1
|
Hnini M, Aurag J. Prevalence, diversity and applications potential of nodules endophytic bacteria: a systematic review. Front Microbiol 2024; 15:1386742. [PMID: 38812696 PMCID: PMC11133547 DOI: 10.3389/fmicb.2024.1386742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Legumes are renowned for their distinctive biological characteristic of forming symbiotic associations with soil bacteria, mostly belonging to the Rhizobiaceae familiy, leading to the establishment of symbiotic root nodules. Within these nodules, rhizobia play a pivotal role in converting atmospheric nitrogen into a plant-assimilable form. However, it has been discerned that root nodules of legumes are not exclusively inhabited by rhizobia; non-rhizobial endophytic bacteria also reside within them, yet their functions remain incompletely elucidated. This comprehensive review synthesizes available data, revealing that Bacillus and Pseudomonas are the most prevalent genera of nodule endophytic bacteria, succeeded by Paenibacillus, Enterobacter, Pantoea, Agrobacterium, and Microbacterium. To date, the bibliographic data available show that Glycine max followed by Vigna radiata, Phaseolus vulgaris and Lens culinaris are the main hosts for nodule endophytic bacteria. Clustering analysis consistently supports the prevalence of Bacillus and Pseudomonas as the most abundant nodule endophytic bacteria, alongside Paenibacillus, Agrobacterium, and Enterobacter. Although non-rhizobial populations within nodules do not induce nodule formation, their presence is associated with various plant growth-promoting properties (PGPs). These properties are known to mediate important mechanisms such as phytostimulation, biofertilization, biocontrol, and stress tolerance, emphasizing the multifaceted roles of nodule endophytes. Importantly, interactions between non-rhizobia and rhizobia within nodules may exert influence on their leguminous host plants. This is particularly shown by co-inoculation of legumes with both types of bacteria, in which synergistic effects on plant growth, yield, and nodulation are often measured. Moreover these effects are pronounced under both stress and non-stress conditions, surpassing the impact of single inoculations with rhizobia alone.
Collapse
Affiliation(s)
| | - Jamal Aurag
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
2
|
Wang Q, Han XL, Shen JQ, Lai JD, Zhang CL, Fang ZQ, Lu T. Paenibacillus baimaensis sp. nov., a bacterium isolated from mountain soil in the habitat of Rhinopithecus bieti. Int J Syst Evol Microbiol 2024; 74. [PMID: 38334269 DOI: 10.1099/ijsem.0.006260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
A novel Gram-positive strain WQ 127069T that was isolated from the soil of Baima Snow Mountain, a habitat of highly endangered Yunnan snub-nosed monkeys (Rhinopithecus bieti), was subjected to a polyphasic taxonomic study. Phylogenetic analysis based on the 16S rRNA gene sequences showed that the isolate belongs to the genus Paenibacillus, showing 98.4 and 96.08 % sequence similarity to the type strains Paenibacillus periandrae PM10T and Paenibacillus foliorum LMG 31456T, respectively. The G+C content of the genomic DNA of strain WQ127069T was 45.6 mol%. The predominant isoprenoid quinone was MK-7, and meso-diaminopimelic acid was present in peptidoglycan. The major cellular fatty acids were antiiso-C15 : 0, iso-C15 : 0 and C16 : 0. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and phosphatidylmonomethylethanolamine. The whole genome average nucleotide identity and digital DNA-DNA hybridization values between strain WQ 127069T and strain PM10T were 93.2 and 52.5 %, respectively. Growth occurred at 5-40 °C (optimally at 20-35 °C), pH 6-8 (optimally at pH7.0) and with 0.5-2 % (w/v) NaCl (optimally at 0.5 %). On the basis of the taxonomic evidence, a novel species, Paenibacillus baimaensis sp. nov., is proposed. The type strain is WQ 127069T (=KCTC 43480T=CCTCC AB 2022381T).
