1
|
Ku JE, Llanes A, Guizado-Batista F, Hernández-Ricord E, Ramírez-Casanova A, Mislov-Vallarino P, Prescilla-Ledezma A, Torrales N, Acosta F, Goodridge A, Ortiz de Moreno N. Whole genome sequence data of Mycolicibacterium parafortuitum Panama NTM 1 from a dairy farm in Panama. Data Brief 2025; 59:111368. [PMID: 40051420 PMCID: PMC11883384 DOI: 10.1016/j.dib.2025.111368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 03/09/2025] Open
Abstract
We report the whole genome sequence of Mycolicibacterium parafortuitum strain Panama NTM1, isolated from cattle feces at a dairy farm in Panama (8°08'18.1″N and 80°54'00.1″W). DNA was extracted from a pure culture of this isolate and whole-genome sequencing was performed using the Illumina MiSeqⓇ platform. After de novo assembly, the genome has a total size of 5.92 Mbp, a GC content of 68.4 %, and 5545 annotated genes. The raw read files and genome have been deposited in the NCBI database under BioProject number PRJNA1113557.
Collapse
Affiliation(s)
- Johanna Elizabeth Ku
- Centro de Biología Molecular y Celular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Ciudad del Saber, Panama
| | - Alejandro Llanes
- Centro de Biología Molecular y Celular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Ciudad del Saber, Panama
| | | | | | | | - Pave Mislov-Vallarino
- Universidad de Panamá, Facultad de Medicina, Departamento de Microbiología Humana, Panama
| | - Alexa Prescilla-Ledezma
- Universidad de Panamá, Facultad de Medicina, Departamento de Microbiología Humana, Panama
- Rochem Biocare de Panamá, S.A., Panama
| | | | - Fermín Acosta
- Centro de Biología Molecular y Celular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Ciudad del Saber, Panama
| | - Amador Goodridge
- Centro de Biología Molecular y Celular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Ciudad del Saber, Panama
| | - Nora Ortiz de Moreno
- Universidad de Panamá, Facultad de Medicina, Departamento de Microbiología Humana, Panama
| |
Collapse
|
2
|
Bertazzoli G, Nerva L, Chitarra W, Fracchetti F, Campedelli I, Moffa L, Sandrini M, Nardi T. A polyphasic molecular approach to characterize a collection of grapevine endophytic bacteria with bioprotective potential. J Appl Microbiol 2024; 135:lxae050. [PMID: 38419289 DOI: 10.1093/jambio/lxae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/02/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
AIMS The work presented here was conducted to characterize the biodiversity of a collection of bacterial isolates, mainly wood endophytes, as part of a research project focused on exploring their bioprotective potential for postharvest biological control of fruits. METHODS AND RESULTS This work was the basis for the development of a tailored method combining 16S rDNA sequencing and Rep-PCR to differentiate the isolates and identify them to genus level or below. More than one hundred isolates obtained from wood and roots of different grapevine genotypes were cultured on appropriate growth media and then subjected to the specified multistep molecular identification. CONCLUSIONS We have obtained good dereplication for grapevine-endophytic bacteria, together with reliable genetic identification. Both are essential prerequisites to properly characterize a biome bank and, at the same time, beneficial prerequisites to subsequently perform a correct bioprotection assessment.
Collapse
Affiliation(s)
- Giulia Bertazzoli
- CREA - Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Conegliano (TV) 31015, Italy
- Microbion Srl, San Giovanni Lupatoto (VR) 37057, Italy
| | - Luca Nerva
- CREA - Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Conegliano (TV) 31015, Italy
- CNR, Institute for Sustainable Plant Protection, Torino 10135, Italy
| | - Walter Chitarra
- CREA - Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Conegliano (TV) 31015, Italy
- CNR, Institute for Sustainable Plant Protection, Torino 10135, Italy
| | | | | | - Loredana Moffa
- CREA - Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Conegliano (TV) 31015, Italy
| | - Marco Sandrini
- CREA - Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Conegliano (TV) 31015, Italy
| | - Tiziana Nardi
- CREA - Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Conegliano (TV) 31015, Italy
| |
Collapse
|
3
|
Orgeur M, Sous C, Madacki J, Brosch R. Evolution and emergence of Mycobacterium tuberculosis. FEMS Microbiol Rev 2024; 48:fuae006. [PMID: 38365982 PMCID: PMC10906988 DOI: 10.1093/femsre/fuae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/12/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Tuberculosis (TB) remains one of the deadliest infectious diseases in human history, prevailing even in the 21st century. The causative agents of TB are represented by a group of closely related bacteria belonging to the Mycobacterium tuberculosis complex (MTBC), which can be subdivided into several lineages of human- and animal-adapted strains, thought to have shared a last common ancestor emerged by clonal expansion from a pool of recombinogenic Mycobacterium canettii-like tubercle bacilli. A better understanding of how MTBC populations evolved from less virulent mycobacteria may allow for discovering improved TB control strategies and future epidemiologic trends. In this review, we highlight new insights into the evolution of mycobacteria at the genus level, describing different milestones in the evolution of mycobacteria, with a focus on the genomic events that have likely enabled the emergence and the dominance of the MTBC. We also review the recent literature describing the various MTBC lineages and highlight their particularities and differences with a focus on host preferences and geographic distribution. Finally, we discuss on putative mechanisms driving the evolution of tubercle bacilli and mycobacteria in general, by taking the mycobacteria-specific distributive conjugal transfer as an example.
