1
|
Liu G, Chen C, Jiang Z, Liu Y, Wang X, Qiao L, Liu K, Han X. Characterization and the first complete genome sequence of a novel strain of Bergeyella porcorum isolated from pigs in China. BMC Microbiol 2024; 24:214. [PMID: 38886642 PMCID: PMC11181579 DOI: 10.1186/s12866-024-03366-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Bergeyella porcorum is a newly identified bacterium that has an ambiguous relationship with pneumonia in pigs. However, few studies have adequately characterized this species. RESULTS In this study, we analyzed the morphological, physiological, and genomic characteristics of the newly identified B. porcorum sp. nov. strain QD2021 isolated from pigs. The complete genome sequence of the B. porcorum QD2021 strain consists of a single circular chromosome (2,271,736 bp, 38.51% G + C content), which encodes 2,578 genes. One plasmid with a size of 70,040 bp was detected. A total of 121 scattered repeat sequences, 319 tandem repeat sequences, 4 genomic islands, 5 prophages, 3 CRISPR sequences, and 51 ncRNAs were predicted. The coding genes of the B. porcorum genome were successfully annotated across eight databases (NR, GO, KEGG, COG, TCDB, Pfam, Swiss-Prot and CAZy) and four pathogenicity-related databases (PHI, CARD, VFDB and ARDB). In addition, a comparative genome analysis was performed to explore the evolutionary relationships of B. porcorum QD2021. CONCLUSIONS To our knowledge, this is the first study to provide fundamental phenotypic and whole-genome sequences for B. porcorum. Our results extensively expand the current knowledge and could serve as a valuable genomic resource for future research on B. porcorum.
Collapse
Affiliation(s)
- Gang Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Chao Chen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Zhikang Jiang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Yu Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Xianwen Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Lei Qiao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Kang Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Xianjie Han
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong, China.
| |
Collapse
|
2
|
Drozdovskaya PA, Zinserling VA. [Pathogenesis and pathological anatomy of chlamydial infections]. Arkh Patol 2024; 86:68-74. [PMID: 39434530 DOI: 10.17116/patol20248605168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The review presents modern view on the global problem of chlamydial infections. Current nomenclature of chlamydiae was adduced. Epidemiology, etiology, clinical features, pathogenesis, diagnosis and treatment of chlamydiosis received full coverage. The potential involvement of chlamydiae in the progression of various infectious and somatic diseases was revealed. Special attention was paid to pathomorphological alterations in human tissues, which develop during primary infection with chlamydia as well as during chronic infection. Key problems were demonstrated: underestimation of prevalence of chlamydiae among humans in worldwide clinical practice, the difficulty of detection of extragenital chlamydiosis, the lack of effective methods for diagnosis and treatment of persistent forms, the paucity of descriptions of pathomorphological picture of human chlamydiosis, the absence of specific prevention of infection.
Collapse
Affiliation(s)
- P A Drozdovskaya
- Almazov National Medical Research Centre, St. Petersburg, Russia
- North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, Russia
| | - V A Zinserling
- Almazov National Medical Research Centre, St. Petersburg, Russia
- North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, Russia
- S.P. Botkin Clinical Infectious Diseases Hospital, St. Petersburg, Russia
| |
Collapse
|
3
|
Cybulski P, Strutzberg-Minder K, Michalik E, Kondratiuk R, Jablonski A. First molecular detection of Brachyspira suanatina on pig farms in Poland. J Vet Res 2023; 67:353-359. [PMID: 37786846 PMCID: PMC10541668 DOI: 10.2478/jvetres-2023-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/19/2023] [Indexed: 10/04/2023] Open
Abstract
Introduction Prior to the 2000s, swine dysentery was considered to be caused only by Brachyspira hyodysenteriae with contributing commensal intestinal anaerobes. Nowadays, it is known that the disease is caused by three strongly beta-haemolytic species of the anaerobic spirochaetal genus Brachyspira, i.e. B. hyodysenteriae and newly emerged B. hampsonii and B. suanatina. Material and Methods The present investigation was carried out in November 2022 on nine Polish high-performing finisher pig farms. At every location one fresh pooled faecal sample was collected from 40 randomly selected pigs of between 60 and 110 kg live weight. Nucleic acid extracted from each pooled faecal sample was analysed by an in-house multiplex PCR for Brachyspira spp., which is capable of confirming the Brachyspira genus and detecting and differentiating Brachyspira species. Results From a total of nine samples examined, the genetic material of B. suanatina was detected in seven. Non-pathogenic/questionably pathogenic Brachyspira spp. were found in six samples. Conclusion To the best of our knowledge, this is the first report on the identification of B. suanatina in pigs outside Scandinavia, Germany and the United Kingdom. Our research not only provides valuable epidemiological data on B. suanatina infection in Europe but also highlights both the importance of modern laboratory diagnostics and the need for thorough investigation across regions, including retrospective studies.
Collapse
Affiliation(s)
- Piotr Cybulski
- Goodvalley Agro S.A., 77-320 Przechlewo, Przechlewo, Poland
| | - Katrin Strutzberg-Minder
- IVD Gesellschaft für Innovative Veterinärdiagnostik mbH, 30926 Seelze-Letter, Seelze-Letter, Germany
| | - Edyta Michalik
- Goodvalley Agro S.A., 77-320 Przechlewo, Przechlewo, Poland
| | | | - Artur Jablonski
- Center of Translational Medicine, Faculty of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, 02-787 Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Munson E, Lawhon SD, Burbick CR, Zapp A, Villaflor M, Thelen E. An Update on Novel Taxa and Revised Taxonomic Status of Bacteria Isolated from Domestic Animals Described in 2018 to 2021. J Clin Microbiol 2023; 61:e0028122. [PMID: 36533907 PMCID: PMC9945509 DOI: 10.1128/jcm.00281-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Novel bacterial taxonomy and nomenclature revisions can have significant impacts on clinical practice, disease epidemiology, and veterinary microbiology laboratory operations. Expansion of research on the microbiota of humans, animals, and insects has significant potential impacts on the taxonomy of organisms of clinical interest. Implications of taxonomic changes may be especially important when considering zoonotic diseases. Here, we address novel taxonomy and nomenclature revisions of veterinary significance. Noteworthy discussion centers around descriptions of novel mastitis pathogens in Streptococcaceae, Staphylococcaceae, and Actinomycetaceae; bovine reproductive tract pathogens in Corynebacteriaceae; novel members of Mannheimia spp., Leptospira spp., and Mycobacterium spp.; the transfer of Ochrobactrum spp. to Brucella spp.; and revisions to the genus Mycoplasma.
