not all methane oxidation was attributable to known taxa; in some methane-consuming microcosms we detected methanotroph taxa in conditions outside of their known temperature range for growth, and in other examples, we observed methane oxidation in the absence of known methanotrophs through 16S rRNA gene sequencing. Both of these observations suggest unidentified methane oxidizing microorganisms or undescribed methanotrophic syntrophic associations may also be present. Subsequent enrichment cultures from microcosms yielded communities not predicted by the original diversity studies and showed rates inconsistent with microcosms (≤24.5 μmol d-1), highlighting difficulties in culturing representative thermophilic methanotrophs. Finally, to determine the active methane oxidation processes, we attempted to elucidate metabolic pathways from two enrichment cultures actively oxidizing methane using metatranscriptomics. The most highly expressed genes in both enrichments (methane monooxygenases, methanol dehydrogenases and PqqA precursor peptides) were related to methanotrophs from Methylococcaceae, Methylocystaceae and Methylothermaceae. This is the first example of using metatranscriptomics to investigate methanotrophs from geothermal environments and gives insight into the metabolic pathways involved in thermophilic methanotrophy.
Collapse
Affiliation(s)
- Karen M. Houghton
- Te Pū Ao | GNS Science, Wairakei Research Centre, Taupō, New Zealand
- Te Aka Mātuatua | School of Science, Te Whare Wānanga o Waikato | University of Waikato, Hamilton, New Zealand
| | - Carlo R. Carere
- Te Pū Ao | GNS Science, Wairakei Research Centre, Taupō, New Zealand
- Te Tari Pūhanga Tukanga Matū | Department of Chemical and Process Engineering, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch, New Zealand
| | - Matthew B. Stott
- Te Pū Ao | GNS Science, Wairakei Research Centre, Taupō, New Zealand
- Te Kura Pūtaiao Koiora | School of Biological Sciences, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch, New Zealand
| | - Ian R. McDonald
- Te Aka Mātuatua | School of Science, Te Whare Wānanga o Waikato | University of Waikato, Hamilton, New Zealand
| |
Collapse
|
2
|
Aronson HS, Thomas C, Bhattacharyya MK, Eckstein SR, Jensen SR, Barco RA, Macalady JL, Amend JP. Thiovibrio frasassiensis gen. nov., sp. nov., an autotrophic, elemental sulphur disproportionating bacterium isolated from sulphidic karst sediment, and proposal of Thiovibrionaceae fam. nov. Int J Syst Evol Microbiol 2023; 73. [PMID: 37609857 DOI: 10.1099/ijsem.0.006003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
A novel, autotrophic, mesophilic bacterium, strain RS19-109T, was isolated from sulphidic stream sediments in the Frasassi Caves, Italy. The cells of this strain grew chemolithoautotrophically under anaerobic conditions while disproportionating elemental sulphur (S0) and thiosulphate, but not sulphite with bicarbonate/CO2 as a carbon source. Autotrophic growth was also observed with molecular hydrogen as an electron donor, and S0, sulphate, thiosulphate, nitrate and ferric iron as electron acceptors. Oxygen was not used as an electron acceptor and sulphide was not used as an electron donor. Weak growth was observed with sulphate as an electron acceptor and organic carbon as an electron donor and carbon source. The strain also showed weak growth by fermentation of tryptone. It grew at pH 5.5–7.5 (optimum, pH 7.0), 4–35 °C (optimum, 30 °C) and between 0–1.7 % NaCl. Strain RS19-109T was found to be phylogenetically distinct based on 16S rRNA gene sequence similarity (89.2 %) to its closest relative,
Desulfurivibrio alkaliphilus
AHT2T. The draft genome sequence for strain RS19-109T had average nucleotide identity, average amino acid identity and in silico DNA–DNA hybridization values of 72.2, 63.0 and 18.3 %, respectively, compared with the genome sequence of
D. alkaliphilus
AHT2T. On the basis of its physiological and genomic properties, strain RS19-109T is proposed as the type strain of a novel species of a novel genus, Thiovibrio frasassiensis gen. nov., sp. nov. A novel family, Thiovibrionaceae fam. nov., is proposed to accommodate Thiovibrio within the order
Desulfobulbales
. Strain RS19-109T has been deposited at the DSMZ-German Collection of Microorganisms and Cell Cultures (=DSM 115074T) and the American Type Culture Collection (=ATCC TSD-325T).
Collapse
Affiliation(s)
- Heidi S Aronson
- Department of Biological Sciences, University of Southern California, Allan Hancock Foundation Building, Los Angeles, CA 90089, USA
| | - Cais Thomas
- Department of Earth Sciences, University of Southern California, Zumberge Hall of Science, Los Angeles, CA 90089, USA
| | - Maia K Bhattacharyya
- Environmental Studies Program, University of Southern California, College Academic Services Building, Los Angeles, CA 90089, USA
| | - Shaan R Eckstein
- Department of Earth Sciences, University of Southern California, Zumberge Hall of Science, Los Angeles, CA 90089, USA
| | - Sophia R Jensen
- Department of Earth Sciences, University of Southern California, Zumberge Hall of Science, Los Angeles, CA 90089, USA
| | - Roman A Barco
- Department of Earth Sciences, University of Southern California, Zumberge Hall of Science, Los Angeles, CA 90089, USA
| | - Jennifer L Macalady
- Department of Geosciences, Pennsylvania State University, 503 Deike Building University Park, PA 16802, USA
| | - Jan P Amend
- Department of Biological Sciences, University of Southern California, Allan Hancock Foundation Building, Los Angeles, CA 90089, USA
- Department of Earth Sciences, University of Southern California, Zumberge Hall of Science, Los Angeles, CA 90089, USA
| |
Collapse
|
3
|
Allioux M, Yvenou S, Godfroy A, Shao Z, Jebbar M, Alain K. Genome analysis of a new sulphur disproportionating species Thermosulfurimonas strain F29 and comparative genomics of sulfur-disproportionating bacteria from marine hydrothermal vents. Microb Genom 2022; 8. [PMID: 36136081 DOI: 10.1099/mgen.0.000865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This paper reports on the genome analysis of strain F29 representing a new species of the genus Thermosulfurimonas. This strain, isolated from the Lucky Strike hydrothermal vent field on the Mid-Atlantic Ridge, is able to grow by disproportionation of S0 with CO2 as a carbon source. Strain F29 possesses a genome of 2,345,565 bp, with a G+C content of 58.09%, and at least one plasmid. The genome analysis revealed complete sets of genes for CO2 fixation via the Wood-Ljungdahl pathway, for sulphate-reduction and for hydrogen oxidation, suggesting the involvement of the strain into carbon, sulphur, and hydrogen cycles of deep-sea hydrothermal vents. Strain F29 genome encodes also several CRISPR sequences, suggesting that the strain may be subjected to viral attacks. Comparative genomics was carried out to decipher sulphur disproportionation pathways. Genomes of sulphur-disproportionating bacteria from marine hydrothermal vents were compared to the genomes of non-sulphur-disproportionating bacteria. This analysis revealed the ubiquitous presence in these genomes of a molybdopterin protein consisting of a large and a small subunit, and an associated chaperone. We hypothesize that these proteins may be involved in the process of elemental sulphur disproportionation.
