1
|
Cui W, Muñoz V, Navarrete M, Cabrera S, Campodonico J, Estrada M, Zamorano A, Fiore N. Insect Vector and Reservoir Plant of ' Fragaria × ananassa' Phyllody Phytoplasma (16SrXIII-F) in Central Region of Chile. PLANT DISEASE 2024; 108:1861-1868. [PMID: 38319626 DOI: 10.1094/pdis-12-23-2552-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Strawberry phyllody has emerged as a prevalent disease affecting Chilean strawberry in recent years. The causal pathogen, 'Fragaria × ananassa' phyllody phytoplasma (StrPh), is categorized within the 16S ribosomal group XIII that is exclusively found in the Americas. In the context of economically significant crops, hemipteran insect vectors and alternative host plants play a pivotal role in their natural dissemination. This study comprehensively examined the key epidemiological facets of StrPh in the central region of Chile: the insect vector and alternative hosts. Through field surveys, we identified an abundance of an insect species, Cixiosoma sp., in an StrPh-infected strawberry field and confirmed its role as a vector of this phytoplasma through subsequent transmission assays. Moreover, we found a spontaneous weed species, Galega officinalis, to be infected with StrPh, raising the possibility of it being a potential alternative host plant for this phytoplasma. StrPh was also detected in cold-stored strawberry runners purchased from a nursery that supplies the local strawberry cultivation, suggesting a potential source of this phytoplasma in Chile. Collectively, these findings provide a significant epidemiological source of StrPh dissemination in central Chile.
Collapse
Affiliation(s)
- Weier Cui
- Department of Plant Health, Faculty of Agricultural Sciences, University of Chile, Santiago, RM 8820808, Chile
| | - Valentina Muñoz
- Department of Plant Health, Faculty of Agricultural Sciences, University of Chile, Santiago, RM 8820808, Chile
| | - Melisa Navarrete
- Department of Plant Health, Faculty of Agricultural Sciences, University of Chile, Santiago, RM 8820808, Chile
| | - Sebastian Cabrera
- Department of Plant Health, Faculty of Agricultural Sciences, University of Chile, Santiago, RM 8820808, Chile
| | - Juan Campodonico
- Ph.D. Program in Science, Ecology, and Evolution Mention, Faculty of Sciences, University Austral of Chile, Valdivia, Chile
| | - Mauricio Estrada
- Department of Plant Health, Faculty of Agricultural Sciences, University of Chile, Santiago, RM 8820808, Chile
| | - Alan Zamorano
- Department of Plant Health, Faculty of Agricultural Sciences, University of Chile, Santiago, RM 8820808, Chile
| | - Nicola Fiore
- Department of Plant Health, Faculty of Agricultural Sciences, University of Chile, Santiago, RM 8820808, Chile
| |
Collapse
|
2
|
Wang R, Bai B, Li D, Wang J, Huang W, Wu Y, Zhao L. Phytoplasma: A plant pathogen that cannot be ignored in agricultural production-Research progress and outlook. MOLECULAR PLANT PATHOLOGY 2024; 25:e13437. [PMID: 38393681 PMCID: PMC10887288 DOI: 10.1111/mpp.13437] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Phytoplasmas are phloem-restricted plant-pathogenic bacteria transmitted by insects. They cause diseases in a wide range of host plants, resulting in significant economic and ecological losses worldwide. Research on phytoplasmas has a long history, with significant progress being made in the past 30 years. Notably, with the rapid development of phytoplasma research, scientists have identified the primary agents involved in phytoplasma transmission, established classification and detection systems for phytoplasmas, and 243 genomes have been sequenced and assembled completely or to draft quality. Multiple possible phytoplasma effectors have been investigated, elucidating the molecular mechanisms by which phytoplasmas manipulate their hosts. This review summarizes recent advances in phytoplasma research, including identification techniques, host range studies, whole- or draft-genome sequencing, effector pathogenesis and disease control methods. Additionally, future research directions in the field of phytoplasma research are discussed.
Collapse
Affiliation(s)
- Ruotong Wang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Bixin Bai
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Danyang Li
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jingke Wang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Weijie Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Yunfeng Wu
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Lei Zhao
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
3
|
Fernández FD, Yan XH, Kuo CH, Marcone C, Conci LR. Improving the Comprehension of Pathogenicity and Phylogeny in ' Candidatus Phytoplasma meliae' through Genome Characterization. Microorganisms 2024; 12:142. [PMID: 38257969 PMCID: PMC10819327 DOI: 10.3390/microorganisms12010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
'Candidatus Phytoplasma meliae' is a pathogen associated with chinaberry yellowing disease, which has become a major phytosanitary problem for chinaberry forestry production in Argentina. Despite its economic impact, no genome information of this phytoplasma has been published, which has hindered its characterization at the genomic level. In this study, we used a metagenomics approach to analyze the draft genome of the 'Ca. P. meliae' strain ChTYXIII. The draft assembly consisted of twenty-one contigs with a total length of 751.949 bp, and annotation revealed 669 CDSs, 34 tRNAs, and 1 set of rRNA operons. The metabolic pathways analysis showed that ChTYXIII contains the complete core genes for glycolysis and a functional Sec system for protein translocation. Our phylogenomic analysis based on 133 single-copy genes and genome-to-genome metrics supports the classification as unique 'Ca. P. species' within the MPV clade. We also identified 31 putative effectors, including a homolog to SAP11 and others that have only been described in this pathogen. Our ortholog analysis revealed 37 PMU core genes in the genome of 'Ca. P. meliae' ChTYXIII, leading to the identification of 2 intact PMUs. Our work provides important genomic information for 'Ca. P. meliae' and others phytoplasmas for the 16SrXIII (MPV) group.