Collapse
Affiliation(s)
- Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Claire R. Burbick
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Amanda Zapp
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Maia Villaflor
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Elizabeth Thelen
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
5
|
Quantitative evaluation of Mycobacterium abscessus clinical isolate virulence using a silkworm infection model. PLoS One 2022; 17:e0278773. [PMID: 36538550 PMCID: PMC9767372 DOI: 10.1371/journal.pone.0278773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium abscessus causes chronic skin infections, lung diseases, and systemic or disseminated infections. Here we investigated whether the virulence of M. abscessus clinical isolates could be evaluated by calculating the median lethal dose (LD50) in a silkworm infection model. M. abscessus subsp. abscessus cells were injected into the silkworm hemolymph. When reared at 37˚C, the silkworms died within 2 days post-infection with M. abscessus subsp. abscessus. Viable cell numbers of M. abscessus increased in the hemolymph of silkworms injected with M. abscessus. Silkworms were not killed by injections with heat-killed M. abscessus cells. The administration of clarithromycin, an antibacterial drug used to treat the infection in humans, prolonged the survival time of silkworms injected with M. abscessus. The LD50 values of 7 clinical isolates in the silkworm infection model were differed by up to 9-fold. The Mb-17 isolate, which was identified as a virulent strain in the silkworm infection model, induced more detachment of human THP-1-derived macrophages during infection than the Mb-10 isolate. These findings suggest that the silkworm M. abscessus infection model can be used to quantitatively evaluate the virulence of M. abscessus clinical isolates in a short time period.
Collapse
|
6
|
Kaur J, Mudgal G, Chand K, Singh GB, Perveen K, Bukhari NA, Debnath S, Mohan TC, Charukesi R, Singh G. An exopolysaccharide-producing novel Agrobacterium pusense strain JAS1 isolated from snake plant enhances plant growth and soil water retention. Sci Rep 2022; 12:21330. [PMID: 36494408 PMCID: PMC9734154 DOI: 10.1038/s41598-022-25225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
A peculiar bacterial growth was very often noticed in leaf-initiated tissue cultures of Sansevieria trifasciata, a succulent belonging to the Asparagaceae family. The isolate left trails of some highly viscous material on the walls of the suspension vessels or developed a thick overlay on semisolid media without adversities in plant growth. FTIR identified this substance to be an extracellular polysaccharide. Various morphological, biochemical tests, and molecular analyses using 16S rRNA, atpD, and recA genes characterized this isolate JAS1 as a novel strain of Agrobacterium pusense. Its mucoidal growth over Murashige and Skoog media yielded enormous exopolysaccharide (7252 mg l-1), while in nutrient agar it only developed fast-growing swarms. As a qualifying plant growth-promoting bacteria, it produces significant indole-3-acetic acid (86.95 mg l-1), gibberellic acid (172.98 mg l-1), ammonia (42.66 µmol ml-1). Besides, it produces siderophores, 1-aminocyclopropane-1-carboxylic acid deaminase, fixes nitrogen, forms biofilms, and productively solubilizes soil inorganic phosphates, and zinc. Under various treatments with JAS1, wheat and chickpea resulted in significantly enhanced shoot and root growth parameters. PGP effects of JAS1 positively enhanced plants' physiological growth parameters reflecting significant increments in overall chlorophyll, carotenoids, proline, phenols, flavonoids, and sugar contents. In addition, the isolated strain maintained both plant and soil health under an intermittent soil drying regime, probably by both its PGP and EPS production attributes, respectively.
Collapse
Affiliation(s)
- Jaspreet Kaur
- grid.448792.40000 0004 4678 9721University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Gaurav Mudgal
- grid.448792.40000 0004 4678 9721University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Kartar Chand
- grid.448792.40000 0004 4678 9721University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Gajendra B. Singh
- grid.448792.40000 0004 4678 9721University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Kahkashan Perveen
- grid.56302.320000 0004 1773 5396Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11495 Saudi Arabia
| | - Najat A. Bukhari
- grid.56302.320000 0004 1773 5396Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11495 Saudi Arabia
| | - Sandip Debnath
- grid.440987.60000 0001 2259 7889Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati University, Sriniketan, Birbhum, West Bengal 731236 India
| | - Thotegowdanapalya C. Mohan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Bannimantapa Road, Mysore, 570015 India
| | - Rajulu Charukesi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Bannimantapa Road, Mysore, 570015 India
| | - Gaurav Singh
- Stress Signaling to the Nucleus, CNRS-Institute of Molecular Biology of Plants, 12 Rue du General-Zimmer, 67000 Strasbourg, France
| |
Collapse
|
7
|
Yoon E, Kim TY, Heo WY, Kang O, Yu HJ, Lee JH, Ko JH, Lee NY, Huh HJ. The First Case of Clostridium saudiense Bacteremia in a Patient with Hepatocellular Carcinoma. Ann Lab Med 2022; 42:491-493. [PMID: 35177573 PMCID: PMC8859549 DOI: 10.3343/alm.2022.42.4.491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/12/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Eungjun Yoon
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Tae Yeul Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Young Heo
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Onkyun Kang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hui-Jin Yu
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joon Hyeok Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae-Hoon Ko
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Nam Yong Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Aujoulat F, Mazuet C, Criscuolo A, Popoff MR, Enault C, Diancourt L, Jumas-Bilak E, Lavigne JP, Marchandin H. Peptoniphilus nemausensis sp. nov. A new Gram-positive anaerobic coccus isolated from human clinical samples, an emendated description of the genus Peptoniphilus and an evaluation of the taxonomic status of Peptoniphilus species with not validly published names. Syst Appl Microbiol 2021; 44:126235. [PMID: 34385044 DOI: 10.1016/j.syapm.2021.126235] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 11/27/2022]
Abstract
A Gram-positive, anaerobic coccus isolated from a human surgical site infection was previously shown to belong to an unknown species of the genus Peptoniphilus initially proposed as 'Peptoniphilus nemausus' sp. nov., based on both 16S rRNA gene sequence identity of 97.9% with the most closely related species Peptoniphilus coxii and an individualized phylogenetic branching within the genus Peptoniphilus. A polyphasic characterization of the novel species is proposed herein. Whole genome sequence analysis showed an average nucleotide identity value of 84.75% and digital DNA-DNA hybridization value of 28.9% against P. coxii type strain. The strain displayed unique features among members of the genus Peptoniphilus, as it was able to hydrolyze aesculin, and produced acetate as the major metabolic end-product without associated production of butyrate. Growth was observed under microaerophilic conditions. From all these data, the isolate is confirmed as belonging to a new Peptoniphilus species, for which the name Peptoniphilus nemausensis sp. nov. is proposed. The type strain is 1804121828T (=LMG 31466T = CECT 9935T). A database survey using a highly polymorphic partial sequence of the 16S rRNA gene of P. nemausensis revealed P. nemausensis to be a particularly rare skin-associated species in humans. An emendated description of the Peptoniphilus genus is proposed based on a review of the characteristics of the 12 new species with validly published names since the genus description in 2001 and of P. nemausensis. Finally, the relationships between members of the genus Peptoniphilus were explored based on whole genome sequence analysis in order to clarify the taxonomic status of not yet validly published species showing that three pairs of species should be considered as synonyms: Peptoniphilus timonensis and 'Peptoniphilus phoceensis', Peptoniphilus lacydonensis and 'Peptoniphilus rhinitidis', Peptoniphilus tyrrelliae and Peptoniphilus senegalensis.
