1
|
Lin SY, Hameed A, Tsai CF, Tang YS, Young CC. Description of Pseudogemmobacter faecipullorum sp. nov., isolated from poultry manure. FEMS Microbiol Lett 2022; 369:6840210. [PMID: 36413463 DOI: 10.1093/femsle/fnac112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/07/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
A polyphasic taxonomic approach was used to characterize a novel bacterium, designated strain CC-YST710T, isolated from poultry manure sampled in Taiwan. Cells of strain CC-YST710T were aerobic, Gram-stain-negative, nonmotile, nonspore-forming rods, displaying positive reactions for catalase, and oxidase activities. Strain CC-YST710T was found to grow optimally at 30°C, pH 7.0, and in the presence of 2% (w/v) NaCl. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, two unidentified phospholipids, four unidentified aminolipids, one unidentified aminophospholipid, and five unidentified lipids. The major polyamine was spermidine. The dominating cellular fatty acids (> 5%) included C16:0, C18:0, and C18:1ω7c/C18:1ω6c. Based on 16S rRNA gene analysis, this isolate showed the closest phylogenetic relationship with 'Pseudogemmobacter humicola' (97.6%), followed by Pseudogemmobacter bohemicus (97.2%) and 'Pseudogemmobacter hezensis' (97.5%). The draft genome (4.3 Mb) had 62.9 mol% G + C content. CC-YST710T can be distinguished from other Pseudogemmobacter species due to the exclusive presence of key genes encoding p-hydroxybenzoate hydroxylase, protocatechuate 3, 4-dioxygenase (α and β chain), and homogentisate 1, 2-dioxygenase involved in the degradation of phenolic compounds such as p-hydroxybenzoic acid, protocatechuate, and homogentisate, respectively. Orthologous average nucleotide identity (OrthoANI) of the isolate with the type strains of the genera Pseudogemmobacter were 77.6%‒78.0% (n = 3), followed by Tabrizicola (72.3%‒73.7%, n = 5), and Gemmobacter(72.3%‒73.5%, n = 7). Based on its distinct phylogenetic, phenotypic, and chemotaxonomic traits together with results of comparative 16S rRNA gene sequence, OrthoANI, digital DDH, and the phylogenomic placement, strain CC-YST710T is considered to represent a novel Pseudogemmobacter species, for which the name Pseudogemmobacter faecipullorum sp. nov. (type strain CC-YST710T = BCRC 81286T = JCM 34182T).
Collapse
Affiliation(s)
- Shih-Yao Lin
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, 145, XingDa Rd., Taichung 40227, Taiwan
| | - Asif Hameed
- Yenepoya Research Centre, Yenepoya Deemed to be University, University Road Deralakatte Mangalore 575018, Karnataka, India
| | - Chia-Fang Tsai
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, 145, XingDa Rd, Taichung 40227, Taiwan
| | - Yu-Shan Tang
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, 145, XingDa Rd., Taichung 40227, Taiwan
| | - Chiu-Chung Young
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, 145, XingDa Rd., Taichung 40227, Taiwan.,Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 145, XingDa Rd., Taichung 40227, Taiwan
| |
Collapse
|
2
|
Ashrafi S, Kuzmanović N, Patz S, Lohwasser U, Bunk B, Spröer C, Lorenz M, Elhady A, Frühling A, Neumann-Schaal M, Verbarg S, Becker M, Thünen T. Two New Rhizobiales Species Isolated from Root Nodules of Common Sainfoin (Onobrychis viciifolia) Show Different Plant Colonization Strategies. Microbiol Spectr 2022; 10:e0109922. [PMID: 36005754 PMCID: PMC9603459 DOI: 10.1128/spectrum.01099-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/04/2022] [Indexed: 12/30/2022] Open
Abstract
Root nodules of legume plants are primarily inhabited by rhizobial nitrogen-fixing bacteria. Here, we propose two new Rhizobiales species isolated from root nodules of common sainfoin (Onobrychis viciifolia), as shown by core-gene phylogeny, overall genome relatedness indices, and pan-genome analysis. Mesorhizobium onobrychidis sp. nov. actively induces nodules and achieves atmospheric nitrogen and carbon dioxide fixation. This species appears to be depleted in motility genes and is enriched in genes for direct effects on plant growth performance. Its genome reveals functional and plant growth-promoting signatures, like a large unique chromosomal genomic island with high density of symbiotic genetic traits. Onobrychidicola muellerharveyae gen. nov. sp. nov. is described as a type species of the new genus Onobrychidicola in Rhizobiaceae. This species comprises unique genetic features and plant growth-promoting traits (PGPTs), which strongly indicate its function in biotic stress reduction and motility. We applied a newly developed bioinformatics approach for in silico prediction of PGPTs (PGPT-Pred), which supports the different lifestyles of the two new species and the plant growth-promoting performance of M. onobrychidis in the greenhouse trial. IMPORTANCE The intensive use of chemical fertilizers has a variety of negative effects on the environment. Increased utilization of biological nitrogen fixation (BNF) is one way to mitigate those negative impacts. In order to optimize BNF, suitable candidates for different legume species are required. Despite intensive search for new rhizobial bacteria associated with legumes, no new rhizobia have recently been identified from sainfoin (Onobrychis viciifolia). Here, we report on the discovery of two new rhizobial species associated with sainfoin, which are of high importance for the host and may help to increase sustainability in agricultural practices. We employed the combination of in silico prediction and in planta experiments, which is an effective way to detect promising plant growth-promoting bacteria.
