1
|
Reigel AM, Easson CG, Fiore CL, Apprill A. Sponge exhalent metabolites influence coral reef picoplankton dynamics. Sci Rep 2024; 14:31394. [PMID: 39733106 PMCID: PMC11682114 DOI: 10.1038/s41598-024-82995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024] Open
Abstract
Coral reef sponges efficiently take up particulate and dissolved organic matter (DOM) from the water column and release compounds such as nucleosides, amino acids, and other dissolved metabolites to the surrounding reef via their exhalent seawater, but the influence of this process on reef picoplankton and nutrient processing is relatively unexplored. Here we examined the impact of sponge exhalent on the reef picoplankon community and subsequent alterations to the reef dissolved metabolite pool. We exposed reef picoplankton communities to a sponge exhalent water mixture (Niphates digitalis and Xestospongia muta) or filtered reef seawater (control) in closed, container-based dark incubations. We used 16S rRNA gene sequencing and flow cytometry-based cell counts to examine the picoplankton community and metabolomics and other analyses to examine the dissolved metabolite pool. The initial sponge exhalent was enriched in adenosine, inosine, chorismate, humic-like and amino acid-like components, and ammonium. Following 48 h of exposure to sponge exhalent, the picoplankton differed in composition, were reduced in diversity, showed doubled (or higher) growth efficiencies, and harbored increased copiotrophic and denitrifying taxa (Marinomonas, Pontibacterium, Aliiroseovarius) compared to control, reef-water based incubations. Alongside these picoplankton alterations, the sponge treatments, relative to seawater controls, had decreased adenosine, inosine, tryptophan, and ammonium, metabolites that may support the observed higher picoplankton growth efficiencies. Sponge treatments also had a net increase in several monosaccharides and other metabolites including anthranilate, riboflavin, nitrite, and nitrate. Our work demonstrates a link between sponge exhalent-associated metabolites and the picoplankton community, with exhalent water supporting an increased abundance of efficient, copiotrophic taxa that catabolize complex nutrients. The copiotrophic taxa were often different from those observed in previous algae and coral studies. These results have implications for better understanding the multifaceted role of sponges on picoplankton biomass with subsequent potential impacts to coral and other planktonic feeders in oligotrophic reef environments.
Collapse
Affiliation(s)
- Alicia M Reigel
- Department of Biology, Appalachian State University, Boone, USA.
- Biology Department, Washington and Lee University, Lexington, VA, 24450, USA.
| | - Cole G Easson
- Department of Biology, Middle Tennessee State University, Murfreesboro, USA
| | - Cara L Fiore
- Department of Biology, Appalachian State University, Boone, USA
| | - Amy Apprill
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Falmouth, USA
| |
Collapse
|
2
|
Chen RY, Chen RJ, Lu DC, Gong Y, Du ZJ. Pontibacterium sinense sp. nov., a nitrate-reducing and thiosulphate-oxidizing bacterium, isolated from coastal sediment. Int J Syst Evol Microbiol 2023; 73. [PMID: 37610813 DOI: 10.1099/ijsem.0.006018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
A novel bacterial strain, N1Y112T, was isolated from coastal sediment collected in Weihai, PR China. This Gram-stain-negative, facultatively anaerobic, motile rod-shaped bacterium exhibited the ability to oxidize thiosulphate to sulphate and reduce nitrate to ammonia through its Sox system and nitrate reduction pathway, respectively. The strain grew at 20-35 °C (optimum, 28 °C), pH 6.0-10.0 (optimum, pH 7.5) and in the presence of 1.0-5.0 % (w/v) NaCl (optimum, 3.0 %). Major fatty acids present in the strain included summed feature 8 (comprising C18 : 1 ω7c and/or C18 : 1 ω6c), summed feature 3 (comprising C16 : 1 ω7c and/or C16 : 1 ω6c) and C16 : 0. Its polar lipid profile consisted of one phosphatidylethanolamine, two unknown aminolipids, one aminophosphoglycolipid, one diphosphatidylglycerol, one phosphatidylglycerol, two unknown phospholipids and two unknown lipids. Strain N1Y112T contained ubiquinone-7 and ubiquinone-8 as isoprenoid quinones, with a genomic G+C content of 50.6 mol%. Based on phylogenetic analysis, strain N1Y112T clustered with Pontibacterium granulatum JCM 30316T being its closest relative at 97.1 % 16S rRNA gene sequence similarity. The average nucleotide identity and digital DNA-DNA hybridization values were 77.1 and 20.7 %, respectively, which suggest significant differences between genomes of N1Y112T and P. granulatum JCM 30316T. Based on the findings from its phenotypic, genotypic and phylogenetic analyses, N1Y112T is considered to represent a novel species of the genus Pontibacterium, for which the name Pontibacterium sinense sp. nov. is proposed. The type strain is N1Y112T (=KCTC 72927T=MCCC 1H00429T).