Collapse
Affiliation(s)
- Qiong Wang
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650500, PR China
- Present address: Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Xiu-Lin Han
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650500, PR China
| | - Jian-Qiang Shen
- Weixi Sub-bureau, Baima Snow Mountain National Nature Reserve, Diqing, Yunnan 674400, PR China
| | - Jian-Dong Lai
- Wildlife Rescue and Rehabilitation Station, Baima Snow Mountain National Nature Reserve, Diqing, Yunnan 674400, PR China
| | - Chen-Lu Zhang
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650500, PR China
| | - Zhi-Qin Fang
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650500, PR China
| | - Tao Lu
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650500, PR China
| |
Collapse
|
3
|
Rios CO, Pimentel PA, Bicalho EM, Garcia QS, Pereira EG. Photochemical attributes determine the responses of plant species from different functional groups of ferruginous outcrops when grown in iron mining substrates. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23207. [PMID: 38163648 DOI: 10.1071/fp23207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Environments originating from banded iron formations, such as the canga , are important reference ecosystems for the recovery of degraded areas by mining. The objective of this work was to evaluate if the relationship between morphofunctional and photosynthetic attributes of native canga species from different functional group results in distinct responses when grown in iron mining tailings substrate. The experiment was carried out with species belonging to different functional groups: a widespread semi-deciduous tree-shrub, Myrcia splendens ; an endemic deciduous shrub, Jacaranda caroba ; and a nitrogen-fixing herbaceous species, Periandra mediterranea . The species were grown in two conditions, reference soil and iron ore tailing. Despite belonging to different functional groups when grown in tailings, the morphofunctional attributes presented similar responses between species. M. splendens was the species most affected by the conditions imposed by the iron ore mining tailings, with decreased light-use efficiency and electron transport. P. mediterranea had satisfactory growth and maintenance of photosynthetic attributes. J. caroba growing in the tailings increased the effective quantum yield of PSII. The photochemical and growth assessments were able to better explain the adaptive strategies developed by the species, guaranteeing a greater chance of success during the rehabilitation of mining substrates.
Collapse
Affiliation(s)
- Camilla Oliveira Rios
- Graduate program in Plant Biology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Paulo Antônio Pimentel
- Institute of Biological and Health Sciences, Federal University of Viçosa (UFV), Campus Florestal, Florestal, Minas Gerais, Brazil
| | - Elisa Monteze Bicalho
- Plant Growth and Development Laboratory, Plant Physiology, Federal University of Lavras (UFLA), University Campus, Lavras, Minas Gerais, Brazil
| | - Queila Souza Garcia
- Laboratory of Plant Physiology, Department of Botany, Institute of Biological Sciences, Federal University of Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo Gusmão Pereira
- Institute of Biological and Health Sciences, Federal University of Viçosa (UFV), Campus Florestal, Florestal, Minas Gerais, Brazil
| |
Collapse
|
4
|
Lee H, Chaudhary DK, Lim OB, Kim DU. Paenibacillus silvisoli sp. nov. and Paenibacillus humicola sp. nov., isolated from forest soil. Arch Microbiol 2023; 206:42. [PMID: 38147140 DOI: 10.1007/s00203-023-03763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/27/2023]
Abstract
During the study of microbial ecology of forest soil, two circular, white-colored bacterial colonies were isolated and labeled as strains TW38T and TW40T. Both strains were catalase positive and oxidase negative. Strains TW38T and TW40T demonstrated growth within a temperature range of 10-37 °C and 18-37 °C, respectively, and thrived within a pH range of 5.5-9.0 and 6.0-8.0, respectively. Both strains grew at 0-2.0% (w/v) NaCl concentrations. The phylogenetic analysis indicated that strains TW38T and TW40T affiliated to the genus Paenibacillus, with the closest neighbors being Paenibacillus montanisoli RA17T (98.6%) and Paenibacillus arachidis E3T (95.4%), respectively. In both strains, the sole respiratory quinone was MK-7, the signature fatty acid was antiso-C15:0, and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, and phosphatidylcholine. The digital DNA-DNA hybridization and the average nucleotide identity values between TW38T, TW40T, and closest reference strains were < 29.0% and < 85.0%, respectively. The DNA G+C content of TW38T and TW40T was 54.5% and 57.1%, respectively. In general, the phylogenetic, genomics, chemotaxonomic, and phenotypic data support the differentiation of TW38T and TW40T from other closest members of the genus Paenibacillus. Thus, we conclude both strains TW38T and TW40T represent novel species of the genus Paenibacillus, for which the name Paenibacillus silvisoli sp. nov. and Paenibacillus humicola sp. nov. are proposed, respectively. The type strain of Paenibacillus silvisoli is TW38T (= KCTC 43468T = NBRC 116015T) and type strain of Paenibacillus humicola is TW40T (= KCTC 43469T = NBRC 116016T).