Collapse
Affiliation(s)
- Fabien Aujoulat
- HydroSciences Montpellier, CNRS, IRD, Univ Montpellier, Montpellier, France
| | - Christelle Mazuet
- Centre National de Référence bactéries anaérobies et botulisme, Institut Pasteur, Paris, France
| | - Alexis Criscuolo
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Michel R Popoff
- Unité des Toxines Bactériennes, UMR CNRS 2001, Institut Pasteur, Paris, France
| | - Cécilia Enault
- Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, Nîmes, France
| | - Laure Diancourt
- Centre National de Référence bactéries anaérobies et botulisme, Institut Pasteur, Paris, France
| | - Estelle Jumas-Bilak
- HydroSciences Montpellier, CNRS, IRD, Univ Montpellier, Département d'Hygiène Hospitalière, CHU Montpellier, Montpellier, France
| | - Jean-Philippe Lavigne
- VBIC, INSERM U1047, Univ Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, Nîmes, France
| | - Hélène Marchandin
- HydroSciences Montpellier, CNRS, IRD, Univ Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, Nîmes, France.
| |
Collapse
|
9
|
Lan M, Yang T, Song Y, Lv L, Wang H, Chen Q, Chen K. Taishania pollutisoli gen. nov., sp. nov., Isolated from Tetrabromobisphenol A-Contaminated Soil. Curr Microbiol 2021; 78:2563-2568. [PMID: 33974098 DOI: 10.1007/s00284-021-02522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022]
Abstract
Strain CZZ-1T was isolated from long-term TBBPA-contaminated soil Zaozhuang city, Shandong province, People's Republic of China. CZZ-1T was pink-pigmented, Gram-stain-negative, rod-shaped, non-motile and aerobic. The 16S rRNA gene analysis indicated that strain CZZ-1T shows high similarities to Fluviicola taffensis DSM 16823T (92.6%) and Fluviicola hefeinensis KACC 16597T (92.5%) and less than 91% sequence similarities to other genus or species in the family Crocinitomicaceae. It was able to grow at 10-37 °C, with 0-6% (w/v) NaCl. It could hydrolyze gelatin, but could not reduce nitrates to nitrites. The predominant fatty acids of strain CZZ-1T were iso-C15:0 (51.3%), C15:0 2-OH (11.0%), iso-C17:0 3-OH (8.0%), C14: 0 (7.0%), iso-C15:1 G (6.8%) and Summed Feature 3 (C16:1 ω7c and/or C16:1 ω6c, 4.4%). The polar lipid profile was composed of five unidentified lipids, two unidentified phospholipids, one phosphatidylethanolamine, one unidentified aminolipid and one unidentified glycolipid. The predominant respiratory quinone was MK-6. The genomic DNA G+C content of strain CZZ-1T was 41.5 mol%. Based on data from phenotypic, chemotaxonomic and genotypic analysis in this study, strain CZZ-1T represents a novel species in a new genus in the family Crocinitomicaceae, for which the name Taishania pollutisoli gen. nov., sp. nov. is proposed. The type strain is CZZ-1T (= KCTC 52343T = GDMCC 1.2270T).
Collapse
Affiliation(s)
- Minjian Lan
- Key Lab of Microbiological Engineering of Agricultural Environment, Department of Microbiology, College of Life Sciences, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Tunan Yang
- Key Lab of Microbiological Engineering of Agricultural Environment, Department of Microbiology, College of Life Sciences, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Yue Song
- College of Life Sciences, Zaozhuang University, 277160, Zaozhuang, People's Republic of China
| | - Lijie Lv
- College of Life Sciences, Zaozhuang University, 277160, Zaozhuang, People's Republic of China
| | - Hongmei Wang
- College of Life Sciences, Zaozhuang University, 277160, Zaozhuang, People's Republic of China
| | - Qing Chen
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China. .,College of Life Sciences, Zaozhuang University, 277160, Zaozhuang, People's Republic of China.
| | - Kai Chen
- Key Lab of Microbiological Engineering of Agricultural Environment, Department of Microbiology, College of Life Sciences, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China.
