1
|
Ghadirli M, Haghighat S, Nowruzi B, Norouzi R, Hutarova L. First observation of genus Komarkiella in Iranian saline soils. Sci Rep 2025; 15:8813. [PMID: 40087366 PMCID: PMC11909232 DOI: 10.1038/s41598-025-93257-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/05/2025] [Indexed: 03/17/2025] Open
Abstract
Cyanobacteria are key elements of saline soils, particularly in the formation of vast surface crusts in arid regions and mine spoil wastes. These microorganisms are also abundant in areas that subjected to periodic wetting and submergence. In fact, sheaths or mucilage and its component polysaccharides have important effects in improving soil structure in saline environments. In our current research, we studied a nitrogen-fixing cyanobacterium obtained from saline soils in Golestan Province, Iran. We used a polyphasic analysis, combing both morphological and molecular techniques. Phylogenetic analysis was performed via the complete sequence of the 16S rRNA gene, along with 16S-23S internal transcribed spacer (ITS) secondary structures Further determinants were investigate using the sequences of the nifD, psbA, and rbcL genes. The isolates were assigned to the genus Komarekiella on the basis of 16S rRNA phylogenetic analysis with 98.80 to 100% similarity to other species of this genus. The 16S-23S ITS fold structures of the D1-D1', Box-B, and V2 helical regions distinguished the isolates from known Komarekiella species. Futuremore, ITS p-distances between the studied strain and related taxa revealed that the Komarekiella sp. isolate 1400 shared an ITS sequence similarity of 98.20 to 98.47% with the Komarekiella atlantica species. These results increase our knowledge of the biodiversity and characterisation of the heterocystous genus Komarekiella in the saline soils of Iran, isolated for the first time from this type of environment.
Collapse
Affiliation(s)
- Marzieh Ghadirli
- Department of Microbiology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
| | - Bahareh Nowruzi
- Department of Biotechnology, Faculty of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Rambod Norouzi
- Department of Molecular Biosciences, Autonomous University of Madrid, Madrid, Spain
| | - Lenka Hutarova
- Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| |
Collapse
|
2
|
Rancel-Rodríguez NM, Sausen N, Reyes CP, Quintana AM, Melkonian B, Melkonian M. Unexpected Genetic Diversity of Nostocales (Cyanobacteria) Isolated from the Phyllosphere of the Laurel Forests in the Canary Islands (Spain). Microorganisms 2024; 12:2625. [PMID: 39770827 PMCID: PMC11676812 DOI: 10.3390/microorganisms12122625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
A total of 96 strains of Nostocales (Cyanobacteria) were established from the phyllosphere of the laurel forests in the Canary Islands (Spain) and the Azores (Portugal) using enrichment media lacking combined nitrogen. The strains were characterized by light microscopy and SSU rRNA gene comparisons. Morphologically, most strains belonged to two different morphotypes, termed "Nostoc-type" and "Tolypothrix-type". Molecular phylogenetic analysis of 527 SSU rRNA gene sequences of cyanobacteria (95 sequences established during this study plus 392 sequences from Nostocales and 40 sequences from non-heterocyte-forming cyanobacteria retrieved from the databases) revealed that none of the SSU rRNA gene sequences from the phyllosphere of the laurel forests was identical to a database sequence. In addition, the genetic diversity of the isolated strains was high, with 42 different genotypes (44% of the sequences) recognized. Among the new genotypes were also terrestrial members of the genus Nodularia as well as members of the genus Brasilonema. It is concluded that heterocyte-forming cyanobacteria represent a component of the phyllosphere that is still largely undersampled in subtropical/tropical forests.