Collapse
Affiliation(s)
- Maxime Allioux
- Univ Brest, CNRS, Ifremer, Unité Biologie et Ecologie des Ecosystèmes marins Profonds BEEP, UMR 6197, IRP 1211 MicrobSea, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France
| | - Stéven Yvenou
- Univ Brest, CNRS, Ifremer, Unité Biologie et Ecologie des Ecosystèmes marins Profonds BEEP, UMR 6197, IRP 1211 MicrobSea, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France
| | - Anne Godfroy
- Univ Brest, CNRS, Ifremer, Unité Biologie et Ecologie des Ecosystèmes marins Profonds BEEP, UMR 6197, IRP 1211 MicrobSea, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China
| | - Mohamed Jebbar
- Univ Brest, CNRS, Ifremer, Unité Biologie et Ecologie des Ecosystèmes marins Profonds BEEP, UMR 6197, IRP 1211 MicrobSea, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France
| | - Karine Alain
- Univ Brest, CNRS, Ifremer, Unité Biologie et Ecologie des Ecosystèmes marins Profonds BEEP, UMR 6197, IRP 1211 MicrobSea, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France
| |
Collapse
|
4
|
Genetic Potential of Dissulfurimicrobium hydrothermale, an Obligate Sulfur-Disproportionating Thermophilic Microorganism. Microorganisms 2021; 10:microorganisms10010060. [PMID: 35056509 PMCID: PMC8780430 DOI: 10.3390/microorganisms10010060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 12/12/2022] Open
Abstract
The biochemical pathways of anaerobic sulfur disproportionation are only partially deciphered, and the mechanisms involved in the first step of S0-disproportionation remain unknown. Here, we present the results of sequencing and analysis of the complete genome of Dissulfurimicrobium hydrothermale strain Sh68T, one of two strains isolated to date known to grow exclusively by anaerobic disproportionation of inorganic sulfur compounds. Dissulfurimicrobium hydrothermale Sh68T is a motile, thermophilic, anaerobic, chemolithoautotrophic microorganism isolated from a hydrothermal pond at Uzon caldera, Kamchatka, Russia. It is able to produce energy and grow by disproportionation of elemental sulfur, sulfite and thiosulfate. Its genome consists of a circular chromosome of 2,025,450 base pairs, has a G + C content of 49.66% and a completion of 97.6%. Genomic data suggest that CO2 assimilation is carried out by the Wood–Ljungdhal pathway and that central anabolism involves the gluconeogenesis pathway. The genome of strain Sh68T encodes the complete gene set of the dissimilatory sulfate reduction pathway, some of which are likely to be involved in sulfur disproportionation. A short sequence protein of unknown function present in the genome of strain Sh68T is conserved in the genomes of a large panel of other S0-disproportionating bacteria and was absent from the genomes of microorganisms incapable of elemental sulfur disproportionation. We propose that this protein may be involved in the first step of elemental sulfur disproportionation, as S0 is poorly soluble and unable to cross the cytoplasmic membrane in this form.
Collapse
|
5
|
Frolov EN, Gololobova AV, Klyukina AA, Bonch-Osmolovskaya EA, Pimenov NV, Chernyh NA, Merkel AY. Diversity and Activity of Sulfate-Reducing Prokaryotes in Kamchatka Hot Springs. Microorganisms 2021; 9:2072. [PMID: 34683394 PMCID: PMC8539903 DOI: 10.3390/microorganisms9102072] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022] Open
Abstract
Microbial communities of the Kamchatka Peninsula terrestrial hot springs were studied using radioisotopic and cultural approaches, as well as by the amplification and sequencing of dsrB and 16S rRNA genes fragments. Radioisotopic experiments with 35S-labeled sulfate showed that microbial communities of the Kamchatka hot springs are actively reducing sulfate. Both the cultivation experiments and the results of dsrB and 16S rRNA genes fragments analyses indicated the presence of microorganisms participating in the reductive part of the sulfur cycle. It was found that sulfate-reducing prokaryotes (SRP) belonging to Desulfobacterota, Nitrospirota and Firmicutes phyla inhabited neutral and slightly acidic hot springs, while bacteria of phylum Thermodesulofobiota preferred moderately acidic hot springs. In high-temperature acidic springs sulfate reduction was mediated by archaea of the phylum Crenarchaeota, chemoorganoheterotrophic representatives of genus Vulcanisaeta being the most probable candidates. The 16S rRNA taxonomic profiling showed that in most of the studied communities SRP was present only as a minor component. Only in one microbial community, the representatives of genus Vulcanisaeta comprised a significant group. Thus, in spite of comparatively low sulfate concentrations in terrestrial hot springs of the Kamchatka, phylogenetically and metabolically diverse groups of sulfate-reducing prokaryotes are operating there coupling carbon and sulfur cycles in these habitats.