Collapse
Affiliation(s)
- Samad Ashrafi
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Nemanja Kuzmanović
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Braunschweig, Germany
| | - Sascha Patz
- University of Tübingen, Institute for Bioinformatics and Medical Informatics, Algorithms in Bioinformatics, Tübingen, Germany
| | - Ulrike Lohwasser
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Genebank Department, Seeland, Germany
| | - Boyke Bunk
- Leibniz Institute German Collection of Microorganisms and Cell Cultures (DSMZ), Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute German Collection of Microorganisms and Cell Cultures (DSMZ), Braunschweig, Germany
| | - Maria Lorenz
- Technische Universität Braunschweig, Braunschweig, Germany
| | - Ahmed Elhady
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Anja Frühling
- Leibniz Institute German Collection of Microorganisms and Cell Cultures (DSMZ), Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz Institute German Collection of Microorganisms and Cell Cultures (DSMZ), Braunschweig, Germany
| | - Susanne Verbarg
- Leibniz Institute German Collection of Microorganisms and Cell Cultures (DSMZ), Braunschweig, Germany
| | - Matthias Becker
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for National and International Plant Health, Braunschweig, Germany
| | - Torsten Thünen
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Crop and Soil Science, Braunschweig, Germany
| |
Collapse
|
3
|
Pi HW, Lin JJ, Chen CA, Wang PH, Chiang YR, Huang CC, Young CC, Li WH. Origin and evolution of nitrogen fixation in prokaryotes. Mol Biol Evol 2022; 39:6673025. [PMID: 35993177 PMCID: PMC9447857 DOI: 10.1093/molbev/msac181] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The origin of nitrogen fixation is an important issue in evolutionary biology. While nitrogen is required by all living organisms, only a small fraction of bacteria and archaea can fix nitrogen. The prevailing view is that nitrogen fixation first evolved in archaea and was later transferred to bacteria. However, nitrogen-fixing (Nif) bacteria are far larger in number and far more diverse in ecological niches than Nif archaea. We, therefore, propose the bacteria-first hypothesis, which postulates that nitrogen fixation first evolved in bacteria and was later transferred to archaea. As >30,000 prokaryotic genomes have been sequenced, we conduct an in-depth comparison of the two hypotheses. We first identify the six genes involved in nitrogen fixation in all sequenced prokaryotic genomes and then reconstruct phylogenetic trees using the six Nif proteins individually or in combination. In each of these trees, the earliest lineages are bacterial Nif protein sequences and in the oldest clade (group) the archaeal sequences are all nested inside bacterial sequences, suggesting that the Nif proteins first evolved in bacteria. The bacteria-first hypothesis is further supported by the observation that the majority of Nif archaea carry the major bacterial Mo (molybdenum) transporter (ModABC) rather than the archaeal Mo transporter (WtpABC). Moreover, in our phylogeny of all available ModA and WtpA protein sequences, the earliest lineages are bacterial sequences while archaeal sequences are nested inside bacterial sequences. Furthermore, the bacteria-first hypothesis is supported by available isotopic data. In conclusion, our study strongly supports the bacteria-first hypothesis.
Collapse
Affiliation(s)
- Hong Wei Pi
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taiwan.,Biodiversity Research Center, Academia Sinica, Taipei, Taiwan 11529
| | - Jinn Jy Lin
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan 11529
| | - Chi An Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan 11529.,Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| | - Po Hsiang Wang
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, Taiwan 32001.,Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan 145-0061
| | - Yin Ru Chiang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan 11529
| | - Chieh Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan 402
| | - Chiu Chung Young
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan 402
| | - Wen Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan 11529.,Department of Ecology and Evolution, University of Chicago, Chicago 60637, USA
| |
Collapse
|
4
|
Lin SY, Hameed A, Tsai CF, Hung MH, Young CC. Agrilactobacillus fermenti sp. nov. isolated from fermented vegetable residue. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A polyphasic taxonomic approach was used to characterize a Gram-stain-positive fermentative bacterium, designated strain CC-MHH1034T, isolated from a fermented vegetable residue. Cells of strain CC-MHH1034T were facultatively anaerobic, non-motile, and non-spore-forming rods, exhibiting positive catalase, oxidase and protease activities. Optimal growth occurred at 30 °С and pH 6.0. Strain CC-MHH1034T shared the highest 16S rRNA gene sequence similarities with
Agrilactobacillus composti
(95.9 %) followed by
Agrilactobacillus yilanensis
(95.1 %) and established a distinct taxonomic lineage associated with these species. Highest orthologous average nucleotide identity (OrthoANI) values were recorded for strain CC-MHH1034T versus
Agrilactobacillus
(71.1–71.6 %, n=2) followed by
Ligilactobacillus
(66.5–66.8 %, n=2),
Lactobacillus
(64.1–65.8 %, n=4). The mean digital DNA–DNA hybridization (dDDH) value obtained for strain CC-MHH1034T against
Agrilactobacillus
was 19.2–19.5 % (n=2). The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, two unidentified aminolipids, four unidentified glycolipids, four unidentified phospholipids and one unidentified lipid. The major polyamine was sym-homospermidine and meso-diaminopimelic acid was detected as the cell-wall peptidoglycan. The dominating cellular fatty acids (>5 %) included C16 : 0, iso-C15 : 0, anteiso-C15 : 0 and C18 : 1
ω9c. Based on its distinct phylogenetic, phenotypic and chemotaxonomic traits together with results of comparative 16S rRNA gene sequence, OrthoANI, dDDH, and the phylogenomic placement, strain CC-MHH1034T is considered to represent a novel species of the genus
Agrilactobacillus
, affiliated to the family
Lactobacillaceae
, for which the name Agrilactobacillus fermenti sp. nov. is proposed. The type strain is CC-MHH1034T (=BCRC 81220T=JCM 33476T).
Collapse
Affiliation(s)
- Shih-Yao Lin
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung City, Taiwan, ROC
| | - Asif Hameed
- Yenepoya Research Centre, Yenepoya University, Mangalore, Karnataka, India
| | - Chia-Fang Tsai
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung City, Taiwan, ROC
| | - Mei-Hua Hung
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung City, Taiwan, ROC
| | - Chiu-Chung Young
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung City, Taiwan, ROC
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan, ROC
| |
Collapse
|
5
|
Lin SY, Hameed A, Tsai CF, Young CC. Vineibacter terrae gen. nov., sp. nov., an ammonium-assimilating and nitrate-reducing bacterium isolated from vineyard soil. Int J Syst Evol Microbiol 2021; 71. [PMID: 34878378 DOI: 10.1099/ijsem.0.005111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A polyphasic taxonomic approach was used to characterize a Gram-stain-negative bacterium, designated strain CC-CFT640T, isolated from vineyard soil sampled in Taiwan. Cells of strain CC-CFT640T were aerobic, non-motile, nitrate-reducing rods. Test results were positive for catalase, oxidase and proteinase activities. Optimal growth occurred at 30 °С and pH 7. Strain CC-CFT640T showed highest 16S rRNA gene sequence similarity to members of the genus Enhydrobacter (90.0 %, n=1) followed by Hypericibacter (89.4-90.0 %, n=2), Reyranella (88.8-89.8 %, n=5) and Nitrospirillum (89.2-89.4 %, n=2), and formed a distinct phyletic lineage distantly associated with the clade that predominately accommodated Reynerella species. The DNA G+C composition of the genome (2.1 Mb) was 67.9 mol%. Genes involved in the reduction of nitrate to nitrite, nitric oxide and nitrous oxide were found. In addition, genes encoding dissimilatory nitrate reduction to ammonia, ammonium transport and ammonium assimilation were also detected. Average nucleotide identity values were 73.3 % (n=1), 74.0-74.6 % (n=2), 67.5-68.3 % (n=2) when compared within the type strains of the genera Enhydrobacter, Reyranella and Niveispirillum, respectively. The dominant cellular fatty acids (>5 %) included C16 : 0, iso-C17 : 1 ω10c, C19 : 0 cyclo ω8c, C18 : 1 2-OH and C18 : 1 ω7c/C18 : 1 ω6c. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, three unidentified aminolipids, three unidentified phospholipids and an unidentified aminophospholipid. The major respiratory quinone was ubiquinone 10 and the major polyamine was spermidine. Based on its distinct phylogenetic, phenotypic and chemotaxonomic traits together with results of comparative 16S rRNA gene sequencing, digital DNA-DNA hybridization, average nucleotide identity and phylogenomic placement, strain CC-CFT640T is considered to represent a novel genus and species of the family Rhodospirillaceae, for which the name Vineibacter terrae gen. nov., sp. nov. is proposed. The type strain is CC-CFT640T (=BCRC 81219T=JCM 33507T).