Collapse
Affiliation(s)
- Mickael Orgeur
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, 75015 Paris, France
| | - Camille Sous
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, 75015 Paris, France
| | - Jan Madacki
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 2000, Unit for Human Evolutionary Genetics, 75015 Paris, France
| | - Roland Brosch
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, 75015 Paris, France
| |
Collapse
|
4
|
Dawrs SN, Virdi R, Islam MN, Hasan NA, Norton GJ, Crooks JL, Parr J, Heinz D, Cool CD, Belisle JT, Chan ED, Honda JR. Immunological and metabolic characterization of environmental Mycobacterium chimaera infection in a murine model. Microbes Infect 2023; 25:105184. [PMID: 37453489 DOI: 10.1016/j.micinf.2023.105184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/22/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Mycobacterium chimaera causes pulmonary disease, but little is known of gradations in isolate virulence. Previously, 17 M. chimaera isolates were screened for survival in THP1 macrophages. "M. chimaera 1" was categorized as "more virulent" because it showed the greatest survival in macrophages, whereas "M. chimaera 2" was categorized as "less virulent" with reduced survival. Herein, we infected C3HeB/FeJ mice to compare the in vivo immune responses to M. chimaera 1 and 2. Unlike macrophages, significantly lower M. chimaera 1 counts were recovered from mouse lung tissue and BAL cells with less lung histopathologic changes compared to M. chimaera 2. Compared to M. chimaera 2, significantly more IL-1β, IL-6, and TNFα was produced early after M. chimaera 1 infection. LC-MS metabolomics analyses of BAL fluid revealed divergence in sphingolipid, phospholipid metabolism between M. chimaera 1 versus M. chimaera 2 mice. From pan-GWAS analyses, virulence and organizing DNA/molecular structure genes were associated with more virulent M. chimaera isolates. Vigorous lung-specific immune responses to M. chimaera 1 may influence effective bacterial control, but for a different isolate M. chimaera 2, subvert immune control. Continued studies of the gradations in virulence among the same NTM species will advance our understanding of NTM pathogenesis.
Collapse
Affiliation(s)
- Stephanie N Dawrs
- Center for Genes, Environment, and Health, National Jewish Health, CO, United States.
| | - Ravleen Virdi
- Center for Genes, Environment, and Health, National Jewish Health, CO, United States.
| | - M Nurul Islam
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Nabeeh A Hasan
- Center for Genes, Environment, and Health, National Jewish Health, CO, United States
| | - Grant J Norton
- Center for Genes, Environment, and Health, National Jewish Health, CO, United States.
| | - James L Crooks
- Division of Biostatistics and Bioinformatics, National Jewish Health, Colorado, United States; Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, United States
| | - Jane Parr
- Division of Pathology and Department of Medicine, National Jewish Health, CO, United States
| | - David Heinz
- Division of Pathology and Department of Medicine, National Jewish Health, CO, United States
| | - Carlyne D Cool
- Division of Pathology and Department of Medicine, National Jewish Health, CO, United States; Department of Pathology, University of Colorado Anschutz Medical Campus, CO, United States
| | - John T Belisle
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Edward D Chan
- Department of Medicine and Academic Affairs, National Jewish Health, Denver, CO, United States; Division of Pulmonary Science and Critical Care Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States; Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Denver, CO, United States
| | - Jennifer R Honda
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas Health Science Center at Tyler, TX, United States.