Collapse
Affiliation(s)
- Evgenii N. Frolov
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312 Moscow, Russia; (A.V.G.); (A.A.K.); (E.A.B.-O.); (N.V.P.); (N.A.C.); (A.Y.M.)
| | - Alexandra V. Gololobova
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312 Moscow, Russia; (A.V.G.); (A.A.K.); (E.A.B.-O.); (N.V.P.); (N.A.C.); (A.Y.M.)
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119991 Moscow, Russia
| | - Alexandra A. Klyukina
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312 Moscow, Russia; (A.V.G.); (A.A.K.); (E.A.B.-O.); (N.V.P.); (N.A.C.); (A.Y.M.)
| | - Elizaveta A. Bonch-Osmolovskaya
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312 Moscow, Russia; (A.V.G.); (A.A.K.); (E.A.B.-O.); (N.V.P.); (N.A.C.); (A.Y.M.)
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119991 Moscow, Russia
| | - Nikolay V. Pimenov
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312 Moscow, Russia; (A.V.G.); (A.A.K.); (E.A.B.-O.); (N.V.P.); (N.A.C.); (A.Y.M.)
| | - Nikolay A. Chernyh
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312 Moscow, Russia; (A.V.G.); (A.A.K.); (E.A.B.-O.); (N.V.P.); (N.A.C.); (A.Y.M.)
| | - Alexander Y. Merkel
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312 Moscow, Russia; (A.V.G.); (A.A.K.); (E.A.B.-O.); (N.V.P.); (N.A.C.); (A.Y.M.)
| |
Collapse
|
6
|
Wu B, Liu F, Fang W, Yang T, Chen GH, He Z, Wang S. Microbial sulfur metabolism and environmental implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146085. [PMID: 33714092 DOI: 10.1016/j.scitotenv.2021.146085] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Sulfur as a macroelement plays an important role in biochemistry in both natural environments and engineering biosystems, which can be further linked to other important element cycles, e.g. carbon, nitrogen and iron. Consequently, the sulfur cycling primarily mediated by sulfur compounds oxidizing microorganisms and sulfur compounds reducing microorganisms has enormous environmental implications, particularly in wastewater treatment and pollution bioremediation. In this review, to connect the knowledge in microbial sulfur metabolism to environmental applications, we first comprehensively review recent advances in understanding microbial sulfur metabolisms at molecular-, cellular- and ecosystem-levels, together with their energetics. We then discuss the environmental implications to fight against soil and water pollution, with four foci: (1) acid mine drainage, (2) water blackening and odorization in urban rivers, (3) SANI® and DS-EBPR processes for sewage treatment, and (4) bioremediation of persistent organic pollutants. In addition, major challenges and further developments toward elucidation of microbial sulfur metabolisms and their environmental applications are identified and discussed.
Collapse
Affiliation(s)
- Bo Wu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Feifei Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, China
| | - Wenwen Fang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Tony Yang
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2, Canada
| | - Guang-Hao Chen
- Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
7
|
Chen Y, Nishihara A, Haruta S. Nitrogen-fixing Ability and Nitrogen Fixation-related Genes of Thermophilic Fermentative Bacteria in the Genus Caldicellulosiruptor. Microbes Environ 2021; 36. [PMID: 34108360 PMCID: PMC8209448 DOI: 10.1264/jsme2.me21018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Fermentative nitrogen-fixing bacteria have not yet been examined in detail in thermal environments. In the present study, we isolated the thermophilic fermentative bacterium, strain YA01 from a hot spring. This strain grew at temperatures up to 78°C. A phylogenetic analysis based on its 16S rRNA gene sequence indicated that strain YA01 belonged to the genus Caldicellulosiruptor, which are fermentative bacteria in the phylum Firmicutes, with 97.7–98.0% sequence identity to its closest relatives. Strain YA01 clearly exhibited N2-dependent growth at 70°C. We also confirmed N2-dependent growth in the relatives of strain YA01, Caldicellulosiruptor hydrothermalis 108 and Caldicellulosiruptor kronotskyensis 2002. The nitrogenase activities of these three strains were examined using the acetylene reduction assay. Similar activities were detected for all tested strains, and were slightly suppressed by the addition of ammonium. A genome analysis revealed that strain YA01, as well as other Caldicellulosiruptor, possessed a gene set for nitrogen fixation, but lacked the nifN gene, which encodes a nitrogenase iron-molybdenum cofactor biosynthesis protein that is commonly detected in nitrogen-fixing bacteria. The amino acid sequences of nitrogenase encoded by nifH, nifD, and nifK shared 92–98% similarity in Caldicellulosiruptor. A phylogenetic tree of concatenated NifHDK sequences showed that NifHDK of Caldicellulosiruptor was in the deepest clade. To the best of our knowledge, this is the first study to demonstrate the nitrogen-fixing ability of fermentative bacteria at 70°C. Caldicellulosiruptor may have retained an ancient nitrogen-fixing enzyme system.