Collapse
Affiliation(s)
- Shih-Yao Lin
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung City, Taiwan, ROC
| | - Asif Hameed
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung City, Taiwan, ROC.,Yenepoya Research Centre, Yenepoya Deemed to be University, Mangalore, Karnataka, India
| | - Chia-Fang Tsai
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung City, Taiwan, ROC
| | - Chiu-Chung Young
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung City, Taiwan, ROC.,Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan, ROC
| |
Collapse
|
6
|
Gnangui SLE, Fossou RK, Ebou A, Amon CER, Koua DK, Kouadjo CGZ, Cowan DA, Zézé A. The Rhizobial Microbiome from the Tropical Savannah Zones in Northern Côte d'Ivoire. Microorganisms 2021; 9:microorganisms9091842. [PMID: 34576737 PMCID: PMC8472840 DOI: 10.3390/microorganisms9091842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 01/04/2023] Open
Abstract
Over the past decade, many projects have been initiated worldwide to decipher the composition and function of the soil microbiome, including the African Soil Microbiome (AfSM) project that aims at providing new insights into the presence and distribution of key groups of soil bacteria from across the African continent. In this national study, carried out under the auspices of the AfSM project, we assessed the taxonomy, diversity and distribution of rhizobial genera in soils from the tropical savannah zones in Northern Côte d’Ivoire. Genomic DNA extracted from seven sampled soils was analyzed by sequencing the V4-V5 variable region of the 16S rDNA using Illumina’s MiSeq platform. Subsequent bioinformatic and phylogenetic analyses showed that these soils harbored 12 out of 18 genera of Proteobacteria harboring rhizobia species validly published to date and revealed for the first time that the Bradyrhizobium genus dominates in tropical savannah soils, together with Microvirga and Paraburkholderia. In silico comparisons of different 16S rRNA gene variable regions suggested that the V5-V7 region could be suitable for differentiating rhizobia at the genus level, possibly replacing the use of the V4-V5 region. These data could serve as indicators for future rhizobial microbiome explorations and for land-use decision-making.
Collapse
Affiliation(s)
- Sara Laetitia Elphège Gnangui
- Laboratoire de Biotechnologies Végétale et Microbienne (LBVM), Unité Mixte de Recherche et d’Innovation en Sciences Agronomiques et Génie Rural, Institut National Polytechnique Felix Houphouët-Boigny, Yamoussoukro 1093, Côte d’Ivoire; (S.L.E.G.); (A.E.); (C.E.R.A.); (A.Z.)
| | - Romain Kouakou Fossou
- Laboratoire de Biotechnologies Végétale et Microbienne (LBVM), Unité Mixte de Recherche et d’Innovation en Sciences Agronomiques et Génie Rural, Institut National Polytechnique Felix Houphouët-Boigny, Yamoussoukro 1093, Côte d’Ivoire; (S.L.E.G.); (A.E.); (C.E.R.A.); (A.Z.)
- Correspondence:
| | - Anicet Ebou
- Laboratoire de Biotechnologies Végétale et Microbienne (LBVM), Unité Mixte de Recherche et d’Innovation en Sciences Agronomiques et Génie Rural, Institut National Polytechnique Felix Houphouët-Boigny, Yamoussoukro 1093, Côte d’Ivoire; (S.L.E.G.); (A.E.); (C.E.R.A.); (A.Z.)
- Équipe Bioinformatique, Département de Formation et de Recherche Agriculture et Ressources Animales, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro 1313, Côte d’Ivoire;
| | - Chiguié Estelle Raïssa Amon
- Laboratoire de Biotechnologies Végétale et Microbienne (LBVM), Unité Mixte de Recherche et d’Innovation en Sciences Agronomiques et Génie Rural, Institut National Polytechnique Felix Houphouët-Boigny, Yamoussoukro 1093, Côte d’Ivoire; (S.L.E.G.); (A.E.); (C.E.R.A.); (A.Z.)
| | - Dominique Kadio Koua
- Équipe Bioinformatique, Département de Formation et de Recherche Agriculture et Ressources Animales, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro 1313, Côte d’Ivoire;
| | - Claude Ghislaine Zaka Kouadjo
- Laboratoire Central de Biotechnologies, Centre National de la Recherche Agronomique, 01 Abidjan 1740, Côte d’Ivoire;
| | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa;
| | - Adolphe Zézé
- Laboratoire de Biotechnologies Végétale et Microbienne (LBVM), Unité Mixte de Recherche et d’Innovation en Sciences Agronomiques et Génie Rural, Institut National Polytechnique Felix Houphouët-Boigny, Yamoussoukro 1093, Côte d’Ivoire; (S.L.E.G.); (A.E.); (C.E.R.A.); (A.Z.)