Collapse
Affiliation(s)
- Nereida M. Rancel-Rodríguez
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna, 38200 San Cristóbal De La Laguna, Spain
| | - Nicole Sausen
- Institute for Plant Sciences, Department of Biology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Carolina P. Reyes
- Instituto Universitario de Bio-Orgánica “Antonio González”, Universidad de La Laguna, 38206 San Cristóbal De La Laguna, Spain;
| | - Antera Martel Quintana
- Banco Español de Algas, Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, 35214 Telde, Spain;
| | - Barbara Melkonian
- Integrative Bioinformatics, Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
| | - Michael Melkonian
- Integrative Bioinformatics, Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
| |
Collapse
|
3
|
Akagha MU, Pietrasiak N, Bustos DF, Vondrášková A, Lamb SC, Johansen JR. Albertania and Egbenema gen. nov. from Nigeria and the United States, expanding biodiversity in the Oculatellaceae (cyanobacteria). JOURNAL OF PHYCOLOGY 2023; 59:1217-1236. [PMID: 37696506 DOI: 10.1111/jpy.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/13/2023]
Abstract
Knowledge of the tropical terrestrial cyanobacterial flora from the African continent is still limited. Of 31 strains isolated from soil and subaerial samples collected in Lagos State, Nigeria, three were found to be in the Oculatellaceae, including two species in a new genus. Subsequently, isolates from microbial mats in White Sands National Park in New Mexico, United States, and from a rock near the ocean in Puerto Rico, United States, were found to belong to the new genus as well. Cyanobacterial isolates were characterized microscopically, sequenced for the 16S rRNA gene and associated ITS region, and phylogenetically analyzed. Egbenema gen. nov., with three new species, as well as two new species of Albertania were differentiated from all other Oculatellaceae. Both genera belong to a supported clade within the Oculatellaceae that includes Trichotorquatus and Komarkovaea. The two new species of Albertania, A. egbensis and A. latericola, were from the same sample, but were evolutionarily separate based on 16S rRNA gene phylogenies, percent identity below the 98.7% threshold, and ITS rRNA percent dissimilarity >7.0%. Egbenema aeruginosum gen. et sp. nov. was phylogenetically separated from Trichotorquatus and Albertania but was in a clade with other strains belonging to Egbenema. The two Egbenema strains from the United States are here named Egbenema epilithicum sp. nov. and Egbenema gypsiphilum sp. nov. Our results support the hypothesis that further species discoveries of novel cyanobacteria will likely be made in soils and subaerial habitats, as these habitats continue to be studied, both in tropical and temperate biomes.
Collapse
Affiliation(s)
- Mildred U Akagha
- Department of Biology, John Carroll University, University Heights, Ohio, USA
| | - Nicole Pietrasiak
- School of Life Sciences, University of Nevada-Las Vegas, Las Vegas, Nevada, USA
- Plant & Environmental Sciences Department, New Mexico State University, Las Cruces, New Mexico, USA
| | - David F Bustos
- US DOI White Sands National Park, Alamogordo, New Mexico, USA
| | - Alžběta Vondrášková
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Sandra C Lamb
- Department of Marine Sciences, University of Lagos, Akoka, Nigeria
| | - Jeffrey R Johansen
- Department of Biology, John Carroll University, University Heights, Ohio, USA
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
4
|
Pellegrinetti TA, Cotta SR, Sarmento H, Costa JS, Delbaje E, Montes CR, Camargo PB, Barbiero L, Rezende-Filho AT, Fiore MF. Bacterial Communities Along Environmental Gradients in Tropical Soda Lakes. MICROBIAL ECOLOGY 2023; 85:892-903. [PMID: 35916937 DOI: 10.1007/s00248-022-02086-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/25/2022] [Indexed: 05/04/2023]
Abstract
Soda lake environments are known to be variable and can have distinct differences according to geographical location. In this study, we investigated the effects of different environmental conditions of six adjacent soda lakes in the Pantanal biome (Mato Grosso do Sul state, Brazil) on bacterial communities and their functioning using a metagenomic approach combined with flow cytometry and chemical analyses. Ordination analysis using flow cytometry and water chemistry data from two sampling periods (wet and dry) clustered soda lakes into three different profiles: eutrophic turbid (ET), oligotrophic turbid (OT), and clear vegetated oligotrophic (CVO). Analysis of bacterial community composition and functioning corroborated this ordination; the exception was one ET lake, which was similar to one OT lake during the wet season, indicating drastic shifts between seasons. Microbial abundance and diversity increased during the dry period, along with a considerable number of limnological variables, all indicative of a strong effect of the precipitation-evaporation balance in these systems. Cyanobacteria were associated with high electric conductivity, pH, and nutrient availability, whereas Actinobacteria, Alphaproteobacteria, and Betaproteobacteria were correlated with landscape morphology variability (surface water, surface perimeter, and lake volume) and with lower salinity and pH levels. Stress response metabolism was enhanced in OT and ET lakes and underrepresented in CVO lakes. The microbiome dataset of this study can serve as a baseline for restoring impacted soda lakes. Altogether, the results of this study demonstrate the sensitivity of tropical soda lakes to climate change, as slight changes in hydrological regimes might produce drastic shifts in community diversity.