| |
Collapse
|
10
|
A novel DNA chromatography method to discriminate Mycobacterium abscessus subspecies and macrolide susceptibility. EBioMedicine 2021; 64:103187. [PMID: 33446475 PMCID: PMC7910664 DOI: 10.1016/j.ebiom.2020.103187] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/28/2020] [Accepted: 12/11/2020] [Indexed: 11/30/2022] Open
Abstract
Background The clinical impact of infection with Mycobacterium (M.) abscessus complex (MABC), a group of emerging non-tuberculosis mycobacteria (NTM), is increasing. M. abscessus subsp. abscessus/bolletii frequently shows natural resistance to macrolide antibiotics, whereas M. abscessus subsp. massiliense is generally susceptible. Therefore, rapid and accurate discrimination of macrolide-susceptible MABC subgroups is required for effective clinical decisions about macrolide treatments for MABC infection. We aimed to develop a simple and rapid diagnostic that can identify MABC isolates showing macrolide susceptibility. Methods Whole genome sequencing (WGS) was performed for 148 clinical or environmental MABC isolates from Japan to identify genetic markers that can discriminate three MABC subspecies and the macrolide-susceptible erm(41) T28C sequevar. Using the identified genetic markers, we established PCR based- or DNA chromatography-based assays. Validation testing was performed using MABC isolates from Taiwan. Finding We identified unique sequence regions that could be used to differentiate the three subspecies. Our WGS-based phylogenetic analysis indicated that M. abscessus carrying the macrolide-susceptible erm(41) T28C sequevar were tightly clustered, and identified 11 genes that were significantly associated with the lineage for use as genetic markers. To detect these genetic markers and the erm(41) locus, we developed a DNA chromatography method that identified three subspecies, the erm(41) T28C sequevar and intact erm(41) for MABC in a single assay within one hour. The agreement rate between the DNA chromatography-based and WGS-based identification was 99·7%. Interpretation We developed a novel, rapid and simple DNA chromatography method for identification of MABC macrolide susceptibility with high accuracy. Funding AMED, JSPS KAKENHI
Collapse
|
11
|
Montone AMI, Capuano F, Mancusi A, Di Maro O, Peruzy MF, Proroga YTR, Cristiano D. Exposure to Bacillus cereus in Water Buffalo Mozzarella Cheese. Foods 2020; 9:E1899. [PMID: 33352642 PMCID: PMC7766095 DOI: 10.3390/foods9121899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/18/2020] [Accepted: 12/17/2020] [Indexed: 01/04/2023] Open
Abstract
Bacillus cereus is a spoilage bacterium and is recognized as an agent of food poisoning. Two food-borne illnesses are caused by B. cereus: a diarrheal disease, associated with cytotoxin K, hemolysin BL, non-hemolytic enterotoxin and enterotoxin FM, and an emetic syndrome, associated with the cereulide toxin. Owing to the heat resistance of B. cereus and its ability to grow in milk, this organism should be considered potentially hazardous in dairy products. The present study assessed the risk of B. cereus poisoning due to the consumption of water buffalo mozzarella cheese. A total of 340 samples were analyzed to determine B. cereus counts (ISO 7932:2005); isolates underwent molecular characterization to detect the presence of genes encoding toxins. Eighty-nine (26.1%) samples harbored B. cereus strains, with values ranging from 2.2 × 102 to 2.6 × 106 CFU/g. Isolates showed eight different molecular profiles, and some displayed virulence characteristics. Bacterial counts and the toxin profiles of isolates were evaluated both separately and jointly to assess the risk of enteritis due to B. cereus following the consumption of buffalo mozzarella cheese. In conclusion, the results of the present study showed that the risk of poisoning by B. cereus following the consumption of this cheese was moderate.
Collapse
Affiliation(s)
- Angela Michela Immacolata Montone
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici (NA), Italy; (A.M.I.M.); (F.C.); (A.M.); (O.D.M.); (D.C.)
| | - Federico Capuano
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici (NA), Italy; (A.M.I.M.); (F.C.); (A.M.); (O.D.M.); (D.C.)
| | - Andrea Mancusi
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici (NA), Italy; (A.M.I.M.); (F.C.); (A.M.); (O.D.M.); (D.C.)
| | - Orlandina Di Maro
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici (NA), Italy; (A.M.I.M.); (F.C.); (A.M.); (O.D.M.); (D.C.)
| | - Maria Francesca Peruzy
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, Via Delpino 1, 80137 Naples, Italy;
| | - Yolande Thérèse Rose Proroga
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici (NA), Italy; (A.M.I.M.); (F.C.); (A.M.); (O.D.M.); (D.C.)
| | - Daniela Cristiano
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici (NA), Italy; (A.M.I.M.); (F.C.); (A.M.); (O.D.M.); (D.C.)
| |
Collapse
|
12
|
Ren XB, Cha QQ, Guo XH, He XY, Su HN, Qin QL, Song XY, Chen XL, Zhang YZ, Xu F, Zhang XY. Pelagovum pacificum gen. nov., sp. nov., a novel member of the family Rhodobacteraceae isolated from surface seawater of the Mariana Trench. Int J Syst Evol Microbiol 2020; 70:6155-6162. [PMID: 33052807 DOI: 10.1099/ijsem.0.004512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, aerobic, ovoid-rod-shaped bacterium, designated strain SM1903T, was isolated from surface seawater of the Mariana Trench. The strain grew at 15-37 °C (optimum, 35 °C) and with 1-15 % (optimum, 4 %) NaCl. It hydrolysed aesculin but did not reduce nitrate to nitrite and hydrolyse Tween 80. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain SM1903T formed a separate lineage within the family Rhodobacteraceae, sharing the highest 16S rRNA gene sequence similarity with type strains of Pseudooceanicola antarcticus (95.7 %) and Roseisalinus antarcticus (95.7 %). In phylogenetic trees based on single-copy OCs and whole proteins sequences, strain SM1903T fell within a sub-cluster encompassed by Oceanicola granulosus, Roseisalinus antarcticus and Histidinibacterium lentulum and formed a branch adjacent to Oceanicola granulosus. The major cellular fatty acids were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), C16 : 0 and 11-methyl-C18 : 1 ω7c. The polar lipids mainly comprised phosphatidylglycerol, phosphatidylcholine, one unidentified lipid, one unidentified aminolipid, and one unidentified glycolipid. The solo respiratory quinone was ubiquinone-10. The genomic DNA G+C content of strain SM1903T was 66.0 mol%. Based on the results of phenotypic, chemotaxonomic, and phylogenetic characterization for strain SM1903T, it is considered to represent a novel species of a novel genus in the family Rhodobacteraceae, for which the name Pelagovum pacificum gen. nov., sp. nov. is proposed. The type strain is SM1903T (=MCCC 1K03608T=KCTC 72046T).