| |
Collapse
|
7
|
Paulitsch F, Dos Reis FB, Hungria M. Twenty years of paradigm-breaking studies of taxonomy and symbiotic nitrogen fixation by beta-rhizobia, and indication of Brazil as a hotspot of Paraburkholderia diversity. Arch Microbiol 2021; 203:4785-4803. [PMID: 34245357 DOI: 10.1007/s00203-021-02466-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/11/2021] [Accepted: 06/25/2021] [Indexed: 10/20/2022]
Abstract
Twenty years ago, the first members of the genus Burkholderia capable of nodulating and fixing N2 during symbiosis with leguminous plants were reported. The discovery that β-proteobacteria could nodulate legumes represented a breakthrough event because, for over 100 years, it was thought that all rhizobia belonged exclusively to the α-Proteobacteria class. Over the past 20 years, efforts toward robust characterization of these bacteria with large-scale phylogenomic and taxonomic studies have led to the separation of clinically important and phytopathogenic members of Burkholderia from environmental ones, and the symbiotic nodulating species are now included in the genera Paraburkholderia and Trinickia. Paraburkholderia encompasses the vast majority of β-rhizobia and has been mostly found in South America and South Africa, presenting greater symbiotic affinity with native members of the families Mimosoideae and Papilionoideae, respectively. Being the main center of Mimosa spp. diversity, Brazil is also known as the center of symbiotic Paraburkholderia diversity. Of the 21 symbiotic Paraburkholderia species described to date, 11 have been isolated in Brazil, and others first isolated in different countries have also been found in this country. Additionally, besides the symbiotic N2-fixation capacity of some of its members, Paraburkholderia is considered rich in other beneficial interactions with plants and can promote growth through several direct and indirect mechanisms. Therefore, these bacteria can be considered biological resources employed as environmentally friendly alternatives that could reduce the agricultural dependence on agrochemical inputs.
Collapse
Affiliation(s)
- Fabiane Paulitsch
- Embrapa Soja, C.P. 231, Londrina, Paraná, 86001-970, Brazil.,Departamento de Microbiologia, Universidade Estadual de Londrina, C.P. 10011, Londrina, Paraná, 86057-970, Brazil.,Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, Brasília, Distrito Federal, 70040-020, Brazil
| | | | - Mariangela Hungria
- Embrapa Soja, C.P. 231, Londrina, Paraná, 86001-970, Brazil. .,Departamento de Microbiologia, Universidade Estadual de Londrina, C.P. 10011, Londrina, Paraná, 86057-970, Brazil.
| |
Collapse
|
8
|
Lamin H, Alami S, Lamrabet M, Bouhnik O, Bennis M, Abdelmoumen H, Bedmar EJ, Missbah-El Idrissi M. Bradyrhizobium sp. sv. retamae nodulates Retama monosperma grown in a lead and zinc mine tailings in Eastern Morocco. Braz J Microbiol 2021; 52:639-649. [PMID: 33447935 PMCID: PMC8105474 DOI: 10.1007/s42770-021-00420-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022] Open
Abstract
The aim of this work was to characterize and identify some bacteria isolated from the root nodules of Retama monosperma grown in Sidi Boubker lead and zinc mine tailings. Very few root nodules were obtained on the root nodules of R. monosperma grown in these soils. The three bacteria isolated from the root nodules were tolerant in vitro to different concentrations of heavy metals, including lead and zinc. The rep-PCR experiments showed that the three isolates have different molecular fingerprints and were considered as three different strains. The analysis of their 16S rRNA gene sequences proved their affiliation to the genus Bradyrhizobium. The analysis and phylogeny of the housekeeping genes atpD, glnII, gyrB, recA, and rpoB confirmed that the closest species was B. valentinum with similarity percentages of 95.61 to 95.82%. The three isolates recovered from the root nodules were slow-growing rhizobia capable to renodulate their original host plant in the presence of Pb-acetate. They were able to nodulate R. sphaerocarpa and Lupinus luteus also but not Glycine max or Phaseolus vulgaris. The phylogeny of the nodA and nodC nodulation genes as well as the nifH gene of the three strains showed that they belong to the symbiovar retamae of the genus Bradyrhizobium. The three strains isolated could be considered for use as inoculum for Retama plants before use in phytoremediation experiments.
Collapse
Affiliation(s)
- Hanane Lamin
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | - Soufiane Alami
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | - Mouad Lamrabet
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | - Omar Bouhnik
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | - Meryeme Bennis
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | - Hanaa Abdelmoumen
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), E-419, 18080, Granada, Spain
| | - Mustapha Missbah-El Idrissi
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco.
| |
Collapse
|
9
|
Missbah El Idrissi M, Lamin H, Bouhnik O, Lamrabet M, Alami S, Jabrone Y, Bennis M, Bedmar EJ, Abdelmoumen H. Characterization of Pisum sativum and Vicia faba microsymbionts in Morocco and definition of symbiovar viciae in Rhizobium acidisoli. Syst Appl Microbiol 2020; 43:126084. [PMID: 32423773 DOI: 10.1016/j.syapm.2020.126084] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022]
Abstract
In this work, we analyzed the diversity of seventy-six bacteria isolated from Pea and faba bean nodules in two regions of Morocco. The molecular diversity was realized using the analysis of the sequences of 16S rRNA and six housekeeping genes (recA, glnII, atpD, dnaK, rpoB and gyrB) and two symbiotic genes (nodA and nodC). The phylogeny of the 16S rRNA gene sequences revealed that all strains belong to the genus Rhizobium, being related to the type strains of R. leguminosarum, R. laguerreae, R. indigoferae, R. anhuiense and R. acidisoli. The housekeeping genes phylogenies showed that some strains formed a subclade distinct from the rhizobial species that usually nodulate Vicia faba and Pisum sativum which are closely related to R. acidisoli FH23 with sequence similarity of 98.3%. Analysis of the PGPR activities of the different isolates showed that the strains related to R. laguerreae were able to solubilize phosphates and to produce siderophores and auxin phytohormone. However, R. acidisoli strain F40D2 was unable to solubilize phosphates although they produce siderophores and IAA. The phylogenetic analysis of the nodA and nodC sequences showed that all isolated strains were closely related with the strains of symbiovar viciae. The nodulation tests confirmed the ability to nodulate V. faba and P. sativum but not Cicer arietinum or Phaseolus vulgaris. Hence, in Morocco P. sativum is nodulated by R. laguerreae; whereas V. faba is nodulated by R. laguerreae and the symbiovar viciae of R. acidisoli which has been not previously described in this species.