Collapse
Affiliation(s)
- Yuxin Chen
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Arisa Nishihara
- Department of Biological Sciences, Tokyo Metropolitan University.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan University
| |
Collapse
|
8
|
Umezawa K, Kojima H, Kato Y, Fukui M. Disproportionation of inorganic sulfur compounds by a novel autotrophic bacterium belonging to Nitrospirota. Syst Appl Microbiol 2020; 43:126110. [DOI: 10.1016/j.syapm.2020.126110] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/21/2022]
|
9
|
Massello FL, Chan CS, Chan KG, Goh KM, Donati E, Urbieta MS. Meta-Analysis of Microbial Communities in Hot Springs: Recurrent Taxa and Complex Shaping Factors beyond pH and Temperature. Microorganisms 2020; 8:microorganisms8060906. [PMID: 32560103 PMCID: PMC7356817 DOI: 10.3390/microorganisms8060906] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 11/16/2022] Open
Abstract
The study of microbial communities from extreme environments is a fascinating topic. With every study, biologists and ecologists reveal interesting facts and questions that dispel the old belief that these are inhospitable environments. In this work, we assess the microbial diversity of three hot springs from Neuquén, Argentina, using high-throughput amplicon sequencing. We predicted a distinct metabolic profile in the acidic and the circumneutral samples, with the first ones being dominated by chemolithotrophs and the second ones by chemoheterotrophs. Then, we collected data of the microbial communities of hot springs around the world in an effort to comprehend the roles of pH and temperature as shaping factors. Interestingly, there was a covariation between both parameters and the phylogenetic distance between communities; however, neither of them could explain much of the microbial profile in an ordination model. Moreover, there was no correlation between alpha diversity and these parameters. Therefore, the microbial communities' profile seemed to have complex shaping factors beyond pH and temperature. Lastly, we looked for taxa associated with different environmental conditions. Several such taxa were found. For example, Hydrogenobaculum was frequently present in acidic springs, as was the Sulfolobaceae family; on the other hand, Candidatus Hydrothermae phylum was strongly associated with circumneutral conditions. Interestingly, some singularities related to sites featuring certain taxa were also observed.
Collapse
Affiliation(s)
- Francisco L. Massello
- CINDEFI (CCT, La Plata-CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, 1900 Buenos Aires, Argentina; (F.L.M.); (E.D.)
| | - Chia Sing Chan
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (C.S.C.); (K.M.G.)
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Kian Mau Goh
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (C.S.C.); (K.M.G.)
| | - Edgardo Donati
- CINDEFI (CCT, La Plata-CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, 1900 Buenos Aires, Argentina; (F.L.M.); (E.D.)
| | - María Sofía Urbieta
- CINDEFI (CCT, La Plata-CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, 1900 Buenos Aires, Argentina; (F.L.M.); (E.D.)
- Correspondence:
| |
Collapse
|
10
|
Amend JP, Aronson HS, Macalady J, LaRowe DE. Another chemolithotrophic metabolism missing in nature: sulfur comproportionation. Environ Microbiol 2020; 22:1971-1976. [PMID: 32157786 PMCID: PMC7384060 DOI: 10.1111/1462-2920.14982] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/28/2020] [Accepted: 03/07/2020] [Indexed: 11/30/2022]
Abstract
Chemotrophic microorganisms gain energy for cellular functions by catalyzing oxidation-reduction (redox) reactions that are out of equilibrium. Calculations of the Gibbs energy ( ΔG r ) can identify whether a reaction is thermodynamically favourable and quantify the accompanying energy yield at the temperature, pressure and chemical composition in the system of interest. Based on carefully calculated values of ΔG r , we predict a novel microbial metabolism - sulfur comproportionation (3H2 S + SO 4 2 - + 2H+ ⇌ 4S0 + 4H2 O). We show that at elevated concentrations of sulfide and sulfate in acidic environments over a broad temperature range, this putative metabolism can be exergonic ( ΔG r <0), yielding ~30-50 kJ mol-1 . We suggest that this may be sufficient energy to support a chemolithotrophic metabolism currently missing from the literature. Other versions of this metabolism, comproportionation to thiosulfate (H2 S + SO 4 2 - ⇌S 2 O 3 2 - + H2 O) and to sulfite (H2 S + 3 SO 4 2 - ⇌ 4 SO 3 2 - + 2H+ ), are only moderately exergonic or endergonic even at ideal geochemical conditions. Natural and impacted environments, including sulfidic karst systems, shallow-sea hydrothermal vents, sites of acid mine drainage, and acid-sulfate crater lakes, may be ideal hunting grounds for finding microbial sulfur comproportionators.
Collapse
Affiliation(s)
- Jan P. Amend
- Department of Biological SciencesUniversity of Southern CaliforniaLos AngelesCA90089USA
- Department of Earth SciencesUniversity of Southern CaliforniaLos AngelesCA90089USA
| | - Heidi S. Aronson
- Department of Biological SciencesUniversity of Southern CaliforniaLos AngelesCA90089USA
| | - Jennifer Macalady
- Department of GeosciencesPennsylvania State UniversityUniversity ParkPA16802USA
| | - Douglas E. LaRowe
- Department of Earth SciencesUniversity of Southern CaliforniaLos AngelesCA90089USA
| |
Collapse
|
11
|
" Candidatus Desulfobulbus rimicarensis," an Uncultivated Deltaproteobacterial Epibiont from the Deep-Sea Hydrothermal Vent Shrimp Rimicaris exoculata. Appl Environ Microbiol 2020; 86:AEM.02549-19. [PMID: 32060020 PMCID: PMC7117923 DOI: 10.1128/aem.02549-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/26/2020] [Indexed: 02/03/2023] Open
Abstract