| |
Collapse
|
5
|
Val-Calvo J, Vázquez-Boland JA. Mycobacteriales taxonomy using network analysis-aided, context-uniform phylogenomic approach for non-subjective genus demarcation. mBio 2023; 14:e0220723. [PMID: 37796005 PMCID: PMC10653829 DOI: 10.1128/mbio.02207-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE A robust taxonomy is essential for the organized study of prokaryotes and the effective communication of microbial knowledge. The genus rank is the mainstay of biological classification as it brings together under a common name a group of closely related organisms sharing the same recent ancestry and similar characteristics. Despite the unprecedented resolution afforded by whole-genome sequencing in defining evolutionary relationships, a consensus approach for phylogenomics-based prokaryotic genus delineation remains elusive. Taxonomists use different demarcation criteria, sometimes leading to genus rank over-splitting and the creation of multiple new genera. This work reports a simple, reliable, and standardizable method that seeks to minimize subjectivity in genomics-based demarcation of prokaryotic genera, exemplified through application to the order Mycobacteriales. Formal descriptions of proposed taxonomic changes based on our study are included.
Collapse
Affiliation(s)
- Jorge Val-Calvo
- Microbial Pathogenesis Laboratory, Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - José A. Vázquez-Boland
- Microbial Pathogenesis Laboratory, Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
6
|
Ruedas-López A, Tato M, Broncano-Lavado A, Esteban J, Ruiz-Serrano MJ, Sánchez-Cueto M, Toro C, Domingo D, Cacho J, Barrado L, López-Roa P. Subspecies Distribution and Antimicrobial Susceptibility Testing of Mycobacterium abscessus Clinical Isolates in Madrid, Spain: a Retrospective Multicenter Study. Microbiol Spectr 2023; 11:e0504122. [PMID: 37212700 PMCID: PMC10269645 DOI: 10.1128/spectrum.05041-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/12/2023] [Indexed: 05/23/2023] Open
Abstract
Mycobacterium abscessus (MABS) is the most pathogenic and drug-resistant rapidly growing mycobacteria. However, studies on MABS epidemiology, especially those focusing on subspecies level, are scarce. We aimed to determine MABS subspecies distribution and its correlation with phenotypic and genotypic antibiotic profiles. A retrospective multicenter study of 96 clinical MABS isolates in Madrid between 2016 to 2021 was conducted. Identification at the subspecies level and resistance to macrolides and aminoglycosides were performed by the GenoType NTM-DR assay. The MICs of 11 antimicrobials tested against MABS isolates were determined using the broth microdilution method (RAPMYCOI Sensititer titration plates). Clinical isolates included 50 (52.1%) MABS subsp. abscessus; 33 (34.4%) MABS subsp. massiliense; and 13 (13.5%) MABS subsp. bolletii. The lowest resistance rates corresponded to amikacin (2.1%), linezolid (6.3%), cefoxitin (7.3%), and imipenem (14.6%), and the highest to doxycycline (100.0%), ciprofloxacin (89.6%), moxifloxacin (82.3%), cotrimoxazole (82.3%), tobramycin (81.3%), and clarithromycin (50.0% at day 14 of incubation). Regarding tigecycline, although there are no susceptibility breakpoints, all strains but one showed MICs ≤ 1 μg/mL. Four isolates harbored mutations at positions 2058/9 of the rrl gene, one strain harbored a mutation at position 1408 of the rrl gene, and 18/50 harbored the T28C substitution at erm(41) gene. Agreement of the GenoType results with clarithromycin and amikacin susceptibility testing was 99.0% (95/96). The rate of MABS isolates showed an upward trend during the study period, being M. abscessus subsp. abscessus the most frequently isolated subspecies. Amikacin, cefoxitin, linezolid, and imipenem showed great in vitro activity. The GenoType NTM-DR assay provides a reliable and complementary tool to broth microdilution for drug resistance detection. IMPORTANCE Infections caused by Mycobacterium abscessus (MABS) are increasingly being reported worldwide. Identifying MABS subspecies and assessing their phenotypic resistance profiles are crucial for optimal management and better patient outcomes. M. abscessus subspecies differ in erm(41) gene functionality, which is a critical determinant of macrolide resistance. Additionally, resistance profiles of MABS and the subspecies distribution can vary geographically, highlighting the importance of understanding local epidemiology and resistance patterns. This study provides valuable insights into the epidemiology and resistance patterns of MABS and its subspecies in Madrid. Elevated resistance rates were observed for several recommended antimicrobials, emphasizing the need for cautious drug use. Furthermore, we assessed the GenoType NTM-DR assay, which examines principal mutations in macrolides and aminoglycosides resistance-related genes. We observed a high level of agreement between the GenoType NTM-DR assay and the microdilution method, indicating its usefulness as an initial tool for early initiation of appropriate therapy.