Collapse
Affiliation(s)
- Mustapha Missbah El Idrissi
- Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, Morocco.
| | - Hanane Lamin
- Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Omar Bouhnik
- Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Mouad Lamrabet
- Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Soufiane Alami
- Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Youssef Jabrone
- Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, Morocco; Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), E-419, 18080 Granada, Spain
| | - Meryeme Bennis
- Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), E-419, 18080 Granada, Spain
| | - Hanaa Abdelmoumen
- Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| |
Collapse
|
10
|
Lin SY, Chen WM, Hameed A, Huang GH, Hung MH, Young CC. Cohnella fermenti sp. nov., isolated from a fermentation process. Int J Syst Evol Microbiol 2020; 70:2602-2610. [PMID: 32160142 DOI: 10.1099/ijsem.0.004080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-positive, aerobic, motile with peritrichous flagella, rod-shaped bacterium, designated CC-MHH1044T, was isolated from a preserved vegetable sample. A polyphasic taxonomic approach was applied to the isolates in order to clarify its taxonomic position. Growth of the strain CC-MHH1044T occurred at 15-50 °C (optimum, 30 °C), pH 6.0-8.0 (optimum, pH 7.0) and with 0-2.0 % (w/v) NaCl (optimum, 1 %, w/v). The genome of strain CC-MHH1044T consisted of 8.5 Mb and the genomic DNA G+C content was 58.5 mol%. Comparison of the 16S rRNA gene sequences showed that CC-MHH1044T belonged to the genus Cohnella and showed a close relationship with the type strains of Cohnella damuensis (96.2 %) and Cohnella panacarvi (95.9 %), and lower sequence similarity to other species. Average nucleotide identity values calculated from whole-genome sequencing data proved that CC-MHH1044T represents a distinct Cohnella species. The dominant cellular fatty acids (>5 %) included iso-C14 : 0(7.4 %), iso-C15 : 0 (6.4 %), anteiso-C15 : 0(40.3 %), C16 : 0 (6.6 %) and iso-C16 : 0 (27.0 %). The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, four unidentified aminophospholipids, one unidentified phospholipid and glycolipid. The major polyamine was spermidine. The predominant isoprenoid quinone was menaqinone 7 (MK-7). Based on its distinct phylogenetic, phenotypic and chemotaxonomic traits, together with results of comparative 16S rRNA gene sequence, average nucleotide identity and digital DNA-DNA hybridization analyses, we conclude that strain CC-MHH1044T represents a novel member of the genus Cohnella, for which the name Cohnella fermenti sp. nov. is proposed. The type strain is CC-MHH1044T (=BCRC 81147T=JCM 32834T).
Collapse
Affiliation(s)
- Shih-Yao Lin
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung City, Taiwan, ROC
| | - Wen-Ming Chen
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan, ROC
| | - Asif Hameed
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung City, Taiwan, ROC
| | - Guan-Hua Huang
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung City, Taiwan, ROC
| | - Mei-Hua Hung
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung City, Taiwan, ROC
| | - Chiu-Chung Young
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan, ROC
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung City, Taiwan, ROC
| |
Collapse
|
11
|
Lin SY, Hameed A, Huang HI, Young CC. Allorhizobium terrae sp. nov., isolated from paddy soil, and reclassification of Rhizobium oryziradicis (Zhao et al. 2017) as Allorhizobium oryziradicis comb. nov. Int J Syst Evol Microbiol 2020; 70:397-405. [PMID: 31626583 DOI: 10.1099/ijsem.0.003770] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A polyphasic taxonomic approach was used to characterize a nitrogen-fixing bacterium, designated strain CC-HIH110T, isolated from paddy soil in Taiwan. Cells of strain CC-HIH110T were Gram-stain-negative, rod-shaped, motile with polar flagella, catalase-positive and oxidase-positive. Optimal growth occurred at 30 °С, pH 7 and 1 % NaCl. Phylogenetic analyses based on 16S rRNA genes revealed a distinct taxonomic position attained by strain CC-HIH110T associated with Rhizobium oryziradicis (98.4 % sequence identity), Allorhizobium vitis (97.8 %), Allorhizobium taibaishanense (97.7 %) and Allorhizobium undicola (96.0 %), and lower sequence similarity to other species. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain CC-HIH110T and the type strains of other closely related species were 71.5-88.6 % and 19.6-35.5 %, respectively. Strain CC-HIH110T contained C16 : 0 3-OH, C14 : 0 3-OH/iso C16 : 1 I and C18 : 1 ω7c/C18 : 1 ω6c as the predominant fatty acids. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidyldimethylethanolamine, phosphatidylcholine, three unknown aminophospholipids, two unknown phospholipids and an unknown lipid. The major polyamine was homospermidine. The DNA G+C content was 55.0 mol% and the predominant quinone was ubiquinone (Q-10). Based on its distinct phylogenetic, phenotypic and chemotaxonomic traits together with results of comparative 16S rRNA gene sequence, ANI and dDDH analyses, strain CC-HIH110T is proposed to represent a novel Allorhizobium species, for which the name Allorhizobium terrae sp. nov. (type strain CC-HIH110T=BCRC 80932T=JCM 31228T). In addition, Rhizobium oryziradicis is reclassified as Allorhizobium oryziradicis (type strain N19T=ACCC 19962T=KCTC 52413T) comb. nov.
Collapse
Affiliation(s)
- Shih-Yao Lin
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Asif Hameed
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Hsin-I Huang
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Chiu-Chung Young
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan, ROC
| |
Collapse
|
12
|
Casanova C, Lo Priore E, Egli A, Seth-Smith HMB, Räber L, Ott D, Pflüger V, Droz S, Marschall J, Sommerstein R. Agrobacterium spp. nosocomial outbreak assessment using rapid MALDI-TOF MS based typing, confirmed by whole genome sequencing. Antimicrob Resist Infect Control 2019; 8:171. [PMID: 31700617 PMCID: PMC6829841 DOI: 10.1186/s13756-019-0619-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/01/2019] [Indexed: 11/10/2022] Open
Abstract
Background A number of episodes of nosocomial Agrobacterium spp. bacteremia (two cases per year) were observed at Bern University Hospital, Switzerland, from 2015 to 2017. This triggered an outbreak investigation. Methods Cases of Agrobacterium spp. bacteremias that occurred between August 2011 and February 2017 were investigated employing line lists, environmental sampling, rapid protein- (MALDI-TOF MS), and genome-based typing (pulsed field gel electrophoresis and whole genome sequencing) of the clinical isolates. Results We describe a total of eight bacteremia episodes due to A. radiobacter (n = 2), Agrobacterium genomovar G3 (n = 5) and A. pusense (n = 1). Two tight clusters were observed by WGS typing, representing the two A. radiobacter isolates (cluster I, isolated in 2015) and four of the Agrobacterium genomovar G3 isolates (cluster II, isolated in 2016 and 2017), suggesting two different point sources. The epidemiological investigations revealed two computer tomography (CT) rooms as common patient locations, which correlated with the two outbreak clusters. MALDI-TOF MS permitted faster evaluation of strain relatedness than DNA-based methods. High resolution WGS-based typing confirmed the MALDI-TOF MS clustering. Conclusions We report clinical and epidemiological characteristics of two outbreak clusters with Agrobacterium. spp. bacteremia likely acquired during CT contrast medium injection and highlight the use of MALDI-TOF MS as a rapid tool to assess relatedness of rare gram-negative pathogens in an outbreak investigation.