Collapse
Affiliation(s)
- Franco Daniel Fernández
- Instituto Nacional de Tecnología Agropecuaria (INTA), Centro de Investigaciones Agropecuarias (CIAP), Instituto de Patología Vegetal (IPAVE), Camino 60 cuadras km 5 ½ (X5020ICA), Córdoba X5020ICA, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Unidad de Fitopatología y Modelización Agrícola (UFYMA), Camino 60 cuadras km 5 ½ (X5020ICA), Córdoba X5020ICA, Argentina
| | - Xiao-Hua Yan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Carmine Marcone
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Luis Rogelio Conci
- Instituto Nacional de Tecnología Agropecuaria (INTA), Centro de Investigaciones Agropecuarias (CIAP), Instituto de Patología Vegetal (IPAVE), Camino 60 cuadras km 5 ½ (X5020ICA), Córdoba X5020ICA, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Unidad de Fitopatología y Modelización Agrícola (UFYMA), Camino 60 cuadras km 5 ½ (X5020ICA), Córdoba X5020ICA, Argentina
| |
Collapse
|
4
|
Kirdat K, Tiwarekar B, Sathe S, Yadav A. From sequences to species: Charting the phytoplasma classification and taxonomy in the era of taxogenomics. Front Microbiol 2023; 14:1123783. [PMID: 36970684 PMCID: PMC10033645 DOI: 10.3389/fmicb.2023.1123783] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Phytoplasma taxonomy has been a topic of discussion for the last two and half decades. Since the Japanese scientists discovered the phytoplasma bodies in 1967, the phytoplasma taxonomy was limited to disease symptomology for a long time. The advances in DNA-based markers and sequencing improved phytoplasma classification. In 2004, the International Research Programme on Comparative Mycoplasmology (IRPCM)- Phytoplasma/Spiroplasma Working Team – Phytoplasma taxonomy group provided the description of the provisional genus ‘Candidatus Phytoplasma’ with guidelines to describe the new provisional phytoplasma species. The unintentional consequences of these guidelines led to the description of many phytoplasma species where species characterization was restricted to a partial sequence of the 16S rRNA gene alone. Additionally, the lack of a complete set of housekeeping gene sequences or genome sequences, as well as the heterogeneity among closely related phytoplasmas limited the development of a comprehensive Multi-Locus Sequence Typing (MLST) system. To address these issues, researchers tried deducing the definition of phytoplasma species using phytoplasmas genome sequences and the average nucleotide identity (ANI). In another attempts, a new phytoplasma species were described based on the Overall Genome relatedness Values (OGRI) values fetched from the genome sequences. These studies align with the attempts to standardize the classification and nomenclature of ‘Candidatus’ bacteria. With a brief historical account of phytoplasma taxonomy and recent developments, this review highlights the current issues and provides recommendations for a comprehensive system for phytoplasma taxonomy until phytoplasma retains ‘Candidatus’ status.
Collapse
Affiliation(s)
- Kiran Kirdat
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University, Pune, India
- Department of Microbiology, Tuljaram Chaturchand College, Baramati, India
| | - Bhavesh Tiwarekar
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University, Pune, India
| | - Shivaji Sathe
- Department of Microbiology, Tuljaram Chaturchand College, Baramati, India
| | - Amit Yadav
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University, Pune, India
- *Correspondence: Amit Yadav, ,
| |
Collapse
|
5
|
Wei W, Zhao Y. Phytoplasma Taxonomy: Nomenclature, Classification, and Identification. BIOLOGY 2022; 11:1119. [PMID: 35892975 PMCID: PMC9394401 DOI: 10.3390/biology11081119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
Phytoplasmas are pleomorphic, wall-less intracellular bacteria that can cause devastating diseases in a wide variety of plant species. Rapid diagnosis and precise identification of phytoplasmas responsible for emerging plant diseases are crucial to preventing further spread of the diseases and reducing economic losses. Phytoplasma taxonomy (identification, nomenclature, and classification) has lagged in comparison to culturable bacteria, largely due to lack of axenic phytoplasma culture and consequent inaccessibility of phenotypic characteristics. However, the rapid expansion of molecular techniques and the advent of high throughput genome sequencing have tremendously enhanced the nucleotide sequence-based phytoplasma taxonomy. In this article, the key events and milestones that shaped the current phytoplasma taxonomy are highlighted. In addition, the distinctions and relatedness of two parallel systems of 'Candidatus phytoplasma' species/nomenclature system and group/subgroup classification system are clarified. Both systems are indispensable as they serve different purposes. Furthermore, some hot button issues in phytoplasma nomenclature are also discussed, especially those pertinent to the implementation of newly revised guidelines for 'Candidatus Phytoplasma' species description. To conclude, the challenges and future perspectives of phytoplasma taxonomy are briefly outlined.