Collapse
Affiliation(s)
- Alba Ruedas-López
- Clinical Microbiology and Parasitology Department, Instituto de Investigación, Hospital Universitario, Madrid, Spain.
| | - Marta Tato
- Clinical Microbiology and Parasitology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Antonio Broncano-Lavado
- Clinical Microbiology and Parasitology Department, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Jaime Esteban
- Clinical Microbiology and Parasitology Department, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades infecciosas CIBERINFEC, Spain
| | - María Jesús Ruiz-Serrano
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
- Clinical Microbiology and Infectious Diseases, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM) Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias- CIBERES (CB06/06/0058), Madrid, Spain
| | - María Sánchez-Cueto
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
- Clinical Microbiology and Infectious Diseases, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM) Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias- CIBERES (CB06/06/0058), Madrid, Spain
| | - Carlos Toro
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz, Madrid, Spain
| | - Diego Domingo
- Clinical Microbiology and Parasitology Department, Hospital Universitario de La Princesa, Madrid, Spain
| | - Juana Cacho
- Clinical Microbiology and Parasitology Department, Hospital Universitario de Getafe, Madrid, Spain
| | - Laura Barrado
- Clinical Microbiology and Parasitology Department, Hospital Universitario de Móstoles, Madrid, Spain
| | - Paula López-Roa
- Clinical Microbiology and Parasitology Department, Instituto de Investigación, Hospital Universitario, Madrid, Spain.
| |
Collapse
|
7
|
Nunes VO, Vanzellotti NDC, Fraga JL, Pessoa FLP, Ferreira TF, Amaral PFF. Biotransformation of Phytosterols into Androstenedione—A Technological Prospecting Study. Molecules 2022; 27:molecules27103164. [PMID: 35630641 PMCID: PMC9147728 DOI: 10.3390/molecules27103164] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023] Open
Abstract
Androstenedione (AD) is a key intermediate in the body’s steroid metabolism, used as a precursor for several steroid substances, such as testosterone, estradiol, ethinyl estradiol, testolactone, progesterone, cortisone, cortisol, prednisone, and prednisolone. The world market for AD and ADD (androstadienedione) exceeds 1000 tons per year, which stimulates the pharmaceutical industry’s search for newer and cheaper raw materials to produce steroidal compounds. In light of this interest, we aimed to investigate the progress of AD biosynthesis from phytosterols by prospecting scientific articles (Scopus, Web of Science, and Google Scholar databases) and patents (USPTO database). A wide variety of articles and patents involving AD and phytosterol were found in the last few decades, resulting in 108 relevant articles (from January 2000 to December 2021) and 23 patents of interest (from January 1976 to December 2021). The separation of these documents into macro, meso, and micro categories revealed that most studies (articles) are performed in China (54.8%) and in universities (76%), while patents are mostly granted to United States companies. It also highlights the fact that AD production studies are focused on “process improvement” techniques and on possible modifications of the “microorganism” involved in biosynthesis (64 and 62 documents, respectively). The most-reported “process improvement” technique is “chemical addition” (40%), which means that the addition of solvents, surfactants, cofactors, inducers, ionic liquids, etc., can significantly increase AD production. Microbial genetic modifications stand out in the “microorganism” category because this strategy improves AD yield considerably. These documents also revealed the main aspects of AD and ADD biosynthesis: Mycolicibacterium sp. (basonym: Mycobacterium sp.) (40%) and Mycolicibacterium neoaurum (known previously as Mycobacterium neoaurum) (32%) are the most recurrent species studied. Microbial incubation temperatures can vary from 29 °C to 37 °C; incubation can last from 72 h to 14 days; the mixture is agitated at 140 to 220 rpm; vegetable oils, mainly soybean, can be used as the source of a mixture of phytosterols. In general, the results obtained in the present technological prospecting study are fundamental to mapping the possibilities of AD biosynthesis process optimization, as well as to identifying emerging technologies and methodologies in this scenario.