Collapse
Affiliation(s)
- Carlo Casanova
- 1Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001 Bern, Switzerland
| | - Elia Lo Priore
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Freiburgstrasse, 3001 Bern, Switzerland
| | - Adrian Egli
- 3Division of Clinical Microbiology, University Hospital Basel, Basel, Switzerland.,4Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Helena M B Seth-Smith
- 3Division of Clinical Microbiology, University Hospital Basel, Basel, Switzerland.,4Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Lorenz Räber
- Department of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Daniel Ott
- Department of Radiology, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Sara Droz
- 1Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001 Bern, Switzerland
| | - Jonas Marschall
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Freiburgstrasse, 3001 Bern, Switzerland
| | - Rami Sommerstein
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Freiburgstrasse, 3001 Bern, Switzerland
| |
Collapse
|
13
|
de Lajudie PM, Andrews M, Ardley J, Eardly B, Jumas-Bilak E, Kuzmanović N, Lassalle F, Lindström K, Mhamdi R, Martínez-Romero E, Moulin L, Mousavi SA, Nesme X, Peix A, Puławska J, Steenkamp E, Stępkowski T, Tian CF, Vinuesa P, Wei G, Willems A, Zilli J, Young P. Minimal standards for the description of new genera and species of rhizobia and agrobacteria. Int J Syst Evol Microbiol 2019; 69:1852-1863. [PMID: 31140963 DOI: 10.1099/ijsem.0.003426] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herein the members of the Subcommittee on Taxonomy of Rhizobia and Agrobacteria of the International Committee on Systematics of Prokaryotes review recent developments in rhizobial and agrobacterial taxonomy and propose updated minimal standards for the description of new species (and genera) in these groups. The essential requirements (minimal standards) for description of a new species are (1) a genome sequence of at least the proposed type strain and (2) evidence for differentiation from other species based on genome sequence comparisons. It is also recommended that (3) genetic variation within the species is documented with sequence data from several clearly different strains and (4) phenotypic features are described, and their variation documented with data from a relevant set of representative strains. Furthermore, it is encouraged that information is provided on (5) nodulation or pathogenicity phenotypes, as appropriate, with relevant gene sequences. These guidelines supplement the current rules of general bacterial taxonomy, which require (6) a name that conforms to the International Code of Nomenclature of Prokaryotes, (7) validation of the name by publication either directly in the International Journal of Systematic and Evolutionary Microbiology or in a validation list when published elsewhere, and (8) deposition of the type strain in two international culture collections in separate countries.
Collapse
Affiliation(s)
| | - Mitchell Andrews
- 2Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Julie Ardley
- 3School of Veterinary and Life Sciences, Murdoch University, Murdoch, Australia
| | | | - Estelle Jumas-Bilak
- 5UMR 5569, Department of Microbiology, Faculty of Pharmacy, University of Montpellier, France
| | - Nemanja Kuzmanović
- 6Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Florent Lassalle
- 7Department of Infectious Disease Epidemiology - MRC Centre for Outbreak Analysis and Modelling, St Mary's Hospital, Praed Street, London W2 1NY, UK
| | - Kristina Lindström
- 8Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Ridha Mhamdi
- 9Centre of Biotechnology of Borj-Cedria, BP 901 Hammam-lif 2050, Tunisia
| | - Esperanza Martínez-Romero
- 10Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Morelos, Mexico
| | - Lionel Moulin
- 11IRD, CIRAD, University of Montpellier, IPME, Montpellier, France
| | - Seyed Abdollah Mousavi
- 8Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Xavier Nesme
- 12LEM, UCBL, CNRS, INRA, Univ Lyon, Villeurbanne, France
| | - Alvaro Peix
- 13Instituto de Recursos Naturales y Agrobiología, IRNASA-CSIC, c/Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Joanna Puławska
- 14Department of Phytopathology, Research Institute of Horticulture, ul. Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | - Emma Steenkamp
- 15Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - Tomasz Stępkowski
- 16Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Chang-Fu Tian
- 17State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, College of Biological Sciences, China Agricultural University, 100193, Beijing, PR China
| | - Pablo Vinuesa
- 10Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Morelos, Mexico
| | - Gehong Wei
- 18Northwest A&F University, Yangling, Shaanxi, PR China
| | - Anne Willems
- 19Department Biochemistry and Microbiology, Lab. Microbiology, Ghent University, Belgium
| | - Jerri Zilli
- 20Embrapa Agrobiologia, BR 465 km 07, Seropédica, Rio de Janeiro, Brazil, 23891-000, Brazil
| | - Peter Young
- 21Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
14
|
Su X, Shi Y, Li R, Lu ZN, Zou X, Wu JX, Han ZG. Application of qPCR assays based on haloacids transporter gene dehp2 for discrimination of Burkholderia and Paraburkholderia. BMC Microbiol 2019; 19:36. [PMID: 30744555 PMCID: PMC6371555 DOI: 10.1186/s12866-019-1411-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/31/2019] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND A major facilitator superfamily transporter Dehp2 was recently shown to be playing an important role in transport and biodegradation of haloacids in Paraburkholderia caribensis MBA4, and Dehp2 is phylogenetically conserved in Burkholderia sensu lato. RESULTS We designed both Burkholderia sensu stricto-specific and Paraburkholderia-specific qPCR assays based on dehp2 and 16S rRNA, and validated the qPCR assays in 12 bacterial strains. The qPCR assays could detect single species of Burkholderia sensu stricto or Paraburkholderia with high sensitivity and discriminate them in mixtures with high specificity over a wide dynamic range of relative concentrations. At relatively lower cost compared with sequencing-based approach, the qPCR assays will facilitate discrimination of Burkholderia sensu stricto and Paraburkholderia in a large number of samples. CONCLUSIONS For the first time, we report the utilization of a haloacids transporter gene for discriminative purpose in Burkholderia sensu lato. This enables not only quick decision on proper handling of putative pathogenic samples in Burkholderia sensu stricto group but also future exploitation of relevant species in Paraburkholderia group for haloacids biodegradation purposes.