The shrimp Rimicaris exoculata represents the dominant faunal biomass at many deep-sea hydrothermal vent ecosystems along the Mid-Atlantic Ridge. This organism harbors dense bacterial epibiont communities in its enlarged cephalothoracic chamber that play an important nutritional role. Deltaproteobacteria are ubiquitous in epibiotic communities of R. exoculata, and their functional roles as epibionts are based solely on the presence of functional genes. Here, we describe “Candidatus Desulfobulbus rimicarensis,” an uncultivated deltaproteobacterial epibiont. Compared to campylobacterial and gammaproteobacterial epibionts of R. exoculata, this bacterium possessed unique metabolic pathways, such as the Wood-Ljungdahl pathway, as well as sulfur disproportionation and nitrogen fixation pathways. Furthermore, this epibiont can be distinguished from closely related free-living Desulfobulbus strains by its reduced genetic content and potential loss of functions, suggesting unique adaptations to the shrimp host. This study is a genomic and transcriptomic analysis of a deltaproteobacterial epibiont and largely expands the understanding of its metabolism and adaptation to the R. exoculata host. The deep-sea hydrothermal vent shrimp Rimicaris exoculata largely depends on a dense epibiotic chemoautotrophic bacterial community within its enlarged cephalothoracic chamber. However, our understanding of shrimp-bacterium interactions is limited. In this report, we focused on the deltaproteobacterial epibiont of R. exoculata from the relatively unexplored South Mid-Atlantic Ridge. A nearly complete genome of a Deltaproteobacteria epibiont was binned from the assembled metagenome. Whole-genome phylogenetic analysis reveals that it is affiliated with the genus Desulfobulbus, representing a potential novel species for which the name “Candidatus Desulfobulbus rimicarensis” is proposed. Genomic and transcriptomic analyses reveal that this bacterium utilizes the Wood-Ljungdahl pathway for carbon assimilation and harvests energy via sulfur disproportionation, which is significantly different from other shrimp epibionts. Additionally, this epibiont has putative nitrogen fixation activity, but it is extremely active in directly taking up ammonia and urea from the host or vent environments. Moreover, the epibiont could be distinguished from its free-living relatives by various features, such as the lack of chemotaxis and motility traits, a dramatic reduction in biosynthesis genes for capsular and extracellular polysaccharides, enrichment of genes required for carbon fixation and sulfur metabolism, and resistance to environmental toxins. Our study highlights the unique role and symbiotic adaptation of Deltaproteobacteria in deep-sea hydrothermal vent shrimps. IMPORTANCE The shrimp Rimicaris exoculata represents the dominant faunal biomass at many deep-sea hydrothermal vent ecosystems along the Mid-Atlantic Ridge. This organism harbors dense bacterial epibiont communities in its enlarged cephalothoracic chamber that play an important nutritional role. Deltaproteobacteria are ubiquitous in epibiotic communities of R. exoculata, and their functional roles as epibionts are based solely on the presence of functional genes. Here, we describe “Candidatus Desulfobulbus rimicarensis,” an uncultivated deltaproteobacterial epibiont. Compared to campylobacterial and gammaproteobacterial epibionts of R. exoculata, this bacterium possessed unique metabolic pathways, such as the Wood-Ljungdahl pathway, as well as sulfur disproportionation and nitrogen fixation pathways. Furthermore, this epibiont can be distinguished from closely related free-living Desulfobulbus strains by its reduced genetic content and potential loss of functions, suggesting unique adaptations to the shrimp host. This study is a genomic and transcriptomic analysis of a deltaproteobacterial epibiont and largely expands the understanding of its metabolism and adaptation to the R. exoculata host.
Collapse
|
12
|
Amend JP, LaRowe DE. Minireview: demystifying microbial reaction energetics. Environ Microbiol 2019; 21:3539-3547. [PMID: 31403238 PMCID: PMC6852080 DOI: 10.1111/1462-2920.14778] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/04/2022]
Abstract
The biology literature is rife with misleading information on how to quantify catabolic reaction energetics. The principal misconception is that the sign and value of the standard Gibbs energy ( Δ G r 0 ) define the direction and energy yield of a reaction; they do not. Δ G r 0 is one part of the actual Gibbs energy of a reaction (ΔGr ), with a second part accounting for deviations from the standard composition. It is also frequently assumed that Δ G r 0 applies only to 25 °C and 1 bar; it does not. Δ G r 0 is a function of temperature and pressure. Here, we review how to determine ΔGr as a function of temperature, pressure and chemical composition for microbial catabolic reactions, including a discussion of the effects of ionic strength on ΔGr and highlighting the large effects when multi-valent ions are part of the reaction. We also calculate ΔGr for five example catabolisms at specific environmental conditions: aerobic respiration of glucose in freshwater, anaerobic respiration of acetate in marine sediment, hydrogenotrophic methanogenesis in a laboratory batch reactor, anaerobic ammonia oxidation in a wastewater reactor and aerobic pyrite oxidation in acid mine drainage. These examples serve as templates to determine the energy yields of other catabolic reactions at environmentally relevant conditions.
Collapse
Affiliation(s)
- Jan P. Amend
- Department of Biological SciencesUniversity of Southern CaliforniaLos AngelesCA90089USA
- Department of Earth SciencesUniversity of Southern CaliforniaLos AngelesCA90089USA
| | - Douglas E. LaRowe
- Department of Earth SciencesUniversity of Southern CaliforniaLos AngelesCA90089USA
| |
Collapse
|
13
|
Slobodkin AI, Slobodkina GB. Diversity of Sulfur-Disproportionating Microorganisms. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719050138] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Payne D, Dunham EC, Mohr E, Miller I, Arnold A, Erickson R, Fones EM, Lindsay MR, Colman DR, Boyd ES. Geologic legacy spanning >90 years explains unique Yellowstone hot spring geochemistry and biodiversity. Environ Microbiol 2019; 21:4180-4195. [PMID: 31397054 DOI: 10.1111/1462-2920.14775] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 01/09/2023]
Abstract
Little is known about how the geological history of an environment shapes its physical and chemical properties and how these, in turn, influence the assembly of communities. Evening primrose (EP), a moderately acidic hot spring (pH 5.6, 77.4°C) in Yellowstone National Park (YNP), has undergone dramatic physicochemical change linked to seismic activity. Here, we show that this legacy of geologic change led to the development of an unusual sulphur-rich, anoxic chemical environment that supports a unique archaeal-dominated and anaerobic microbial community. Metagenomic sequencing and informatics analyses reveal that >96% of this community is supported by dissimilatory reduction or disproportionation of inorganic sulphur compounds, including a novel, deeply diverging sulphate-reducing thaumarchaeote. When compared to other YNP metagenomes, the inferred functions of EP populations were like those from sulphur-rich acidic springs, suggesting that sulphur may overprint the predominant influence of pH on the composition of hydrothermal communities. Together, these observations indicate that the dynamic geological history of EP underpins its unique geochemistry and biodiversity, emphasizing the need to consider the legacy of geologic change when describing processes that shape the assembly of communities.