Collapse
Affiliation(s)
- Thierry A Pellegrinetti
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, São Paulo, 13416-000, Brazil
| | - Simone R Cotta
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, São Paulo, 13416-000, Brazil
| | - Hugo Sarmento
- Department of Hydrobiology, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, 13565-905, Brazil
| | - Juliana S Costa
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, São Paulo, 13416-000, Brazil
| | - Endrews Delbaje
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, São Paulo, 13416-000, Brazil
| | - Celia R Montes
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, São Paulo, 13416-000, Brazil
| | - Plinio B Camargo
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, São Paulo, 13416-000, Brazil
| | - Laurent Barbiero
- The Observatory Midi-Pyrénées, Geoscience Environment Toulouse, Research Institute for Development, The National Center for Research Scientific, Paul Sabatier University, 31400, Toulouse, France
| | - Ary T Rezende-Filho
- Faculty of Engineering, Architecture and Urbanism and Geography, Federal University of Mato Grosso do Sul, Mato Grosso do Sul, Campo Grande, 79070-900, Brazil
| | - Marli F Fiore
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, São Paulo, 13416-000, Brazil.
| |
Collapse
|
5
|
Correa-Galeote D, Argiz L, Val del Rio A, Mosquera-Corral A, Juarez-Jimenez B, Gonzalez-Lopez J, Rodelas B. Dynamics of PHA-Accumulating Bacterial Communities Fed with Lipid-Rich Liquid Effluents from Fish-Canning Industries. Polymers (Basel) 2022; 14:1396. [PMID: 35406269 PMCID: PMC9003127 DOI: 10.3390/polym14071396] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
The biosynthesis of polyhydroxyalkanoates (PHAs) from industrial wastes by mixed microbial cultures (MMCs) enriched in PHA-accumulating bacteria is a promising technology to replace petroleum-based plastics. However, the populations' dynamics in the PHA-accumulating MMCs are not well known. Therefore, the main objective of this study was to address the shifts in the size and structure of the bacterial communities in two lab-scale sequencing batch reactors (SBRs) fed with fish-canning effluents and operated under non-saline (SBR-N, 0.5 g NaCl/L) or saline (SBR-S, 10 g NaCl/L) conditions, by using a combination of quantitative PCR and Illumina sequencing of bacterial 16S rRNA genes. A double growth limitation (DGL) strategy, in which nitrogen availability was limited and uncoupled to carbon addition, strongly modulated the relative abundances of the PHA-accumulating bacteria, leading to an increase in the accumulation of PHAs, independently of the saline conditions (average 9.04 wt% and 11.69 wt%, maximum yields 22.03 wt% and 26.33% SBR-N and SBR-S, respectively). On the other hand, no correlations were found among the PHAs accumulation yields and the absolute abundances of total Bacteria, which decreased through time in the SBR-N and did not present statistical differences in the SBR-S. Acinetobacter, Calothrix, Dyella, Flavobacterium, Novosphingobium, Qipengyuania, and Tsukamurella were key PHA-accumulating genera in both SBRs under the DGL strategy, which was revealed as a successful tool to obtain a PHA-enriched MMC using fish-canning effluents.
Collapse
Affiliation(s)
- David Correa-Galeote
- Microbiology Department, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain; (B.J.-J.); (J.G.-L.); (B.R.)
- Microbiology and Environmental Technology Section, Water Institute, University of Granada, 18011 Granada, Spain
| | - Lucia Argiz
- Department of Chemical Engineering, CRETUS Institute, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.A.); (A.V.d.R.); (A.M.-C.)
| | - Angeles Val del Rio
- Department of Chemical Engineering, CRETUS Institute, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.A.); (A.V.d.R.); (A.M.-C.)
| | - Anuska Mosquera-Corral
- Department of Chemical Engineering, CRETUS Institute, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.A.); (A.V.d.R.); (A.M.-C.)
| | - Belen Juarez-Jimenez
- Microbiology Department, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain; (B.J.-J.); (J.G.-L.); (B.R.)
- Microbiology and Environmental Technology Section, Water Institute, University of Granada, 18011 Granada, Spain
| | - Jesus Gonzalez-Lopez
- Microbiology Department, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain; (B.J.-J.); (J.G.-L.); (B.R.)
- Microbiology and Environmental Technology Section, Water Institute, University of Granada, 18011 Granada, Spain
| | - Belen Rodelas
- Microbiology Department, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain; (B.J.-J.); (J.G.-L.); (B.R.)