Collapse
Affiliation(s)
- Xianbin Su
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Shi
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruihong Li
- Shanghai Quality Safety Centre of Agricultural Products, Shanghai, China
| | - Zhao-Ning Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Zou
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiao-Xiang Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
de Lajudie PM, Young JPW. International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of rhizobia and agrobacteria Minutes of the closed meeting, Granada, 4 September 2017. Int J Syst Evol Microbiol 2018; 68:3363-3368. [DOI: 10.1099/ijsem.0.002974] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
16
|
Grönemeyer JL, Reinhold-Hurek B. Diversity of Bradyrhizobia in Subsahara Africa: A Rich Resource. Front Microbiol 2018; 9:2194. [PMID: 30294308 PMCID: PMC6158577 DOI: 10.3389/fmicb.2018.02194] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/27/2018] [Indexed: 01/08/2023] Open
Abstract
Making use of biological nitrogen fixation (BNF) with pulses and green manure legumes can help to alleviate nitrogen deficiencies and increase soil fertility, problems faced particularly in smallholder agriculture in Subsahara Africa (SSA). The isolation of indigenous rhizobia provides a basis for the formulation of rhizobial inoculants. Moreover, their identification and characterization contribute to the general understanding of species distribution and ecology. Here we discuss global species discovery of Bradyrhizobium spp. Although recently the number of validly published Bradyrhizobium species is rapidly increasing, their diversity in SSA is not well-represented. We summarize the recent knowledge on species diversity in the Bradyrhizobium yuanmingense lineage to which most SSA isolates belong, and their biogeographic distribution and adaptations. Most indigenous rhizobia appear to differ from species found on other continents. We stress that an as yet hidden diversity may be a rich resource for inoculant development in future. As some species are exceptionally temperature tolerant, they may be potential biofertilizer candidates for global warming scenarios.
Collapse
Affiliation(s)
| | - Barbara Reinhold-Hurek
- Department of Microbe-Plant Interactions, Faculty of Biology and Chemistry, Center for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| |
Collapse
|
17
|
Estrada-de Los Santos P, Palmer M, Chávez-Ramírez B, Beukes C, Steenkamp ET, Briscoe L, Khan N, Maluk M, Lafos M, Humm E, Arrabit M, Crook M, Gross E, Simon MF, Dos Reis Junior FB, Whitman WB, Shapiro N, Poole PS, Hirsch AM, Venter SN, James EK. Whole Genome Analyses Suggests that Burkholderia sensu lato Contains Two Additional Novel Genera ( Mycetohabitans gen. nov., and Trinickia gen. nov.): Implications for the Evolution of Diazotrophy and Nodulation in the Burkholderiaceae. Genes (Basel) 2018; 9:genes9080389. [PMID: 30071618 PMCID: PMC6116057 DOI: 10.3390/genes9080389] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 11/21/2022] Open
Abstract
Burkholderia sensu lato is a large and complex group, containing pathogenic, phytopathogenic, symbiotic and non-symbiotic strains from a very wide range of environmental (soil, water, plants, fungi) and clinical (animal, human) habitats. Its taxonomy has been evaluated several times through the analysis of 16S rRNA sequences, concantenated 4–7 housekeeping gene sequences, and lately by genome sequences. Currently, the division of this group into Burkholderia, Caballeronia, Paraburkholderia, and Robbsia is strongly supported by genome analysis. These new genera broadly correspond to the various habitats/lifestyles of Burkholderia s.l., e.g., all the plant beneficial and environmental (PBE) strains are included in Paraburkholderia (which also includes all the N2-fixing legume symbionts) and Caballeronia, while most of the human and animal pathogens are retained in Burkholderia sensu stricto. However, none of these genera can accommodate two important groups of species. One of these includes the closely related Paraburkholderia rhizoxinica and Paraburkholderia endofungorum, which are both symbionts of the fungal phytopathogen Rhizopus microsporus. The second group comprises the Mimosa-nodulating bacterium Paraburkholderia symbiotica, the phytopathogen Paraburkholderia caryophylli, and the soil bacteria Burkholderia dabaoshanensis and Paraburkholderia soli. In order to clarify their positions within Burkholderia sensu lato, a phylogenomic approach based on a maximum likelihood analysis of conserved genes from more than 100 Burkholderia sensu lato species was carried out. Additionally, the average nucleotide identity (ANI) and amino acid identity (AAI) were calculated. The data strongly supported the existence of two distinct and unique clades, which in fact sustain the description of two novel genera Mycetohabitans gen. nov. and Trinickia gen. nov. The newly proposed combinations are Mycetohabitans endofungorum comb. nov., Mycetohabitansrhizoxinica comb. nov., Trinickia caryophylli comb. nov., Trinickiadabaoshanensis comb. nov., Trinickia soli comb. nov., and Trinickiasymbiotica comb. nov. Given that the division between the genera that comprise Burkholderia s.l. in terms of their lifestyles is often complex, differential characteristics of the genomes of these new combinations were investigated. In addition, two important lifestyle-determining traits—diazotrophy and/or symbiotic nodulation, and pathogenesis—were analyzed in depth i.e., the phylogenetic positions of nitrogen fixation and nodulation genes in Trinickia via-à-vis other Burkholderiaceae were determined, and the possibility of pathogenesis in Mycetohabitans and Trinickia was tested by performing infection experiments on plants and the nematode Caenorhabditis elegans. It is concluded that (1) T. symbiotica nif and nod genes fit within the wider Mimosa-nodulating Burkholderiaceae but appear in separate clades and that T. caryophyllinif genes are basal to the free-living Burkholderia s.l. strains, while with regard to pathogenesis (2) none of the Mycetohabitans and Trinickia strains tested are likely to be pathogenic, except for the known phytopathogen T. caryophylli.