Collapse
Affiliation(s)
- Devon Payne
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, 59717
| | - Eric C Dunham
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, 59717
| | - Elizabeth Mohr
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, 59717
| | - Isaac Miller
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, 59717
| | - Adrienne Arnold
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, 59717
| | - Reece Erickson
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, 59717
| | - Elizabeth M Fones
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, 59717
| | - Melody R Lindsay
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, 59717
| | - Daniel R Colman
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, 59717
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, 59717
| |
Collapse
|
15
|
Kawai S, Kamiya N, Matsuura K, Haruta S. Symbiotic Growth of a Thermophilic Sulfide-Oxidizing Photoautotroph and an Elemental Sulfur-Disproportionating Chemolithoautotroph and Cooperative Dissimilatory Oxidation of Sulfide to Sulfate. Front Microbiol 2019; 10:1150. [PMID: 31178849 PMCID: PMC6543001 DOI: 10.3389/fmicb.2019.01150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/06/2019] [Indexed: 11/13/2022] Open
Abstract
A thermophilic filamentous anoxygenic photosynthetic bacterium, Chloroflexus aggregans, is widely distributed in neutral to slightly alkaline hot springs. Sulfide has been suggested as an electron donor for autotrophic growth in microbial mats dominated with C. aggregans, but remarkable photoautotrophic growth of isolated C. aggregans has not been observed with sulfide as the sole electron source. From the idea that sulfide is oxidized to elemental sulfur by C. aggregans and the accumulation of elemental sulfur may have an inhibitory effect for the growth, the effects of an elemental sulfur-disproportionating bacterium that consumes elemental sulfur was examined on the autotrophic growth of C. aggregans, strain NA9-6, isolated from Nakabusa hot spring. A sulfur-disproportionating bacterium, Caldimicrobium thiodismutans strain TF1, also isolated from Nakabusa hot spring was co-cultured with C. aggregans. C. aggregans and C. thiodismutans were successfully co-cultured in a medium containing thiosulfate as the sole electron source and bicarbonate as the sole carbon source. Quantitative conversion of thiosulfate to sulfate and a small transient accumulation of sulfide was observed in the co-culture. Then the electron source of the established co-culture was changed from thiosulfate to sulfide, and the growth of C. aggregans and C. thiodismutans was successfully observed with sulfide as the sole electron donor for the autotrophic growth of the co-culture. During the cultivation in the light, simultaneous consumption and accumulation of sulfide and sulfate, respectively, were observed, accompanied with the increase of cellular DNAs of both species. C. thiodismutans likely works as an elemental sulfur scavenger for C. aggregans, and C. aggregans seems to work as a sulfide scavenger for C. thiodismutans. These results suggest that C. aggregans grows autotrophically with sulfide as the electron donor in the co-culture with C. thiodismutans, and the consumption of elemental sulfur by C. thiodismutans enabled the continuous growth of the C. aggregans in the symbiotic system. This study shows a novel symbiotic relationship between a sulfide-oxidizing photoautotroph and an elemental sulfur-disproportionating chemolithoautotroph via cooperative dissimilatory sulfide oxidation to sulfate.
Collapse
Affiliation(s)
- Shigeru Kawai
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Naoki Kamiya
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Katsumi Matsuura
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| |
Collapse
|
16
|
Nishihara A, Thiel V, Matsuura K, McGlynn SE, Haruta S. Phylogenetic Diversity of Nitrogenase Reductase Genes and Possible Nitrogen-Fixing Bacteria in Thermophilic Chemosynthetic Microbial Communities in Nakabusa Hot Springs. Microbes Environ 2018; 33:357-365. [PMID: 30404970 PMCID: PMC6307998 DOI: 10.1264/jsme2.me18030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chemosynthetic microbial communities develop and form dense cell aggregates in slightly alkaline sulfidic hot springs in the temperature range of 70–86°C at Nakabusa, Japan. Nitrogenase activity has recently been detected in the microbial communities collected. To identify possible members capable of nitrogen fixation, we examined the diversities of 16S rRNA and nitrogenase reductase (NifH) gene sequences in four types of chemosynthetic communities with visually different colors and thicknesses. The results of a 16S rRNA gene analysis indicated that all four microbial communities had similar bacterial constituents; the phylum Aquificae was the dominant member, followed in abundance by Thermodesulfobacteria, Firmicutes, and Thermotogae. Most of the NifH sequences were related to sequences reported in hydrothermal vents and terrestrial hot springs. The results of a phylogenetic analysis of NifH sequences revealed diversity in this gene among the communities collected, distributed within 7 phylogenetic groups. NifH sequences affiliated with Aquificae (Hydrogenobacter/Thermocrinis) and Firmicutes (Caldicellulosiruptor) were abundant. At least two different energy metabolic pathways appeared to be related to nitrogen fixation in the communities analyzed; aerobic sulfur/hydrogen-oxidizing bacteria in Aquificae and fermentative bacteria in Firmicutes. The metabolic characteristics of these two dominant phyla differed from those previously inferred from nitrogenase activity assays on chemosynthetic communities, which were associated with hydrogen-dependent autotrophic sulfate reduction. These assays may correspond to the observed NifH sequences that are distantly related to the known species of Thermodesulfovibrio sp. (Nitrospirae) detected in the present study. The activities of nitrogen-fixing organisms in communities may depend on redox states as well as the availability of electron donors, acceptors, and carbon sources.