Collapse
Affiliation(s)
- Wei Wei
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA;
| | | |
Collapse
|
6
|
Bertaccini A. Plants and Phytoplasmas: When Bacteria Modify Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111425. [PMID: 35684198 PMCID: PMC9182842 DOI: 10.3390/plants11111425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 05/14/2023]
Abstract
Plant pathogen presence is very dangerous for agricultural ecosystems and causes huge economic losses. Phytoplasmas are insect-transmitted wall-less bacteria living in plants, only in the phloem tissues and in the emolymph of their insect vectors. They are able to manipulate several metabolic pathways of their hosts, very often without impairing their life. The molecular diversity described (49 'Candidatus Phytoplasma' species and about 300 ribosomal subgroups) is only in some cases related to their associated symptomatology. As for the other plant pathogens, it is necessary to verify their identity and recognize the symptoms associated with their presence to appropriately manage the diseases. However, the never-ending mechanism of patho-adaptation and the copresence of other pathogens makes this management difficult. Reducing the huge impact of phytoplasma-associated diseases in all the main crops and wild species is, however, relevant, in order to reduce their effects that are jeopardizing plant biodiversity.
Collapse
Affiliation(s)
- Assunta Bertaccini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
7
|
Bertaccini A, Arocha-Rosete Y, Contaldo N, Duduk B, Fiore N, Montano HG, Kube M, Kuo CH, Martini M, Oshima K, Quaglino F, Schneider B, Wei W, Zamorano A. Revision of the ' Candidatus Phytoplasma' species description guidelines. Int J Syst Evol Microbiol 2022; 72. [PMID: 35471141 DOI: 10.1099/ijsem.0.005353] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus 'Candidatus Phytoplasma' was proposed to accommodate cell wall-less bacteria that are molecularly and biochemically incompletely characterized, and colonize plant phloem and insect vector tissues. This provisional classification is highly relevant due to its application in epidemiological and ecological studies, mainly aimed at keeping the severe phytoplasma plant diseases under control worldwide. Given the increasing discovery of molecular diversity within the genus 'Ca. Phytoplasma', the proposed guidelines were revised and clarified to accommodate those 'Ca. Phytoplasma' species strains sharing >98.65 % sequence identity of their full or nearly full 16S rRNA gene sequences, obtained with at least twofold coverage of the sequence, compared with those of the reference strain of such species. Strains sharing <98.65 % sequence identity with the reference strain but >98.65 % with other strain(s) within the same 'Ca. Phytoplasma' species should be considered related strains to that 'Ca. Phytoplasma' species. The guidelines herein, keep the original published reference strains. However, to improve 'Ca. Phytoplasma' species assignment, complementary strains are suggested as an alternative to the reference strains. This will be implemented when only a partial 16S rRNA gene and/or a few other genes have been sequenced, or the strain is no longer available for further molecular characterization. Lists of 'Ca. Phytoplasma' species and alternative reference strains described are reported. For new 'Ca. Phytoplasma' species that will be assigned with identity ≥98.65 % of their 16S rRNA gene sequences, a threshold of 95 % genome-wide average nucleotide identity is suggested. When the whole genome sequences are unavailable, two among conserved housekeeping genes could be used. There are 49 officially published 'Candidatus Phytoplasma' species, including 'Ca. P. cocostanzaniae' and 'Ca. P. palmae' described in this manuscript.