Collapse
Affiliation(s)
- Hyosun Lee
- Department of Biological Science, College of Science and Engineering, Sangji University, Wonju, 26339, Republic of Korea
| | - Dhiraj Kumar Chaudhary
- Department of Environmental Engineering, College of Science and Technology, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, 30019, Republic of Korea
| | - Oung Bin Lim
- Department of Biological Science, College of Science and Engineering, Sangji University, Wonju, 26339, Republic of Korea
| | - Dong-Uk Kim
- Department of Biological Science, College of Science and Engineering, Sangji University, Wonju, 26339, Republic of Korea.
| |
Collapse
|
5
|
Lee H, Chaudhary DK, Lim OB, Lee KE, Cha IT, Chi WJ, Kim DU. Paenibacillus caseinilyticus sp. nov., isolated forest soil. Int J Syst Evol Microbiol 2023; 73. [PMID: 37982814 DOI: 10.1099/ijsem.0.006171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
A milky-white-coloured, aerobic, Gram-stain-positive, rod-shaped and motile bacterial strain (GW78T) was isolated from forest soil. GW78T was catalase-positive and oxidase-negative. The strain was able to grow optimally at 37 °C and at pH 7.0 in Reasoner's 2A media. The phylogenetic and 16S rRNA gene sequence analysis of GW78T showed its affiliation with the genus Paenibacillus. The 16S rRNA gene sequence of GW78T revealed 98.3 % similarity to its nearest neighbour Paenibacillus mucilaginosus VKPM B-7519T. Its chemotaxonomic properties included MK-7 as the sole menaquinone, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylmonomethylethanolamine and phosphatidylethanolamine as major polar lipids, and anteiso-C15 : 0, C16 : 1 ω11c and anteiso-C17 : 0 as predominant fatty acids. Digital DNA-DNA hybridization and average nucleotide identity results with its closest relatives were <74.0 % and <14.0 %, respectively. Overall, 16S rRNA gene sequence comparisons, phylogenetic and genomic evidence, and phenotypic and chemotaxonomic data allow the differentiation of GW78T from other members of the genus Paenibacillus. Thus, we propose that strain GW78T represents a novel species of the genus Paenibacillus, with the name Paenibacillus caseinilyticus sp. nov. The type strain is GW78T (=KCTC 43430T=NBRC 116023T).
Collapse
Affiliation(s)
- Hyosun Lee
- Department of Biological Science, College of Science and Engineering, Sangji University, Wonju, 26339, Republic of Korea
| | - Dhiraj Kumar Chaudhary
- Department of Environmental Engineering, College of Science and Technology, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, 30019, Republic of Korea
| | - Oung Bin Lim
- Department of Biological Science, College of Science and Engineering, Sangji University, Wonju, 26339, Republic of Korea
| | - Ki Eun Lee
- Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - In Tae Cha
- Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Won Jae Chi
- Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Dong-Uk Kim
- Department of Biological Science, College of Science and Engineering, Sangji University, Wonju, 26339, Republic of Korea
| |
Collapse
|
6
|
Lee H, Chaudhary DK, Lim OB, Kim DU. Paenibacillus agricola sp. nov., isolated from agricultural soil. Arch Microbiol 2023; 205:248. [PMID: 37233801 DOI: 10.1007/s00203-023-03578-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023]
Abstract
A white-coloured, rod-shaped, motile, aerobic, and Gram-stain-positive bacterial strain S3N08T was isolated from agricultural soil. The strain grew at temperature 10-40 °C, at 0-1.0% (w/v) NaCl concentration, and at pH 6.5-8.0. Catalase was negative and oxidase was positive. The phylogenetic analysis inferred that the strain S3N08T belonged to the genus Paenibacillus, with the closest relative being Paenibacillus periandrae PM10T (95.6% 16S rRNA gene sequence similarity). The only menaquinone was MK-7 and the major polar lipids were phosphatidylmonomethylethanolamine, phosphatidylglycerol, and phosphatidylethanolamine. The predominant fatty acids were antiso-C15:0, C16:0, and iso-C15:0. The DNA G + C content was 45.1%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain S3N08T and with closest members were < 72.0% and < 19.0%, respectively. Altogether, the phylogenetic, genomics, phenotypic, and chemotaxonomic evidence illustrated in this study suggested that strain S3N08T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus agricola sp. nov. is proposed. The type strain is S3N08T (= KACC 19666 T = NBRC 113430 T).