- Microbiology and Environmental Technology Section, Water Institute, University of Granada, 18011 Granada, Spain
| |
Collapse
|
6
|
Mareš J, Strunecký O, Bučinská L, Wiedermannová J. Evolutionary Patterns of Thylakoid Architecture in Cyanobacteria. Front Microbiol 2019; 10:277. [PMID: 30853950 PMCID: PMC6395441 DOI: 10.3389/fmicb.2019.00277] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/01/2019] [Indexed: 01/28/2023] Open
Abstract
While photosynthetic processes have become increasingly understood in cyanobacterial model strains, differences in the spatial distribution of thylakoid membranes among various lineages have been largely unexplored. Cyanobacterial cells exhibit an intriguing diversity in thylakoid arrangements, ranging from simple parietal to radial, coiled, parallel, and special types. Although metabolic background of their variability remains unknown, it has been suggested that thylakoid patterns are stable in certain phylogenetic clades. For decades, thylakoid arrangements have been used in cyanobacterial classification as one of the crucial characters for definition of taxa. The last comprehensive study addressing their evolutionary history in cyanobacteria was published 15 years ago. Since then both DNA sequence and electron microscopy data have grown rapidly. In the current study, we map ultrastructural data of >200 strains onto the SSU rRNA gene tree, and the resulting phylogeny is compared to a phylogenomic tree. Changes in thylakoid architecture in general follow the phylogeny of housekeeping loci. Parietal arrangement is resolved as the original thylakoid organization, evolving into complex arrangement in the most derived group of heterocytous cyanobacteria. Cyanobacteria occupying intermediate phylogenetic positions (greater filamentous, coccoid, and baeocytous types) exhibit fascicular, radial, and parallel arrangements, partly tracing the reconstructed course of phylogenetic branching. Contrary to previous studies, taxonomic value of thylakoid morphology seems very limited. Only special cases such as thylakoid absence or the parallel arrangement could be used as taxonomically informative apomorphies. The phylogenetic trees provide evidence of both paraphyly and reversion from more derived architectures in the simple parietal thylakoid pattern. Repeated convergent evolution is suggested for the radial and fascicular architectures. Moreover, thylakoid arrangement is constrained by cell size, excluding the occurrence of complex architectures in cyanobacteria smaller than 2 μm in width. It may further be dependent on unknown (eco)physiological factors as suggested by recurrence of the radial type in unrelated but morphologically similar cyanobacteria, and occurrence of special features throughout the phylogeny. No straightforward phylogenetic congruences have been found between proteins involved in photosynthesis and thylakoid formation, and the thylakoid patterns. Remarkably, several postulated thylakoid biogenesis factors are partly or completely missing in cyanobacteria, challenging their proposed essential roles.
Collapse
Affiliation(s)
- Jan Mareš
- Center Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czechia
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Otakar Strunecký
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
- Institute of Aquaculture, Faculty of Fisheries and Protection of Waters, University of South Bohemia, České Budějovice, Czechia
| | - Lenka Bučinská
- Center Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Jana Wiedermannová
- Laboratory of Molecular Genetics of Bacteria, Institute of Microbiology, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
7
|
Saraf A, Dawda HG, Suradkar A, Batule P, Behere I, Kotulkar M, Kumat A, Singh P. Insights into the phylogeny of false-branching heterocytous cyanobacteria with the description of Scytonema pachmarhiense sp. nov. isolated from Pachmarhi Biosphere Reserve, India. FEMS Microbiol Lett 2018; 365:5047304. [DOI: 10.1093/femsle/fny160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Indexed: 01/26/2023] Open
Affiliation(s)
- Aniket Saraf
- Department of Botany, Ramniranjan Jhunjhunwala College, Ghatkopar, Mumbai 400086, Maharashtra, India
- National Centre for Microbial Resource, National Centre for Cell Science, Pune-411021, Maharashtra, India
| | - Himanshu G Dawda
- Department of Botany, Ramniranjan Jhunjhunwala College, Ghatkopar, Mumbai 400086, Maharashtra, India
| | - Archana Suradkar
- National Centre for Microbial Resource, National Centre for Cell Science, Pune-411021, Maharashtra, India
| | - Priyanka Batule
- National Centre for Microbial Resource, National Centre for Cell Science, Pune-411021, Maharashtra, India
| | - Isha Behere
- National Centre for Microbial Resource, National Centre for Cell Science, Pune-411021, Maharashtra, India
| | - Manasi Kotulkar
- National Centre for Microbial Resource, National Centre for Cell Science, Pune-411021, Maharashtra, India
| | - Ankita Kumat
- National Centre for Microbial Resource, National Centre for Cell Science, Pune-411021, Maharashtra, India
| | - Prashant Singh
- National Centre for Microbial Resource, National Centre for Cell Science, Pune-411021, Maharashtra, India
- Department of Botany, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|