Collapse
Affiliation(s)
- Assunta Bertaccini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | | | - Nicoletta Contaldo
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Bojan Duduk
- Institute of Pesticides and Environmental Protection, Belgrade, Serbia
| | - Nicola Fiore
- Faculty of Agricultural Sciences, Department of Plant Protection, University of Chile, Santiago, Chile
| | - Helena Guglielmi Montano
- Department of Entomology and Plant Pathology, Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michael Kube
- Department of Integrative Infection Biology Crops-Livestock, University of Hohenheim, Stuttgart, Germany
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, ROC
| | - Marta Martini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Kenro Oshima
- Faculty of Bioscience and Applied Chemistry, Department of Clinical Plant Science, Hosei University, Japan
| | - Fabio Quaglino
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Milan, Italy
| | - Bernd Schneider
- Julius Kuehn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Dossenheim, Germany
| | - Wei Wei
- Molecular Plant Pathology Laboratory, USDA/ARS, Beltsville, MD, USA
| | - Alan Zamorano
- Faculty of Agricultural Sciences, Department of Plant Protection, University of Chile, Santiago, Chile
| |
Collapse
|
8
|
Cui W, Fiore N, Zamorano A. Draft Genome Sequence Resource of ' Fragaria × ananassa' Phyllody Phytoplasma Strain StrPh-CL from Chilean Strawberry. PLANT DISEASE 2022; 106:1031-1034. [PMID: 35259302 DOI: 10.1094/pdis-09-21-1959-a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Weier Cui
- Department of Plant Health, Faculty of Agricultural Sciences, University of Chile, Santiago, Chile
| | - Nicola Fiore
- Department of Plant Health, Faculty of Agricultural Sciences, University of Chile, Santiago, Chile
| | - Alan Zamorano
- Department of Plant Health, Faculty of Agricultural Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
9
|
Zhao Y, Wei W, Davis RE, Lee IM, Bottner-Parker KD. The agent associated with blue dwarf disease in wheat represents a new phytoplasma taxon, ' Candidatus Phytoplasma tritici'. Int J Syst Evol Microbiol 2021; 71. [PMID: 33464199 DOI: 10.1099/ijsem.0.004604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Wheat blue dwarf (WBD) is one of the most economically damaging cereal crop diseases in northwestern PR China. The agent associated with the WBD disease is a phytoplasma affiliated with the aster yellows (AY) group, subgroup C (16SrI-C). Since phytoplasma strains within the AY group are ecologically and genetically diverse, it has been conceived that the AY phytoplasma group may consist of more than one species. This communication presents evidence to demonstrate that, while each of the two 16 rRNA genes of the WBD phytoplasma shares >97.5 % sequence similarity with that of the 'Candidatus Phytoplasma asteris' reference strain, the WBD phytoplasma clearly represents an ecologically separated lineage: the WBD phytoplasma not only has its unique transmitting vector (Psammotettix striatus) but also elicits a distinctive symptom in its predominant plant host (wheat). In addition, the WBD phytoplasma possesses molecular characteristics that further manifest its significant divergence from 'Ca. P. asteris'. Such molecular characteristics include lineage-specific antigenic membrane proteins and a lower than 95 % genome-wide average nucleotide identity score with 'Ca. P. asteris'. These ecological, molecular and genomic evidences justify the recognition of the WBD phytoplasma as a novel taxon, 'Candidatus Phytoplasma tritici'.
Collapse
Affiliation(s)
- Yan Zhao
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Wei Wei
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Robert E Davis
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Ing-Ming Lee
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Kristi D Bottner-Parker
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| |
Collapse
|
10
|
EFSA Panel on Plant Health (PLH), Bragard C, Dehnen‐Schmutz K, Gonthier P, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas‐Cortes JA, Parnell S, Potting R, Reignault PL, Thulke H, Van der Werf W, Civera AV, Yuen J, Zappalà L, Bosco D, Chiumenti M, Di Serio F, Galetto L, Marzachì C, Pautasso M, Jacques M. List of non-EU phytoplasmas of tuber-forming Solanum spp. EFSA J 2020; 18:e06355. [PMID: 33376552 PMCID: PMC7757786 DOI: 10.2903/j.efsa.2020.6355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Plant Health prepared a list of non-EU phytoplasmas of tuber-forming Solanum spp. A systematic literature review and search of databases identified 12 phytoplasmas infecting S. tuberosum. These phytoplasmas were assigned to three categories. The first group (a) consists of seven non-EU phytoplasmas, known to occur only outside the EU ('Candidatus Phytoplasma americanum', 'Ca. P. australiense', 'Ca. P. fragariae'-related strain (YN-169, YN-10G) and 'Ca. P. hispanicum') or having only limited presence in the EU ('Ca. P. aurantifolia'-related strains, 'Ca. P. pruni'-related strains and 'Ca. P. trifolii'). The second group (b) consists of three phytoplasmas originally described or reported from the EU. The third group (c) consists of two phytoplasmas with substantial presence in the EU, whose presence in S. tuberosum is not fully supported by the available literature. Phytoplasmas of categories (b) and (c) were excluded at this stage from further categorisation efforts. Three phytoplasmas from category (a) ('Ca. P. australiense', 'Ca. P. hispanicum' and 'Ca. P. trifolii') were excluded from further categorisation, as a pest categorisation has already been performed by EFSA. Comments provided by the EU Member States were integrated in the opinion. The main uncertainties of this listing concern: the taxonomy, the geographic distribution and prevalence and host range. The following phytoplasmas considered as non-EU and whose presence in S. tuberosum is fully supported by literature (category (a)) are categorised by the Panel in a separate opinion: 'Ca. P. americanum', 'Ca. P. fragariae'-related strain (YN-169, YN-10G), 'Ca. P. aurantifolia'-related strains and 'Ca. P. pruni'-related strains.