Collapse
Affiliation(s)
- Rui-Ying Chen
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
| | - Rui-Jie Chen
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
| | - De-Chen Lu
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
| | - Ya Gong
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
- WeiHai Research Institute of Industrial Technology of Shandong University, Weihai, Shandong, 264209, PR China
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
- WeiHai Research Institute of Industrial Technology of Shandong University, Weihai, Shandong, 264209, PR China
| |
Collapse
|
3
|
Chen H, Dai J, Yu P, Wang X, Wang J, Li Y, Wang S, Li S, Qiu D. Parathalassolituus penaei gen. nov., sp. nov., a novel member of the family Oceanospirillaceae isolated from a coastal shrimp pond in Guangxi, PR China. Int J Syst Evol Microbiol 2023; 73. [PMID: 37185048 DOI: 10.1099/ijsem.0.005867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
A Gram-stain-negative, strictly aerobic, rod-shaped and motile bacterium with bipolar flagella, designated G-43T, was isolated from a surface seawater sample collected from an aquaculture in Guangxi, PR China. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain G-43T was most closely related to the family Oceanospirillaceae and distantly to the most closely related genera Venatorbacter and Thalassolituus (95.52 % and 94.45-94.76 % 16S rRNA gene sequence similarity, respectively), while similarity values to other Oceanospirillaceae type strains were lower than 94.0 %. Strain G-43T was found to grow at 4-30 °C (optimum, 25-28 °C), pH 6-9.0 (optimum, pH 7.0) and with 0-4.0 % NaCl (w/v; optimum at 2 % NaCl). Chemotaxonomic analysis of strain G-43T indicated that the sole respiratory quinone was ubiquinone-8, the predominant cellular fatty acids were C16 : 0, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), and the major polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, aminolipid, diphosphatidylglycerol, phospholipids and an unidentified lipid. The G+C content of the genomic DNA was 55.4 mol%. The phylogenetic, genotypic, phenotypic and chemotaxonomic data demonstrate that strain G-43T represents a novel species in a novel genus within the family Oceanospirillaceae, for which the name Parathalassolituus penaei gen. nov., sp. nov. is proposed. Strain G-43T (=KCTC 72750T= CCTCC AB 2022321T) is the type and only strain of Parathalassolituus penaei.
Collapse
Affiliation(s)
- Han Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
- Jingchu University of Technology, Jingmen, 448000, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jingcheng Dai
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Ping Yu
- Sinochem Zhuhai Petrochemical Terminal Co. Ltd., Zhuhai, 519050, PR China
| | - Xin Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jing Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yan Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
- China University of Geosciences (CUG), Wuhan, 430074, PR China
| | - Shanhui Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuyang Li
- Wuhan Ammunition Life-tech Co. Ltd., Wuhan, 430000, PR China
| | - Dongru Qiu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| |
Collapse
|
4
|
Yamano R, Yu J, Jiang C, Harjuno Condro Haditomo A, Mino S, Sakai Y, Sawabe T. Taxonomic revision of the genus Amphritea supported by genomic and in silico chemotaxonomic analyses, and the proposal of Aliamphritea gen. nov. PLoS One 2022; 17:e0271174. [PMID: 35947547 PMCID: PMC9365125 DOI: 10.1371/journal.pone.0271174] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
A Gram-staining-negative, aerobic bacterium, designated strain PT3T was isolated from laboratory-reared larvae of the Japanese sea cucumber Apostichopus japonicus. Phylogenetic analysis based on the 16S rRNA gene nucleotide sequences revealed that PT3T was closely related to Amphritea ceti RA1T (= KCTC 42154T = NBRC 110551T) and Amphritea spongicola MEBiC05461T (= KCCM 42943T = JCM 16668T) both with 98.3% sequence similarity, however, average nucleotide identity (ANI) and in silico DNA-DNA hybridization (in silico DDH) values among these three strains were below 95% and 70%, respectively, confirming the novelty of PT3T. Furthermore, the average amino acid identity (AAI) values of PT3T against other Amphritea species were on the reported genus delineation boundary (64-67%). Multilocus sequence analysis using four protein-coding genes (recA, mreB, rpoA, and topA) further demonstrated that PT3T, Amphritea ceti and Amphritea spongicola formed a monophyletic clade clearly separate from other members of the genus Amphritea. Three strains (PT3T, A. ceti KCTC 42154T and A. spongicola JCM 16668T) also showed higher similarities in their core genomes compared to those of the other Amphritea spp. Based on the genome-based taxonomic approach, Aliamphritea gen. nov. was proposed together with the reclassification of the genus Amphritea and Aliamphritea ceti comb. nov. (type strain RA1T = KCTC 42154T = NBRC 110551T), Aliamphritea spongicola comb. nov. (type strain MEBiC05461T = KCCM 42943T = JCM 16668T), and Aliamphritea hakodatensis sp. nov. (type strain PT3T = JCM 34607T = KCTC 82591T) were suggested.
Collapse
Affiliation(s)
- Ryota Yamano
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Juanwen Yu
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Chunqi Jiang
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Alfabetian Harjuno Condro Haditomo
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
- Aquaculture Department, Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Yuichi Sakai
- Hakodate Fisheries Research, Hokkaido Research Organization, Local Independent Administrative Agency, Hakodate, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| |
Collapse
|
5
|
Park YJ, Jeong SE, Jung HS, Park SY, Jeon CO. Nocardioides currus sp. nov., isolated from a mobile car air-conditioning system. Int J Syst Evol Microbiol 2018; 68:2977-2982. [DOI: 10.1099/ijsem.0.002933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yu Jin Park
- 1Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sang Eun Jeong
- 1Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hye Su Jung
- 1Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - So Yoon Park
- 2Research & Development Division, Hyundai Motor Group, Gyeonggi 18280, Republic of Korea
| | - Che Ok Jeon
- 1Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|