Collapse
Affiliation(s)
- Xue-Bing Ren
- State Key Laboratory of Microbial Technology/Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Qian-Qian Cha
- State Key Laboratory of Microbial Technology/Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Xiao-Han Guo
- State Key Laboratory of Microbial Technology/Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Xiao-Yan He
- State Key Laboratory of Microbial Technology/Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Hai-Nan Su
- State Key Laboratory of Microbial Technology/Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Qi-Long Qin
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.,State Key Laboratory of Microbial Technology/Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology/Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Xiu-Lan Chen
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.,State Key Laboratory of Microbial Technology/Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, PR China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.,State Key Laboratory of Microbial Technology/Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Fei Xu
- State Key Laboratory of Microbial Technology/Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Xi-Ying Zhang
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.,State Key Laboratory of Microbial Technology/Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
13
|
Espino-Vázquez AN, Bermúdez-Barrientos JR, Cabrera-Rangel JF, Córdova-López G, Cardoso-Martínez F, Martínez-Vázquez A, Camarena-Pozos DA, Mondo SJ, Pawlowska TE, Abreu-Goodger C, Partida-Martínez LP. Narnaviruses: novel players in fungal-bacterial symbioses. ISME JOURNAL 2020; 14:1743-1754. [PMID: 32269378 DOI: 10.1038/s41396-020-0638-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 12/31/2022]
Abstract
Rhizopus microsporus is an early-diverging fungal species with importance in ecology, agriculture, food production, and public health. Pathogenic strains of R. microsporus harbor an intracellular bacterial symbiont, Mycetohabitans (formerly named Burkholderia). This vertically transmitted bacterial symbiont is responsible for the production of toxins crucial to the pathogenicity of Rhizopus and remarkably also for fungal reproduction. Here we show that R. microsporus can live not only in symbiosis with bacteria but also with two viral members of the genus Narnavirus. Our experiments revealed that both viruses replicated similarly in the growth conditions we tested. Viral copies were affected by the developmental stage of the fungus, the substrate, and the presence or absence of Mycetohabitans. Absolute quantification of narnaviruses in isolated asexual sporangiospores and sexual zygospores indicates their vertical transmission. By curing R. microsporus of its viral and bacterial symbionts and reinfecting bacteria to reestablish symbiosis, we demonstrate that these viruses affect fungal biology. Narnaviruses decrease asexual reproduction, but together with Mycetohabitans, are required for sexual reproductive success. This fungal-bacterial-viral system represents an outstanding model to investigate three-way microbial symbioses and their evolution.
Collapse
Affiliation(s)
- Astrid N Espino-Vázquez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - J Roberto Bermúdez-Barrientos
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico.,Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - J Francisco Cabrera-Rangel
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - Gonzalo Córdova-López
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico.,Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - Faviola Cardoso-Martínez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - Azul Martínez-Vázquez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - David A Camarena-Pozos
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - Stephen J Mondo
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA.,Bioagricultural Science and Pest Management Department, Colorado State University, Fort Collins, CO, 80521, USA
| | - Teresa E Pawlowska
- School of Integrative Plant Science, Plant Pathology and Plant Microbe-Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Cei Abreu-Goodger
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - Laila P Partida-Martínez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico.
| |
Collapse
|
14
|
Wang XJ, Xu L, Wang N, Sun HM, Chen XL, Zhang YZ, Shi M, Zhang XY. Putridiphycobacter roseus gen. nov., sp. nov., isolated from Antarctic rotten seaweed. Int J Syst Evol Microbiol 2020; 70:648-655. [PMID: 31661041 DOI: 10.1099/ijsem.0.003809] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, pink-pigmented, rod-shaped, non-flagellated, aerobic bacterium, designated strain SM1701T, was isolated from a rotten seaweed collected off Fildes Peninsula, King George Island, West Antarctica. The strain grew at 4-30 °C, pH 6.0-8.0 and with 0.5-5 % (w/v) NaCl. It hydrolysed gelatin and Tweens (40, 60 and 80), but did not reduce nitrates to nitrites. The major cellular fatty acids of strain SM1701T were iso-C15 : 0, iso-C15 : 1G, iso-C16 : 1G, C16 : 0 and iso-C17 : 0 3-OH. Polar lipids included phosphatidylethanolamine, one unidentified aminolipid, two unidentified glycolipids and one unidentified aminoglycolipid. The major respiratory quinone was MK-7. The genomic DNA G+C content of strain SM1701T was 34.1 mol%. It showed high 16S rRNA gene sequence similarities to Crocinitomix algicola (93.8 %) and Crocinitomix catalasitica (92.5 %) and less than 91 % sequence similarities to other known members in the family Crocinitomicaceae. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain SM1701T constituted a distinct lineage within the family Crocinitomicaceae. The phylogenetic trees based on concatenated 261 protein sequences from genome sequences showed that strain SM1701T occupied a branch separated from those of known genera in the family of Crocinitomicaceae, indicating it may belong to a new genus. On the basis of the polyphasic characterization of strain SM1701T in this study, it is considered to represent a novel species in a new genus in the family Crocinitomicaceae, for which the name Putridiphycobacter roseus gen. nov., sp. nov. is proposed. The type strain is SM1701T (=KCTC 62302T=NBRC 113201T=CGMCC 1.16510T).
Collapse
Affiliation(s)
- Xiu-Juan Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Lin Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Ning Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - He-Min Sun
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Xiu-Lan Chen
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266003, PR China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Mei Shi
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| |
Collapse
|
15
|
Medkour H, Lo C, Anani H, Fenollar F, Mediannikov O. Bartonella massiliensis sp. nov., a new bacterial species isolated from an Ornithodoros sonrai tick from Senegal. New Microbes New Infect 2019; 32:100596. [PMID: 31719993 PMCID: PMC6839013 DOI: 10.1016/j.nmni.2019.100596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/18/2022] Open
Abstract
Bartonella massiliensis sp. nov., strain OS09T (= CSURB624T = DSM 23169), is the type strain of Bartonella massiliensis sp. nov., a new species within the genus Bartonella. It was isolated from a soft tick, Ornithodoros sonrai, vector of recurrent fever collected from Senegalese domestic rodent burrows. This strain is an aerobic, rod-shaped and Gram-negative bacterium. On the basis of taxonogenomic approach, we propose the creation of Bartonella massiliensis sp. nov.