Collapse
Affiliation(s)
- Arisa Nishihara
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Vera Thiel
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Katsumi Matsuura
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Shawn E McGlynn
- Department of Biological Sciences, Tokyo Metropolitan University.,Earth-Life Science Institute, Tokyo Institute of Technology.,Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science.,Blue Marble Space Institute of Science
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan University
| |
Collapse
|
17
|
Frolova AA, Slobodkina GB, Baslerov RV, Novikov AA, Bonch-Osmolovskaya EA, Slobodkin AI. Thermosulfurimonas marina sp. nov., an Autotrophic Sulfur-Disproportionating and Nitrate-Reducing Bacterium Isolated from a Shallow-Sea Hydrothermal Vent. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718040082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
18
|
Nishihara A, Haruta S, McGlynn SE, Thiel V, Matsuura K. Nitrogen Fixation in Thermophilic Chemosynthetic Microbial Communities Depending on Hydrogen, Sulfate, and Carbon Dioxide. Microbes Environ 2018; 33:10-18. [PMID: 29367473 PMCID: PMC5877335 DOI: 10.1264/jsme2.me17134] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/28/2017] [Indexed: 12/20/2022] Open
Abstract
The activity of nitrogen fixation measured by acetylene reduction was examined in chemosynthetic microbial mats at 72-75°C in slightly-alkaline sulfidic hot springs in Nakabusa, Japan. Nitrogenase activity markedly varied from sampling to sampling. Nitrogenase activity did not correlate with methane production, but was detected in samples showing methane production levels less than the maximum amount, indicating a possible redox dependency of nitrogenase activity. Nitrogenase activity was not affected by 2-bromo-ethane sulfonate, an inhibitor of methanogenesis. However, it was inhibited by the addition of molybdate, an inhibitor of sulfate reduction and sulfur disproportionation, suggesting the involvement of sulfate-reducing or sulfur-disproportionating organisms. Nitrogenase activity was affected by different O2 concentrations in the gas phase, again supporting the hypothesis of a redox potential dependency, and was decreased by the dispersion of mats with a homogenizer. The loss of activity that occurred from dispersion was partially recovered by the addition of H2, sulfate, and carbon dioxide. These results suggested that the observed activity of nitrogen fixation was related to chemoautotrophic sulfate reducers, and fixation may be active in a limited range of ambient redox potential. Since thermophilic chemosynthetic communities may resemble ancient microbial communities before the appearance of photosynthesis, the present results may be useful when considering the ancient nitrogen cycle on earth.
Collapse
Affiliation(s)
- Arisa Nishihara
- Department of Biological Sciences, Tokyo Metropolitan UniversityMinami-Osawa, Hachioji, Tokyo 192–0397Japan
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan UniversityMinami-Osawa, Hachioji, Tokyo 192–0397Japan
| | - Shawn E. McGlynn
- Department of Biological Sciences, Tokyo Metropolitan UniversityMinami-Osawa, Hachioji, Tokyo 192–0397Japan
- Earth-Life Science Institute, Tokyo Institute of TechnologyOokayama, Meguro-ku, Tokyo 152–8551Japan
- Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource ScienceWako-shi 351–0198Japan
- Blue Marble Space Institute of ScienceSeattle, WA 98145–1561USA
| | - Vera Thiel
- Department of Biological Sciences, Tokyo Metropolitan UniversityMinami-Osawa, Hachioji, Tokyo 192–0397Japan
| | - Katsumi Matsuura
- Department of Biological Sciences, Tokyo Metropolitan UniversityMinami-Osawa, Hachioji, Tokyo 192–0397Japan
| |
Collapse
|
19
|
Effect of light wavelength on hot spring microbial mat biodiversity. PLoS One 2018; 13:e0191650. [PMID: 29381713 PMCID: PMC5790269 DOI: 10.1371/journal.pone.0191650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/09/2018] [Indexed: 11/19/2022] Open
Abstract
Hot spring associated phototrophic microbial mats are purely microbial communities, in which phototrophic bacteria function as primary producers and thus shape the community. The microbial mats at Nakabusa hot springs in Japan harbor diverse photosynthetic bacteria, mainly Thermosynechococcus, Chloroflexus, and Roseiflexus, which use light of different wavelength for energy conversion. The aim of this study was to investigate the effect of the phototrophs on biodiversity and community composition in hot spring microbial mats. For this, we specifically activated the different phototrophs by irradiating the mats with different wavelengths in situ. We used 625, 730, and 890 nm wavelength LEDs alone or in combination and confirmed the hypothesized increase in relative abundance of different phototrophs by 16S rRNA gene sequencing. In addition to the increase of the targeted phototrophs, we studied the effect of the different treatments on chemotrophic members. The specific activation of Thermosynechococcus led to increased abundance of several other bacteria, whereas wavelengths specific to Chloroflexus and Roseiflexus induced a decrease in >50% of the community members as compared to the dark conditions. This suggests that the growth of Thermosynechococcus at the surface layer benefits many community members, whereas less benefit is obtained from an increase in filamentous anoxygenic phototrophs Chloroflexus and Roseiflexus. The increases in relative abundance of chemotrophs under different light conditions suggest a relationship between the two groups. Aerobic chemoheterotrophs such as Thermus sp. and Meiothermus sp. are thought to benefit from aerobic conditions and organic carbon in the form of photosynthates by Thermosynechococcus, while the oxidation of sulfide and production of elemental sulfur by filamentous anoxygenic phototrophs benefit the sulfur-disproportionating Caldimicrobium thiodismutans. In this study, we used an experimental approach under controlled environmental conditions for the analysis of natural microbial communities, which proved to be a powerful tool to study interspecies relationships in the microbiome.