Collapse
Affiliation(s)
- Hyosun Lee
- Department of Biological Science, College of Science and Engineering, Sangji University, Wonju, 26339, Republic of Korea
| | - Dhiraj Kumar Chaudhary
- Department of Environmental Engineering, College of Science and Technology, Korea University Sejong Campus, 2511 Sejong-ro, Sejong, 30019, Republic of Korea
| | - Oung Bin Lim
- Department of Biological Science, College of Science and Engineering, Sangji University, Wonju, 26339, Republic of Korea
| | - Dong-Uk Kim
- Department of Biological Science, College of Science and Engineering, Sangji University, Wonju, 26339, Republic of Korea.
| |
Collapse
|
7
|
Ali MA, Lou Y, Hafeez R, Li X, Hossain A, Xie T, Lin L, Li B, Yin Y, Yan J, An Q. Functional Analysis and Genome Mining Reveal High Potential of Biocontrol and Plant Growth Promotion in Nodule-Inhabiting Bacteria Within Paenibacillus polymyxa Complex. Front Microbiol 2021; 11:618601. [PMID: 33537018 PMCID: PMC7848036 DOI: 10.3389/fmicb.2020.618601] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022] Open
Abstract
Bacteria belonging to the genus Paenibacillus were frequently isolated from legume nodules. The nodule-inhabiting Paenibacillus as a resource of biocontrol and plant growth-promoting endophytes has rarely been explored. This study explored the nodule-inhabiting Paenibacillus' antifungal activities and biocontrol potentials against broad-spectrum important phytopathogenic fungi. We collected strains which were isolated from nodules of Robinia pseudoacacia, Dendrolobium triangulare, Ormosia semicastrata, Cicer arietinum, Acacia crassicarpa, or Acacia implexa and belong to P. peoriae, P. kribbensis, P. endophyticus, P. enshidis, P. puldeungensis, P. taichungensis, or closely related to P. kribbensis, or P. anseongense. These nodule-inhabiting Paenibacillus showed diverse antagonistic activities against five phytopathogenic fungi (Fusarium graminearum, Magnaporthe oryzae, Rhizoctonia solani, Sclerotinia sclerotiorum, and Botrytis cinerea). Six strains within the P. polymyxa complex showed broad-spectrum and potent activities against all the five pathogens, and produced multiple hydrolytic enzymes, siderophores, and lipopeptide fusaricidins. Fusaricidins are likely the key antimicrobials responsible for the broad-spectrum antifungal activities. The nodule-inhabiting strains within the P. polymyxa complex were able to epiphytically and endophytically colonize the non-host wheat plants, produce indole acetic acids (IAA), and dissolve calcium phosphate and calcium phytate. P. peoriae strains RP20, RP51, and RP62 could fix N2. P. peoriae RP51 and Paenibacillus sp. RP31, which showed potent plant colonization and plant growth-promotion competence, effectively control fungal infection in planta. Genome mining revealed that all strains (n = 76) within the P. polymyxa complex contain ipdC gene encoding indole-3-pyruvate decarboxylase for biosynthesis of IAA, 96% (n = 73) contain the fus cluster for biosynthesis of fusaricidins, and 43% (n = 33) contain the nif cluster for nitrogen fixation. Together, our study highlights that endophytic strains within the P. polymyxa complex have a high probability to be effective biocontrol agents and biofertilizers and we propose an effective approach to screen strains within the P. polymyxa complex.