Collapse
|
11
|
Oren A, Garrity GM, Parker CT, Chuvochina M, Trujillo ME. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 2020; 70:3956-4042. [DOI: 10.1099/ijsem.0.003789] [Citation(s) in RCA: 782] [Impact Index Per Article: 156.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We here present annotated lists of names of Candidatus taxa of prokaryotes with ranks between subspecies and class, proposed between the mid-1990s, when the provisional status of Candidatus taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of Candidatus taxa with additions and corrections to the current lists to be published periodically in the International Journal of Systematic and Evolutionary Microbiology, may serve as the basis for the valid publication of the Candidatus names if and when the current proposals to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes.
Collapse
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M. Garrity
- NamesforLife, LLC, PO Box 769, Okemos MI 48805-0769, USA
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| | | | - Maria Chuvochina
- Australian Centre for Ecogenomics, University of Queensland, St. Lucia QLD 4072, Brisbane, Australia
| | - Martha E. Trujillo
- Departamento de Microbiología y Genética, Campus Miguel de Unamuno, Universidad de Salamanca, 37007, Salamanca, Spain
| |
Collapse
|
12
|
EFSA Panel on Plant Health (PLH), Bragard C, Dehnen‐Schmutz K, Gonthier P, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas‐Cortes JA, Parnell S, Potting R, Reignault PL, Thulke H, Van der Werf W, Civera AV, Yuen J, Zappalà L, Bosco D, Chiumenti M, Di Serio F, Galetto L, Marzachì C, Pautasso M, Jacques M. Pest categorisation of the non-EU phytoplasmas of Cydonia Mill., Fragaria L., Malus Mill., Prunus L., Pyrus L., Ribes L., Rubus L. and Vitis L. EFSA J 2020; 18:e05929. [PMID: 32626484 PMCID: PMC7008834 DOI: 10.2903/j.efsa.2020.5929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Plant Health performed a pest categorisation of nine phytoplasmas of Cydonia Mill., Fragaria L., Malus Mill., Prunus L., Pyrus L., Ribes L., Rubus L. and Vitis L. (hereafter "host plants") known to occur only outside the EU or having a limited presence in the EU. This opinion covers the (i) reference strains of 'Candidatus Phytoplasma australiense', 'Ca. P. fraxini', 'Ca. P. hispanicum', 'Ca. P. trifolii', 'Ca. P. ziziphi', (ii) related strains infecting the host plants of 'Ca. P. aurantifolia', 'Ca. P. pruni', and 'Ca. P. pyri', and (iii) an unclassified phytoplasma causing Buckland valley grapevine yellows. Phytoplasmas can be detected by available methods and are efficiently transmitted by vegetative propagation, with plants for planting acting as a major entry pathway and a long-distance spread mechanism. Phytoplasmas are also transmitted in a persistent and propagative manner by some insect families of the Fulgoromorpha, Cicadomorpha and Sternorrhyncha (order Hemiptera). No transovarial, pollen or seed transmission has been reported. The natural host range of the categorised phytoplasmas varies from one to more than 90 plant species, thus increasing the possible entry pathways. The host plants are widely cultivated in the EU. All the categorised phytoplasmas can enter and spread through the trade of host plants for planting, and by vectors. Establishment of these phytoplasmas is not expected to be limited by EU environmental conditions. The introduction of these phytoplasmas in the EU would have an economic impact. There are measures to reduce the risk of entry, establishment, spread and impact. Uncertainties result from limited information on distribution, biology and epidemiology. All the phytoplasmas categorised here meet the criteria evaluated by EFSA to qualify as potential Union quarantine pests, and they do not qualify as potential regulated non-quarantine pests, because they are non-EU phytoplasmas.
Collapse
|
13
|
EFSA Panel on Plant Health (PLH), Bragard C, Dehnen‐Schmutz K, Gonthier P, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas‐Cortes JA, Parnell S, Potting R, Reignault PL, Thulke H, Van der Werf W, Vicent Civera A, Yuen J, Zappalà L, Bosco D, Chiumenti M, Di Serio F, Galetto L, Marzachì C, Pautasso M, Jacques M. List of non-EU phytoplasmas of Cydonia Mill., Fragaria L., Malus Mill., Prunus L., Pyrus L., Ribes L., Rubus L. and Vitis L. EFSA J 2020; 18:e05930. [PMID: 32626485 PMCID: PMC7008801 DOI: 10.2903/j.efsa.2020.5930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Plant Health prepared a list of non-EU phytoplasmas of Cydonia Mill., Fragaria L., Malus Mill., Prunus L., Pyrus L., Ribes L., Rubus L. and Vitis L. A systematic literature review and search of databases identified 27 phytoplasmas infecting one or more of the host genera under consideration. These phytoplasmas were assigned to three categories. The first group (a) consists of 10 non-EU phytoplasmas, known to occur only outside the EU ('Candidatus Phytoplasma australiense', 'Ca. P. hispanicum', 'Ca. P. pruni'-related strain (NAGYIII), 'Ca. P. pyri'-related strain (PYLR) and Buckland valley grapevine yellows phytoplasma) or having only limited presence in the EU ('Ca. P. aurantifolia'-related strains, 'Ca. P. fraxini', 'Ca. P. phoenicium', 'Ca. P. trifolii' and 'Ca. P. ziziphi'). The second group (b) consists of three non-EU phytoplasmas, whose presence in the target plant species is not fully supported by the available literature. The third group (c) consists of 14 phytoplasmas with substantial presence in the EU (i.e. they are originally described or reported from the EU or known to occur or be widespread in some EU Member States or frequently reported in the EU). Phytoplasmas of categories (b) and (c) were excluded at this stage from further categorisation efforts. One phytoplasma from category (a) ('Ca. P. phoenicium') was excluded from further categorisation, as a pest risk assessment has been performed by EPPO. Comments provided by the EU Member States were integrated in the opinion. The main uncertainties of this listing concern: the geographic distribution and prevalence, the taxonomy, biology and host range. The phytoplasmas considered as non-EU and whose presence in target plant species is fully supported by literature (category (a)) are categorised by the Panel in a separate opinion.