Collapse
|
20
|
Slobodkina GB, Reysenbach AL, Kolganova TV, Novikov AA, Bonch-Osmolovskaya EA, Slobodkin AI. Thermosulfuriphilus ammonigenes gen. nov., sp. nov., a thermophilic, chemolithoautotrophic bacterium capable of respiratory ammonification of nitrate with elemental sulfur. Int J Syst Evol Microbiol 2017; 67:3474-3479. [DOI: 10.1099/ijsem.0.002142] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Galina B. Slobodkina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071, Moscow, Russia
| | - Anna-Louise Reysenbach
- Department of Biology and Center for Life in Extreme Environments, Portland State University, PO Box 751, Portland, OR 97207-0751, USA
| | - Tatyana V. Kolganova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071, Moscow, Russia
| | | | - Elizaveta A. Bonch-Osmolovskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071, Moscow, Russia
| | - Alexander I. Slobodkin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071, Moscow, Russia
| |
Collapse
|
21
|
Thiel V, Hügler M, Ward DM, Bryant DA. The Dark Side of the Mushroom Spring Microbial Mat: Life in the Shadow of Chlorophototrophs. II. Metabolic Functions of Abundant Community Members Predicted from Metagenomic Analyses. Front Microbiol 2017. [PMID: 28634470 PMCID: PMC5459899 DOI: 10.3389/fmicb.2017.00943] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial mat communities in the effluent channels of Octopus and Mushroom Springs within the Lower Geyser Basin of Yellowstone National Park have been extensively characterized. Previous studies have focused on the chlorophototrophic organisms of the phyla Cyanobacteria and Chloroflexi. However, the diversity and metabolic functions of the other portion of the community in the microoxic/anoxic region of the mat are poorly understood. We recently described the diverse but extremely uneven microbial assemblage in the undermat of Mushroom Spring based on 16S rRNA amplicon sequences, which was dominated by Roseiflexus members, filamentous anoxygenic chlorophototrophs. In this study, we analyzed the orange-colored undermat portion of the community of Mushroom Spring mats in a genome-centric approach and discuss the metabolic potentials of the major members. Metagenome binning recovered partial genomes of all abundant community members, ranging in completeness from ~28 to 96%, and allowed affiliation of function with taxonomic identity even for representatives of novel and Candidate phyla. Less complete metagenomic bins correlated with high microdiversity. The undermat portion of the community was found to be a mixture of phototrophic and chemotrophic organisms, which use bicarbonate as well as organic carbon sources derived from different cell components and fermentation products. The presence of rhodopsin genes in many taxa strengthens the hypothesis that light energy is of major importance. Evidence for the usage of all four bacterial carbon fixation pathways was found in the metagenome. Nitrogen fixation appears to be limited to Synechococcus spp. in the upper mat layer and Thermodesulfovibrio sp. in the undermat, and nitrate/nitrite metabolism was limited. A closed sulfur cycle is indicated by biological sulfate reduction combined with the presence of genes for sulfide oxidation mainly in phototrophs. Finally, a variety of undermat microorganisms have genes for hydrogen production and consumption, which leads to the observed diel hydrogen concentration patterns.
Collapse
Affiliation(s)
- Vera Thiel
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University ParkPA, United States
| | - Michael Hügler
- Department Microbiology and Molecular Biology, DVGW-Technologiezentrum WasserKarlsruhe, Germany
| | - David M Ward
- Department of Land Resources and Environmental Sciences, Montana State UniversityBozeman, MT, United States
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University ParkPA, United States.,Department of Chemistry and Biochemistry, Montana State UniversityBozeman, MT, United States
| |
Collapse
|
22
|
Merkel AY, Pimenov NV, Rusanov II, Slobodkin AI, Slobodkina GB, Tarnovetckii IY, Frolov EN, Dubin AV, Perevalova AA, Bonch-Osmolovskaya EA. Microbial diversity and autotrophic activity in Kamchatka hot springs. Extremophiles 2016; 21:307-317. [DOI: 10.1007/s00792-016-0903-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/27/2016] [Indexed: 12/26/2022]
|
23
|
Mardanov AV, Beletsky AV, Kadnikov VV, Slobodkin AI, Ravin NV. Genome Analysis of Thermosulfurimonas dismutans, the First Thermophilic Sulfur-Disproportionating Bacterium of the Phylum Thermodesulfobacteria. Front Microbiol 2016; 7:950. [PMID: 27379079 PMCID: PMC4911364 DOI: 10.3389/fmicb.2016.00950] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/02/2016] [Indexed: 11/17/2022] Open
Abstract
Thermosulfurimonas dismutans S95T, isolated from a deep-sea hydrothermal vent is the first bacterium of the phylum Thermodesulfobacteria reported to grow by the disproportionation of elemental sulfur, sulfite, or thiosulfate with carbon dioxide as the sole carbon source. In contrast to its phylogenetically close relatives, which are dissimilatory sulfate-reducers, T. dismutans is unable to grow by sulfate respiration. The features of this organism and its 2,1 Mb draft genome sequence are described in this report. Genome analysis revealed that the T. dismutans genome contains the set of genes for dissimilatory sulfate reduction including ATP sulfurylase, the AprA and B subunits of adenosine-5′-phosphosulfate reductase, and dissimilatory sulfite reductase. The oxidation of elemental sulfur to sulfite could be enabled by APS reductase-associated electron transfer complex QmoABC and heterodisulfide reductase. The genome also contains several membrane-linked molybdopterin oxidoreductases that are thought to be involved in sulfur metabolism as subunits of thiosulfate, polysulfide, or tetrathionate reductases. Nitrate could be used as an electron acceptor and reduced to ammonium, as indicated by the presence of periplasmic nitrate and nitrite reductases. Autotrophic carbon fixation is enabled by the Wood–Ljungdahl pathway, and the complete set of genes that is required for nitrogen fixation is also present in T. dismutans. Overall, our results provide genomic insights into energy and carbon metabolism of chemolithoautotrophic sulfur-disproportionating bacterium that could be important primary producer in microbial communities of deep-sea hydrothermal vents.
Collapse
Affiliation(s)
- Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Alexey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Vitaly V Kadnikov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Alexander I Slobodkin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| |
Collapse
|