Collapse
Affiliation(s)
| | - Marike Palmer
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0083, South Africa.
| | - Belén Chávez-Ramírez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, 11340 Cd. de Mexico, Mexico.
| | - Chrizelle Beukes
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0083, South Africa.
| | - Emma T Steenkamp
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0083, South Africa.
| | - Leah Briscoe
- Department of Molecular, Cell, and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
| | - Noor Khan
- Department of Molecular, Cell, and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
| | - Marta Maluk
- The James Hutton Institute, Dundee DD2 5DA, UK.
| | | | - Ethan Humm
- Department of Molecular, Cell, and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
| | - Monique Arrabit
- Department of Molecular, Cell, and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
| | - Matthew Crook
- 450G Tracy Hall Science Building, Weber State University, Ogden, 84403 UT, USA.
| | - Eduardo Gross
- Center for Electron Microscopy, Department of Agricultural and Environmental Sciences, Santa Cruz State University, 45662-900 Ilheus, BA, Brazil.
| | - Marcelo F Simon
- Embrapa CENARGEN, 70770-917 Brasilia, Distrito Federal, Brazil.
| | | | - William B Whitman
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| | - Nicole Shapiro
- DOE Joint Genome Institute, Walnut Creek, CA 94598, USA.
| | - Philip S Poole
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| | - Ann M Hirsch
- Department of Molecular, Cell, and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
| | - Stephanus N Venter
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0083, South Africa.
| | | |
Collapse
|
18
|
Draghi WO, Degrossi J, Bialer M, Brelles-Mariño G, Abdian P, Soler-Bistué A, Wall L, Zorreguieta A. Biodiversity of cultivable Burkholderia species in Argentinean soils under no-till agricultural practices. PLoS One 2018; 13:e0200651. [PMID: 30001428 PMCID: PMC6042781 DOI: 10.1371/journal.pone.0200651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/29/2018] [Indexed: 11/19/2022] Open
Abstract
No-tillage crop production has revolutionized the agriculture worldwide. In our country more than 30 Mha are currently cultivated under no-till schemes, stressing the importance of this management system for crop production. It is widely recognized that soil microbiota is altered under different soil managements. In this regard the structure of Burkholderia populations is affected by soils management practices such as tillage, fertilization, or crop rotation. The stability of these structures, however, has not been evaluated under sustainable schemes where the impact of land practices could be less deleterious to physicochemical soils characteristics. In order to assess the structure of Burkholderia spp. populations in no-till schemes, culturable Burkholderia spp. strains were quantified and their biodiversity evaluated. Results showed that Burkholderia spp. biodiversity, but not their abundance, clearly displayed a dependence on agricultural managements. We also showed that biodiversity was mainly influenced by two soil factors: Total Organic Carbon and Total Nitrogen. Results showed that no-till schemes are not per se sufficient to maintain a richer Burkholderia spp. soil microbiota, and additional traits should be considered when sustainability of productive soils is a goal to fulfil productive agricultural schemes.
Collapse
Affiliation(s)
- Walter Omar Draghi
- Fundación Instituto Leloir, IIBBA CONICET, Buenos Aires, Argentina
- Instituto de Biotecnología y Biología Molecular–CCT La Plata CONICET, Universidad Nacional de La Plata, La Plata, Argentina
- * E-mail: (AZ); (WOD)
| | - Jose Degrossi
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Magalí Bialer
- Fundación Instituto Leloir, IIBBA CONICET, Buenos Aires, Argentina
| | - Graciela Brelles-Mariño
- Center for Research and Development of Industrial Fermentations, (CINDEFI, CCT-LA PLATA-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Patricia Abdian
- Fundación Instituto Leloir, IIBBA CONICET, Buenos Aires, Argentina
| | | | - Luis Wall
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Angeles Zorreguieta
- Fundación Instituto Leloir, IIBBA CONICET, Buenos Aires, Argentina
- * E-mail: (AZ); (WOD)
| |
Collapse
|
19
|
Dijkshoorn L. International Committee on Systematics of Prokaryotes. Minutes of the meetings, 7, 8 and 9 July 2017, Valencia, Spain. Int J Syst Evol Microbiol 2018; 68:2104-2110. [PMID: 29688168 DOI: 10.1099/ijsem.0.002787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- L Dijkshoorn
- Department of Infectious Diseases C5-P, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
20
|
[The controversial Burkholderia cepacia complex, a group of plant growth promoting species and plant, animals and human pathogens]. Rev Argent Microbiol 2018; 51:84-92. [PMID: 29691107 DOI: 10.1016/j.ram.2018.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 10/10/2017] [Accepted: 01/03/2018] [Indexed: 11/22/2022] Open
Abstract
The Burkholderia cepacia complex is a group of 22 species, which are known as opportunistic pathogens in immunocompromised people, especially those suffering from cystic fibrosis. It is also found in nosocomial infections and is difficult to eradicate due to intrinsic resistance to several antibiotics. The species have large genomes (up to 9 Mbp), distributed into 2-5 replicons. These features significantly contribute to genome plasticity, which makes them thrive in different environments like soil, water, plants or even producing nodules in legume plants. Some B. cepacia complex species are beneficial in bioremediation, biocontrol and plant-growth promotion. However, because the B. cepacia complex is involved in human infection, its use in agriculture is restricted. B. cepacia complex is being constantly studied due to the health problems that it causes and because of its agricultural potential. In this review, the history of B. cepacia complex and the most recently published information related to this complex are revised.
Collapse
|
21
|
Niche Construction and Exploitation by Agrobacterium: How to Survive and Face Competition in Soil and Plant Habitats. Curr Top Microbiol Immunol 2018; 418:55-86. [PMID: 29556826 DOI: 10.1007/82_2018_83] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Agrobacterium populations live in different habitats (bare soil, rhizosphere, host plants), and hence face different environmental constraints. They have evolved the capacity to exploit diverse resources and to escape plant defense and competition from other microbiota. By modifying the genome of their host, Agrobacterium populations exhibit the remarkable ability to construct and exploit the ecological niche of the plant tumors that they incite. This niche is characterized by the accumulation of specific, low molecular weight compounds termed opines that play a critical role in Agrobacterium 's lifestyle. We present and discuss the functions, advantages, and costs associated with this niche construction and exploitation.
Collapse
|
22
|
Draft genome of Paraburkholderia caballeronis TNe-841 T, a free-living, nitrogen-fixing, tomato plant-associated bacterium. Stand Genomic Sci 2017; 12:80. [PMID: 29255574 PMCID: PMC5732367 DOI: 10.1186/s40793-017-0294-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/05/2017] [Indexed: 11/16/2022] Open
Abstract
10.1601/nm.26956
caballeronis is a plant-associated bacterium. Strain TNe-841T was isolated from the rhizosphere of tomato (Solanum lycopersicum L. var. lycopersicum) growing in Nepantla Mexico State. Initially this bacterium was found to effectively nodulate Phaseolus vulgaris L. However, from an analysis of the genome of strain TNe-841T and from repeat inoculation experiments, we found that this strain did not nodulate bean and also lacked nodulation genes, suggesting that the genes were lost. The genome consists of 7,115,141 bp with a G + C content of 67.01%. The sequence includes 6251 protein-coding genes and 87 RNA genes.
Collapse
|