Collapse
|
14
|
Servín-Villegas R, Caamal-Chan MG, Chavez-Medina A, Loera-Muro A, Barraza A, Medina-Hernández D, Holguín-Peña RJ. Identification of a 'Candidatus Phytoplasma hispanicum'-related strain, associated with yellows-type diseases, in smoke-tree sharpshooter (Homalodisca liturata Ball). Int J Syst Evol Microbiol 2018; 68:2093-2101. [PMID: 29638211 DOI: 10.1099/ijsem.0.002745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 16SrXIII group from phytoplasma bacteria were identified in salivary glands from Homalodisca liturata, which were collected in El Comitán on the Baja California peninsula in Mexico. We were able to positively identify 15 16S rRNA gene sequences with the corresponding signature sequence of 'CandidatusPhytoplasma' (CAAGAYBATKATGTKTAGCYGGDCT) and in silico restriction fragment length polymorphism (RFLP) profiles (F value estimations) coupled with a phylogenetic analysis to confirm their relatedness to 'CandidatusPhytoplasma hispanicum', which in turn belongs to the 16SrXIII group. A restriction analysis was carried out with AluI and EcoRI to confirm that the five sequences belongs to subgroup D. The rest of the sequences did not exhibit any known RFLP profile related to a subgroup reported in the 16SrXIII group.
Collapse
Affiliation(s)
- Rosalía Servín-Villegas
- Centro de Investigaciones Biológicas del Noroeste. Instituto Politécnico Nacional 195, Colonia Playa Palo de Santa Rita Sur, 23096 La Paz, Baja California Sur, Mexico
| | - Maria Goretty Caamal-Chan
- CONACYT-CIBNOR. Centro de Investigaciones Biológicas del Noroeste. Instituto Politécnico Nacional 195, Colonia Playa Palo de Santa Rita Sur, 23096 La Paz, Baja California Sur, Mexico
| | - Alicia Chavez-Medina
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa, Bulevar Juan de Dios Bátiz Paredes #250, Colonia San Joachin, Guasave, Sinaloa, Mexico
| | - Abraham Loera-Muro
- CONACYT-CIBNOR. Centro de Investigaciones Biológicas del Noroeste. Instituto Politécnico Nacional 195, Colonia Playa Palo de Santa Rita Sur, 23096 La Paz, Baja California Sur, Mexico
| | - Aarón Barraza
- CONACYT-CIBNOR. Centro de Investigaciones Biológicas del Noroeste. Instituto Politécnico Nacional 195, Colonia Playa Palo de Santa Rita Sur, 23096 La Paz, Baja California Sur, Mexico
| | - Diana Medina-Hernández
- Centro de Investigaciones Biológicas del Noroeste. Instituto Politécnico Nacional 195, Colonia Playa Palo de Santa Rita Sur, 23096 La Paz, Baja California Sur, Mexico
| | - Ramón Jaime Holguín-Peña
- Centro de Investigaciones Biológicas del Noroeste. Instituto Politécnico Nacional 195, Colonia Playa Palo de Santa Rita Sur, 23096 La Paz, Baja California Sur, Mexico
| |
Collapse
|
15
|
Melo LDA, Ventura JA, Costa H, Kitajima EW, Ferreira J, Bedendo IP. Delineation of a novel subgroup 16SrXIII-J phytoplasma, a 'Candidatus Phytoplasma hispanicum'-related strain, based on computer-simulated RFLP and phylogenetic analysis. Int J Syst Evol Microbiol 2018; 68:962-966. [PMID: 29458464 DOI: 10.1099/ijsem.0.002547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Symptoms of fruit phyllody and slow growth, which are suggestive of phytoplasma infection, were observed in strawberry plants cultivated in commercial fields. In order to provide evidence of association of phytoplasma with affected plants, assays for detecting and identifying were performed through computer-simulated restriction fragment length polymorphism (RFLP) and phylogenetic analysis. Total DNA was extracted from symptomatic and asymptomatic samples and used as template in nested PCR primed by the primers P1/Tint followed by R16F2n/16R2. Amplified DNA fragments of 1.2 kb from the 16S rRNA gene revealed the presence of phytoplasma in all symptomatic samples. Molecular detection was confirmed by electron transmission microscopy, which evidenced pleomorphic bodies in the phloem vessels. Nucleotide sequence representative of the strawberry phytoplasma shared 97.2 to 99 % similarity with phytoplasmas currently classified as members of the distinct subgroups within the 16SrXIII group. Similarity coefficient (F) values ranged from 0.70 to 0.92, indicating that strawberry phytoplasma delineates a new strain in addition to 'Candidatus Phytoplasma hispanicum'-related strains. The evolutionary tree displayed that this strain emerges as a new branch in relation to those previously described. The novel strain, designated SFP (strawberry fruit phyllody) phytoplasma represents the new 16SrXIII-J subgroup and its sequence, denominated SFP-Br02, was deposited in the GenBank database (EU719108). These findings contribute for the knowledge of the genetic diversity existing among members of the group 16SrXIII and establishes strawberry as an additional host of representatives of this group in Brazil.