Collapse
Affiliation(s)
- H. Medkour
- Aix-Marseille Université, IRD, AP-HM, MEPHI, Marseille, France
- IHU–Méditerranée InfectionMarseille, France
| | - C.I. Lo
- IHU–Méditerranée InfectionMarseille, France
- Aix-Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - H. Anani
- IHU–Méditerranée InfectionMarseille, France
- Aix-Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - F. Fenollar
- IHU–Méditerranée InfectionMarseille, France
- Aix-Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - O. Mediannikov
- Aix-Marseille Université, IRD, AP-HM, MEPHI, Marseille, France
- IHU–Méditerranée InfectionMarseille, France
| |
Collapse
|
16
|
Tindall BJ. Comments on minutes of the Subcommittee on the Taxonomy of Chlamydiae and the Subcommittee on the Taxonomy of Rhizobia and Agrobacteria. Int J Syst Evol Microbiol 2019; 69:2599-2601. [DOI: 10.1099/ijsem.0.003223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- B. J. Tindall
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7B, Inhoffenstraße 7B, Germany
| |
Collapse
|
17
|
Kociolek LK, Ozer EA, Gerding DN, Hecht DW, Patel SJ, Hauser AR. Whole-genome analysis reveals the evolution and transmission of an MDR DH/NAP11/106 Clostridium difficile clone in a paediatric hospital. J Antimicrob Chemother 2019; 73:1222-1229. [PMID: 29342270 DOI: 10.1093/jac/dkx523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/13/2017] [Indexed: 02/07/2023] Open
Abstract
Background Clostridium difficile strain DH/NAP11/106, a relatively antibiotic-susceptible strain, is now the most common cause of C. difficile infection (CDI) among adults in the USA. Objectives To identify mechanisms underlying the evolution and transmission of an MDR DH/NAP11/106 clone. Methods WGS (Illumina MiSeq), restriction endonuclease analysis (REA) and antibiotic susceptibility testing were performed on 134 C. difficile isolates collected from paediatric patients with CDI over a 2 year period. Results Thirty-one of 134 (23%) isolates were REA group DH. Pairwise single-nucleotide variant (SNV) analyses identified a DH clone causing seven instances of CDI in two patients. During the 337 days between the first and second CDI, Patient 1 (P1) received 313 days of antibiotic therapy. Clindamycin and rifaximin resistance, and reduced vancomycin susceptibility (MIC 0.5-2 mg/L), were newly identified in the relapsed isolate. This MDR clone was transmitted to Patient 2 (P2) while P1 and P2 received care in adjacent private rooms. P1 and P2 each developed two additional CDI relapses. Comparative genomics analyses demonstrated SNVs in multiple antibiotic resistance genes, including rpoB (rifaximin resistance), gyrB and a gene encoding PBP; gyrB and PBP mutations did not consistently confer a resistance phenotype. The clone also acquired a 46 000 bp genomic element, likely a conjugative plasmid, which contained ermB (clindamycin resistance). The element shared 99% identity with the genomic sequence of Faecalibacterium prausnitzii, an enteric commensal. Conclusions These data highlight the emergence of MDR in C. difficile strain DH/NAP11/106 through multiple independent mechanisms probably as a consequence of profound antibiotic pressure.
Collapse
Affiliation(s)
- Larry K Kociolek
- Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, USA.,Northwestern University Feinberg School of Medicine, 320 E. Superior St, Chicago, IL 60611, USA
| | - Egon A Ozer
- Northwestern University Feinberg School of Medicine, 320 E. Superior St, Chicago, IL 60611, USA
| | - Dale N Gerding
- Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Ave, Maywood, IL 60153, USA.,Edward Hines, Jr. Veterans Administration Hospital, 5000 S. 5th Ave, Hines, IL 60141, USA
| | - David W Hecht
- Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Ave, Maywood, IL 60153, USA.,Loyola University Medical Center, 2160 S. 1st Ave, Maywood, IL 60153, USA
| | - Sameer J Patel
- Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, USA.,Northwestern University Feinberg School of Medicine, 320 E. Superior St, Chicago, IL 60611, USA
| | - Alan R Hauser
- Northwestern University Feinberg School of Medicine, 320 E. Superior St, Chicago, IL 60611, USA
| |
Collapse
|
18
|
Abstract
This minireview provides an update on recent taxonomic changes for the genus Mycobacterium with an emphasis on newly identified species isolated from humans or associated with human disease.
Collapse
|
19
|
Munson E, Carroll KC. An Update on the Novel Genera and Species and Revised Taxonomic Status of Bacterial Organisms Described in 2016 and 2017. J Clin Microbiol 2019; 57:e01181-18. [PMID: 30257907 PMCID: PMC6355528 DOI: 10.1128/jcm.01181-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recognition and acknowledgment of novel bacterial taxonomy and nomenclature revisions can impact clinical practice, disease epidemiology, and routine clinical microbiology laboratory operations. The Journal of Clinical Microbiology (JCM) herein presents its biannual report summarizing such changes published in the years 2016 and 2017, as published and added by the International Journal of Systematic and Evolutionary Microbiology Noteworthy discussion centers around descriptions of novel Corynebacteriaceae and an anaerobic mycolic acid-producing bacterium in the suborder Corynebacterineae; revisions within the Propionibacterium, Clostridium, Borrelia, and Enterobacter genera; and a major reorganization of the family Enterobacteriaceae. JCM intends to sustain this series of reports as advancements in molecular genetics, whole-genome sequencing, and studies of the human microbiome continue to produce novel taxa and clearer understandings of bacterial relatedness.