Collapse
Affiliation(s)
- Md. Arshad Ali
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Province Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yang Lou
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Province Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Rahila Hafeez
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Province Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xuqing Li
- Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Afsana Hossain
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Province Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Ting Xie
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Province Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Li Lin
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Bin Li
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Province Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yanni Yin
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Province Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jianli Yan
- Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Qianli An
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Province Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Nogueira CB, Menéndez E, Ramírez-Bahena MH, Velázquez E, Peix Á, Mateos PF, Scotti MR. The N-fixing legume Periandra mediterranea constrains the invasion of an exotic grass (Melinis minutiflora P. Beauv) by altering soil N cycling. Sci Rep 2019; 9:11033. [PMID: 31363104 PMCID: PMC6667476 DOI: 10.1038/s41598-019-47380-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/10/2019] [Indexed: 11/08/2022] Open
Abstract
Melinis minutiflora is an invasive species that threatens the biodiversity of the endemic vegetation of the campo rupestre biome in Brazil, displacing the native vegetation and favouring fire spread. As M. minutiflora invasion has been associated with a high nitrogen (N) demand, we assessed changes in N cycle under four treatments: two treatments with contrasting invasion levels (above and below 50%) and two un-invaded control treatments with native vegetation, in the presence or absence of the leguminous species Periandra mediterranea. This latter species was considered to be the main N source in this site due to its ability to fix N2 in association with Bradyrhizobia species. Soil proteolytic activity was high in treatments with P. mediterranea and in those severely invaded, but not in the first steps of invasion. While ammonium was the N-chemical species dominant in plots with native species, including P.mediterranea, soil nitrate prevailed only in fully invaded plots due to the stimulation of the nitrifying bacterial (AOB) and archaeal (AOA) populations carrying the amoA gene. However, in the presence of P. mediterranea, either in the beginning of the invasion or in uninvaded plots, we observed an inhibition of the nitrifying microbial populations and nitrate formation, suggesting that this is a biotic resistance strategy elicited by P. mediterranea to compete with M. minutiflora. Therefore, the inhibition of proteolytic activity and the nitrification process were the strategies elicited by P.mediterranea to constrain M.munitiflora invasion.
Collapse
Affiliation(s)
- Carina B Nogueira
- Department of Botany, Institute of Biological Science/Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Esther Menéndez
- Departamento de Microbiología y Genética and Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, Spain
- ICAAM (Institute of Mediterranean Agriculture and Environmental Sciences), University of Évora-Núcleo da Mitra, Évora, Portugal
| | | | - Encarna Velázquez
- Departamento de Microbiología y Genética and Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, Spain
- Unidad Asociada Universidad de Salamanca- CSIC 'Interacción Planta-Microorganismo', Salamanca, Spain
| | - Álvaro Peix
- Instituto de Recursos Naturales y Agrobiología (IRNASA-CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain
- Unidad Asociada Universidad de Salamanca- CSIC 'Interacción Planta-Microorganismo', Salamanca, Spain
| | - Pedro F Mateos
- Departamento de Microbiología y Genética and Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, Spain
- Unidad Asociada Universidad de Salamanca- CSIC 'Interacción Planta-Microorganismo', Salamanca, Spain
| | - Maria Rita Scotti
- Department of Botany, Institute of Biological Science/Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
9
|
Nahar S, Cha CJ. Paenibacillus limicola sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2018; 68:423-426. [DOI: 10.1099/ijsem.0.002522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Shamsun Nahar
- Department of Systems Biotechnology, Chung-Ang University, Anseong 456-756, Republic of Korea
| | - Chang-Jun Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong 456-756, Republic of Korea
| |
Collapse
|