Collapse
Affiliation(s)
- Luciano de Aquino Melo
- Departamento de Fitopatologia e Nematologia, ESALQ, Universidade de São Paulo, Caixa Postal 09, 13418-900 Piracicaba, SP, Brazil
| | - José Aires Ventura
- INCAPER, Instituo Capixaba de Pesquisa e Extensão Rural, Rua Afonso Sarlo, 160, 29052-010 Vitória, ES, Brazil
| | - Hélcio Costa
- INCAPER, Instituo Capixaba de Pesquisa e Extensão Rural, Rua Afonso Sarlo, 160, 29052-010 Vitória, ES, Brazil
| | - Elliot Watanabe Kitajima
- Departamento de Fitopatologia e Nematologia, ESALQ, Universidade de São Paulo, Caixa Postal 09, 13418-900 Piracicaba, SP, Brazil
| | - Jacson Ferreira
- Departamento de Fitopatologia e Nematologia, ESALQ, Universidade de São Paulo, Caixa Postal 09, 13418-900 Piracicaba, SP, Brazil
| | - Ivan Paulo Bedendo
- Departamento de Fitopatologia e Nematologia, ESALQ, Universidade de São Paulo, Caixa Postal 09, 13418-900 Piracicaba, SP, Brazil
| |
Collapse
|
16
|
Naderali N, Nejat N, Vadamalai G, Davis RE, Wei W, Harrison NA, Kong L, Kadir J, Tan YH, Zhao Y. 'Candidatus Phytoplasma wodyetiae', a new taxon associated with yellow decline disease of foxtail palm (Wodyetia bifurcata) in Malaysia. Int J Syst Evol Microbiol 2017; 67:3765-3772. [PMID: 28905707 DOI: 10.1099/ijsem.0.002187] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Landscape-grown foxtail palm (Wodyetia bifurcata A. K. Irvine) trees displaying symptoms of severe foliar chlorosis, stunting, general decline and mortality reminiscent of coconut yellow decline disease were observed in Bangi, Malaysia, during 2012. DNA samples from foliage tissues of 15 symptomatic palms were analysed by employing a nested PCR assay primed by phytoplasma universal ribosomal RNA operon primer pairs, P1/P7 followed by R16F2n/R2. The assay yielded amplicons of a single band of 1.25 kb from DNA samples of 11 symptomatic palms. Results from cloning and sequence analysis of the PCR-amplified 16S rRNA gene segments revealed that, in three palms, three mutually distinct phytoplasmas comprising strains related to 'Candidatus Phytoplasma asteris' and 'Candidatus Phytoplasma cynodontis', as well as a novel phytoplasma, were present as triple infections. The 16S rRNA gene sequence derived from the novel phytoplasma shared less than 96 % nucleotide sequence identity with that of each previously describedspecies of the provisional genus 'Ca. Phytoplasma', justifying its recognition as the reference strain of a new taxon, 'Candidatus Phytoplasma wodyetiae'. Virtual RFLP profiles of the R16F2n/R2 portion of the 16S rRNA gene and the pattern similarity coefficient value (0.74) supported the delineation of 'Ca. Phytoplasma wodyetiae' as the sole representative subgroup A member of a new phytoplasma ribosomal group, 16SrXXXVI.