Collapse
Affiliation(s)
- Erik Munson
- College of Health Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Karen C Carroll
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Guo LN, Li Y, Hsueh PR, Wang P, Zhao YP, Xu YC. Microbiological characteristics of a novel species most closely related to 'Bergeyella cardium' as a pathogen of infectious endocarditis. PLoS One 2018; 13:e0191715. [PMID: 29370239 PMCID: PMC5784969 DOI: 10.1371/journal.pone.0191715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/15/2017] [Indexed: 11/18/2022] Open
Abstract
Infectious endocarditis (IE) can be caused by various pathogens, from dominating agents such as viridans group streptococci and staphylococci to rare species that are less virulent and not typically considered to be pathogens. In this study, we have isolated a novel species from a patient with problem of IE which was genetically most closely related to 'Bergeyella cardium', a causative pathogen of IE first reported in Korea in 2015 as a new species of the genus Bergeyella, with a similarity of 98.8% in 16S rRNA sequences. Microbiological characteristics, including morphology, biochemical identification and antimicrobial susceptibility profiling, of this novel species were determined. This fastidious Gram-negative bacillus could only be identified successfully by molecular sequencing analysis at present, and it exhibited low minimum inhibitory concentrations to the antibiotics tested except for aminoglycosides. Phylogeny analysis revealed this novel species clustered well with 'B. cardium' and other close species of genus Bergeyella.
Collapse
Affiliation(s)
- Li-Na Guo
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Peng Wang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yu-Pei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- * E-mail: (YCX); (YPZ)
| | - Ying-Chun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- * E-mail: (YCX); (YPZ)
| |
Collapse
|
21
|
Lee JJ, Elderiny N, Lee SY, Lee DS, Kim MK, Ten LN, Jung HY. Spirosoma gilvum sp. nov., Isolated from Beach Soil. Curr Microbiol 2017; 74:1425-1431. [DOI: 10.1007/s00284-017-1336-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/10/2017] [Indexed: 12/01/2022]
|
22
|
de Lajudie PM, Young JPW. International Committee on Systematics of Prokaryotes Subcommittee for the Taxonomy of Rhizobium and Agrobacterium Minutes of the meeting, Budapest, 25 August 2016. Int J Syst Evol Microbiol 2017; 67:2485-2494. [PMID: 28771120 DOI: 10.1099/ijsem.0.002144] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
| | - J Peter W Young
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
23
|
Cox LM, Sohn J, Tyrrell KL, Citron DM, Lawson PA, Patel NB, Iizumi T, Perez-Perez GI, Goldstein EJC, Blaser MJ. Description of two novel members of the family Erysipelotrichaceae: Ileibacterium valens gen. nov., sp. nov. and Dubosiella newyorkensis, gen. nov., sp. nov., from the murine intestine, and emendation to the description of Faecalibaculum rodentium. Int J Syst Evol Microbiol 2017; 67:1247-1254. [PMID: 28100298 DOI: 10.1099/ijsem.0.001793] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
To better characterize murine intestinal microbiota, a large number (187) of Gram-positive-staining, rod- and coccoid-shaped, and facultatively or strictly anaerobic bacteria were isolated from small and large intestinal contents from mice. Based on 16S rRNA gene sequencing, a total 115 isolates formed three phylogenetically distinct clusters located within the family Erysipelotrichaceae. Group 1, as represented by strain NYU-BL-A3T, was most closely related to Allobaculum stercoricanis, with 16S rRNA gene sequence similarity values of 87.7 %. A second group, represented by NYU-BL-A4T, was most closely related to Faecalibaculum rodentium, with 86.6 % 16S rRNA gene sequence similarity. A third group had a nearly identical 16S rRNA gene sequence (99.9 %) compared with the recently described Faecalibaculum rodentium, also recovered from a laboratory mouse; however, this strain had a few differences in biochemical characteristics, which are detailed in an emended description. The predominant (>10 %) cellular fatty acids of strain NYU-BL-A3T were C16 : 0 and C18 : 0, and those of strain NYU-BL-A4T were C10 : 0, C16 : 0, C18 : 0 and C18 : 1ω9c. The two groups could also be distinguished by multiple biochemical reactions, with the group represented by NYU-BL-A4T being considerably more active. Based on phylogenetic, biochemical and chemotaxonomic criteria, two novel genera are proposed, Ileibacterium valens gen. nov., sp. nov. with NYU-BL-A3T (=ATCC TSD-63T=DSM 103668T) as the type strain and Dubosiella newyorkensis gen. nov., sp. nov. with NYU-BL-A4T (=ATCC TSD-64T=DSM 103457T) as the type strain.
Collapse
Affiliation(s)
- Laura M Cox
- Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA.,Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA.,Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jiho Sohn
- Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA
| | | | - Diane M Citron
- R. M. Alden Research Laboratory, Culver City, CA 90230, USA
| | - Paul A Lawson
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, USA
| | - Nisha B Patel
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, USA
| | - Tadasu Iizumi
- Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA
| | - Guillermo I Perez-Perez
- Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA.,Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA
| | | | - Martin J Blaser
- Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA.,Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA.,New York Harbor Department of Veterans Affairs Medical Center, New York, NY 10010, USA
| |
Collapse
|
24
|
Dannheim H, Will SE, Schomburg D, Neumann-Schaal M. Clostridioides difficile 630Δ erm in silico and in vivo - quantitative growth and extensive polysaccharide secretion. FEBS Open Bio 2017; 7:602-615. [PMID: 28396843 PMCID: PMC5377389 DOI: 10.1002/2211-5463.12208] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 12/15/2022] Open
Abstract
Antibiotic-associated infections with Clostridioides difficile are a severe and often lethal risk for hospitalized patients, and can also affect populations without these classical risk factors. For a rational design of therapeutical concepts, a better knowledge of the metabolism of the pathogen is crucial. Metabolic modeling can provide a simulation of quantitative growth and usage of metabolic pathways, leading to a deeper understanding of the organism. Here, we present an elaborate genome-scale metabolic model of C. difficile 630Δerm. The model iHD992 includes experimentally determined product and substrate uptake rates and is able to simulate the energy metabolism and quantitative growth of C. difficile. Dynamic flux balance analysis was used for time-resolved simulations of the quantitative growth in two different media. The model predicts oxidative Stickland reactions and glucose degradation as main sources of energy, while the resulting reduction potential is mostly used for acetogenesis via the Wood-Ljungdahl pathway. Initial modeling experiments did not reproduce the observed growth behavior before the production of large quantities of a previously unknown polysaccharide was detected. Combined genome analysis and laboratory experiments indicated that the polysaccharide is an acetylated glucose polymer. Time-resolved simulations showed that polysaccharide secretion was coupled to growth even during unstable glucose uptake in minimal medium. This is accomplished by metabolic shifts between active glycolysis and gluconeogenesis which were also observed in laboratory experiments.
Collapse
Affiliation(s)
- Henning Dannheim
- Braunschweig Integrated Centre of Systems Biology (BRICS) Department of Bioinformatics and Biochemistry Technische Universität Braunschweig Braunschweig Germany
| | - Sabine E Will
- Braunschweig Integrated Centre of Systems Biology (BRICS) Department of Bioinformatics and Biochemistry Technische Universität Braunschweig Braunschweig Germany
| | - Dietmar Schomburg
- Braunschweig Integrated Centre of Systems Biology (BRICS) Department of Bioinformatics and Biochemistry Technische Universität Braunschweig Braunschweig Germany
| | - Meina Neumann-Schaal
- Braunschweig Integrated Centre of Systems Biology (BRICS) Department of Bioinformatics and Biochemistry Technische Universität Braunschweig Braunschweig Germany
| |
Collapse
|
25
|
Manzoor S, Schnürer A, Bongcam-Rudloff E, Müller B. Complete genome sequence of Methanoculleus bourgensis strain MAB1, the syntrophic partner of mesophilic acetate-oxidising bacteria (SAOB). Stand Genomic Sci 2016; 11:80. [PMID: 27777650 PMCID: PMC5062929 DOI: 10.1186/s40793-016-0199-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 10/04/2016] [Indexed: 11/18/2022] Open
Abstract
Methanoculleus bourgensis strain MAB1 has been identified as the hydrogenotrophic partner of mesophilic acetate-oxidising bacteria, a syntrophic relationship operating close to the thermodynamic equilibrium and of considerable importance in ammonia-rich engineered biogas processes. Methanoculleus bourgensis strain MAB1 belongs to the order Methanomicrobiales, family Methanomicrobiaceae, within the phylum Euryarchaeota. The genome shows a total size of 2,859,299 bp encoding 3450 predicted protein-encoding genes, of which only 1472 (43 %) have been assigned tentative functions. The genome encodes further 44 tRNA genes and three rRNA genes (5S, 16S and 23S rRNA). This study presents assembling and annotation features as well as genomic traits related to ammonia tolerance and methanogenesis.
Collapse
Affiliation(s)
| | - Anna Schnürer
- Department of Microbiology, Swedish University of Agricultural Sciences, BioCenter, Uppsala, SE 750 07 Sweden
| | - Erik Bongcam-Rudloff
- Department of Animal Breeding and Genetics Science, Swedish University of Agricultural Science, SLU-Global Bioinformatics Centre, Uppsala, SE 750 07 Sweden
| | - Bettina Müller
- Department of Microbiology, Swedish University of Agricultural Sciences, BioCenter, Uppsala, SE 750 07 Sweden
| |
Collapse
|
26
|
Botelho AMN, Costa MOC, Beltrame CO, Ferreira FA, Côrtes MF, Bandeira PT, Lima NCB, Souza RC, Almeida LGP, Vasconcelos ATR, Nicolás MF, Figueiredo AMS. Complete genome sequence of an agr-dysfunctional variant of the ST239 lineage of the methicillin-resistant Staphylococcus aureus strain GV69 from Brazil. Stand Genomic Sci 2016; 11:34. [PMID: 27152133 PMCID: PMC4857242 DOI: 10.1186/s40793-016-0154-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 04/25/2016] [Indexed: 11/29/2022] Open
Abstract
Staphylococcus aureus is a versatile Gram-positive coccus frequently found colonizing the skin and nasal membranes of humans. The acquisition of the staphylococcal cassette chromosome mec was a major milestone in the evolutionary path of methicillin-resistant S. aureus. This genetic element carries the mecA gene, the main determinant of methicillin resistance. MRSA is involved in a plethora of opportunistic infectious diseases. The accessory gene regulator is the major S. aureus quorum sensing system, playing an important role in staphylococcal virulence, including the development of biofilms. We report the complete genome sequence (NCBI BioProject ID: PRJNA264181) of the methicillin-resistant S. aureus strain GV69 (= CMVRS P4521), a variant of the ST239 lineage that presents with a natural attenuation of agr-RNAIII transcription and a moderate accumulation of biofilm.
Collapse
Affiliation(s)
- Ana M N Botelho
- Laboratório de Biologia Molecular de Bactérias, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902 RJ Brazil
| | - Maiana O C Costa
- Laboratório Nacional de Computação Científica, Petrópolis, 25651-075 RJ Brazil
| | - Cristiana O Beltrame
- Laboratório de Biologia Molecular de Bactérias, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902 RJ Brazil
| | - Fabienne A Ferreira
- Laboratório de Biologia Molecular de Bactérias, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902 RJ Brazil
| | - Marina F Côrtes
- Laboratório de Biologia Molecular de Bactérias, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902 RJ Brazil
| | - Paula T Bandeira
- Laboratório de Biologia Molecular de Bactérias, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902 RJ Brazil
| | - Nicholas C B Lima
- Laboratório Nacional de Computação Científica, Petrópolis, 25651-075 RJ Brazil
| | - Rangel C Souza
- Laboratório Nacional de Computação Científica, Petrópolis, 25651-075 RJ Brazil
| | - Luiz G P Almeida
- Laboratório Nacional de Computação Científica, Petrópolis, 25651-075 RJ Brazil
| | - Ana T R Vasconcelos
- Laboratório Nacional de Computação Científica, Petrópolis, 25651-075 RJ Brazil
| | - Marisa F Nicolás
- Laboratório Nacional de Computação Científica, Petrópolis, 25651-075 RJ Brazil
| | - Agnes M S Figueiredo
- Laboratório de Biologia Molecular de Bactérias, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902 RJ Brazil
| |
Collapse
|