Collapse
Affiliation(s)
- Neda Naderali
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400, Malaysia
| | - Naghmeh Nejat
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400, Malaysia.,School of Science, Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia
| | - Ganesan Vadamalai
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400, Malaysia.,Plant Protection Department, Universiti Putra Malaysia, 43400, Malaysia
| | - Robert E Davis
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Wei Wei
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Nigel A Harrison
- Department of Plant Pathology, Fort Lauderdale Research and Education Center, University of Florida, Fort Lauderdale, FL 33314, USA
| | - LihLing Kong
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400, Malaysia
| | - Jugah Kadir
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400, Malaysia
| | - Yee-How Tan
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400, Malaysia
| | - Yan Zhao
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| |
Collapse
|
17
|
Davis RE, Zhao Y, Wei W, Dally EL, Lee IM. ‘Candidatus Phytoplasma luffae’, a novel taxon associated with witches’ broom disease of loofah, Luffa aegyptica Mill. Int J Syst Evol Microbiol 2017; 67:3127-3133. [DOI: 10.1099/ijsem.0.001980] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Robert E. Davis
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Yan Zhao
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Wei Wei
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Ellen L. Dally
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Ing-Ming Lee
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| |
Collapse
|
18
|
May M, Brown DR. International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of Mollicutes. Minutes of the closed meeting, 3rd July 2016, Brisbane, Australia. Int J Syst Evol Microbiol 2017; 67:2482-2484. [PMID: 28693682 DOI: 10.1099/ijsem.0.001818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Meghan May
- Department of Biomedical Sciences, University of New England, Biddeford, Maine, USA
| | - Daniel R Brown
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
19
|
Pérez-López E, Rodríguez-Martínez D, Olivier CY, Luna-Rodríguez M, Dumonceaux TJ. Molecular diagnostic assays based on cpn60 UT sequences reveal the geographic distribution of subgroup 16SrXIII-(A/I)I phytoplasma in Mexico. Sci Rep 2017; 7:950. [PMID: 28424530 PMCID: PMC5430490 DOI: 10.1038/s41598-017-00895-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/16/2017] [Indexed: 01/31/2023] Open
Abstract
Geographically diverse samples from strawberry exhibiting symptoms of Strawberry Green Petal (SbGP), periwinkle plants with virescence, and blackberry, blueberry, and raspberry plants displaying yellowing and inedible fruits, were assayed for the presence of phytoplasma DNA. PCR targeting the 16S rRNA-encoding gene and chaperonin-60 (cpn60) showed that the plants were infected with phytoplasma subgroup16SrXIII-(A/I)I (SbGP/MPV). To examine the geographic distribution of this pathogen in Mexico, we designed an array of cpn60-targeted molecular diagnostic assays for SbGP/MPV phytoplasma. A fluorescent microsphere hybridization assay was designed that was capable of detecting SbGP/MPV phytoplasma in infected plant tissues, successfully differentiating it from other known phytoplasma cpn60 UT sequences, while identifying a double infection with SbGP/MPV and aster yellows (16SrI) phytoplasma. Two quantitative assays, quantitative real-time PCR (qRT-PCR) and droplet digital PCR (ddPCR), gave similar results in infected samples. Finally, a loop-mediated isothermal amplification (LAMP) assay provided rapid detection of SbGP/MPV phytoplasma DNA. Application of these assays revealed that SbGP/MPV phytoplasma is widely distributed in Central Mexico, with positive samples identified from eleven localities within three states separated by hundreds of kilometres. These results also provide tools for determining the presence and geographic distribution of this pathogen in plant and insect samples in other localities.
Collapse
Affiliation(s)
- Edel Pérez-López
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, Veracruz, Mexico
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| | | | - Chrystel Y Olivier
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada
| | - Mauricio Luna-Rodríguez
- Laboratorio de Genética e Interacciones Planta Microorganismos, Facultad de Ciencias Agrícolas, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Tim J Dumonceaux
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
20
|
Fernández FD, Galdeano E, Kornowski MV, Arneodo JD, Conci LR. Description of ‘Candidatus Phytoplasma meliae’, a phytoplasma associated with Chinaberry (Melia azedarach L.) yellowing in South America. Int J Syst Evol Microbiol 2016; 66:5244-5251. [DOI: 10.1099/ijsem.0.001503] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Franco Daniel Fernández
- Instituto de Patología Vegetal (IPAVE), CIAP-INTA, Camino 60 cuadras km 5 ½ (X5020ICA), Córdoba, Argentina
| | - Ernestina Galdeano
- Instituto de Botánica del Nordeste, (CONICET-UNNE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sargento Cabral 2131 (3400), Corrientes, Argentina
| | - Marcela Victoria Kornowski
- Estación Experimental Agropecuaria Montecarlo-INTA, Av. El Libertador 2472 (3384), Montecarlo, Argentina
| | - Joel Demián Arneodo
- Instituto de Microbiología y Zoología Agrícola (IMyZA), INTA, Nicolas Repetto y de los Reseros s/n (1686), Hurlingham, Argentina
| | - Luis Rogelio Conci
- Instituto de Patología Vegetal (IPAVE), CIAP-INTA, Camino 60 cuadras km 5 ½ (X5020ICA), Córdoba, Argentina
| |
Collapse
|