Collapse
Affiliation(s)
- Victor Oliveira Nunes
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
| | - Nathália de Castro Vanzellotti
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
| | - Jully Lacerda Fraga
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
| | - Fernando Luiz Pellegrini Pessoa
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
- Centro Universitário SENAI CIMATEC, Salvador 41650-010, BA, Brazil
| | - Tatiana Felix Ferreira
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
| | - Priscilla Filomena Fonseca Amaral
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
- Correspondence: ; Tel.: +55-21-3938-7623
| |
Collapse
|
8
|
Mycolicibacterium cell factory for the production of steroid-based drug intermediates. Biotechnol Adv 2021; 53:107860. [PMID: 34710554 DOI: 10.1016/j.biotechadv.2021.107860] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022]
Abstract
Steroid-based drugs have been developed as the second largest medical category in pharmaceutics. The well-established route of steroid industry includes two steps: the conversion of natural products with a steroid framework to steroid-based drug intermediates and the synthesis of varied steroid-based drugs from steroid-based drug intermediates. The biosynthesis of steroid-based drug intermediates from phytosterols by Mycolicibacterium cell factories bypasses the potential undersupply of diosgenin in the traditional steroid chemical industry. Moreover, the biosynthesis route shows advantages on multiple steroid-based drug intermediate products, more ecofriendly processes, and consecutive reactions carried out in one operation step and in one pot. Androsta-4-ene-3,17-dione (AD), androsta-1,4-diene-3,17-dione (ADD) and 9-hydroxyandrostra-4-ene-3,17-dione (9-OH-AD) are the representative steroid-based drug intermediates synthesized by mycolicibacteria. Other steroid metabolites of mycolicibacteria, like 4-androstene-17β-ol-3-one (TS), 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC), 22-hydroxy-23,24-bisnorchol-1,4-diene-3-one (1,4-HBC), 9,22-dihydroxy-23,24-bisnorchol-4-ene-3-one (9-OH-HBC), 3aα-H-4α-(3'-propionic acid)-7aβ-methylhexahydro-1,5-indanedione (HIP) and 3aα-H-4α-(3'-propionic acid)-5α-hydroxy-7aβ-methylhexahydro-1-indanone-δ-lactone (HIL), also show values as steroid-based drug intermediates. To improve the bio-production efficiency of the steroid-based drug intermediates, mycolicibacterial strains and biotransformation processes have been continuously studied in the past decades. Many mycolicibacteria that accumulate steroid drug intermediates have been isolated, and subsequently optimized by conventional mutagenesis and genetic engineering. Especially, with the clarification of the mycolicibacterial steroid metabolic pathway and the developments on gene editing technologies, rational design is becoming an important measure for the construction and optimization of engineered mycolicibacteria strains that produce steroid-based drug intermediates. Hence, by reviewing researches in the past two decades, this article updates the overall process of steroid metabolism in mycolicibacteria and provides comprehensive schemes for the rational construction of mycolicibacterial strains that accumulate steroid-based drug intermediates. In addition, the special strategies for the bioconversion of highly hydrophobic steroid in aqueous media are discussed as well.
Collapse
|
9
|
Golubev SN, Muratova AY, Panchenko LV, Shchyogolev SY, Turkovskaya OV. Mycolicibacterium sp. strain PAM1, an alfalfa rhizosphere dweller, catabolizes PAHs and promotes partner-plant growth. Microbiol Res 2021; 253:126885. [PMID: 34624611 DOI: 10.1016/j.micres.2021.126885] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/10/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023]
Abstract
This research was focused on the isolation and characterization of a PAH-catabolizing mycobacterial strain from the petroleum hydrocarbon-contaminated rhizosphere of alfalfa, as well as on revealing some points of interaction between the microorganism and the plant. Mycolicibacterium sp. PAM1, a pyrene degrader isolated from the niche of interest to us, can catabolize fluoranthene, anthracene, fluorene, and phenanthrene. On the basis of curves of PAM1 growth with different PAHs as the sole carbon sources and on the basis of PAH-degradation rates, we found that pollutant availability to the strain decreased in the sequence phenanthrene > fluorene > fluoranthene ∼ pyrene > anthracene. For each PAH, the catabolic products were identified. PAM1 was found to have the functional genes nidA and nidB. New data modeling the 2D and 3D structures, intrinsic structural disorder, and molecular dynamics of the nidA and nidB gene products were obtained. The identified genes and intermediates of pyrene degradation indicate that PAM1 has a PAH catabolic pathway that is peculiar to known mycobacterial pyrene degraders. PAM1 utilized some components of alfalfa root exudates as nutrients and promoted plant growth. The use of mycobacterial partners of alfalfa is attractive for enhancing the phytoremediation of PAH-contaminated soils.
Collapse
Affiliation(s)
- Sergey N Golubev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russian Federation.
| | - Anna Yu Muratova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russian Federation
| | - Leonid V Panchenko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russian Federation
| | - Sergey Yu Shchyogolev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russian Federation
| | - Olga V Turkovskaya
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russian Federation
| |
Collapse
|
10
|
Yaderets VV, Karpova NV, Stytsenko TS, Andryushina VA, Kurilov DV, Zavarzin IV. Study of biotransformation of cholesterol 3β-methyl ether by mycobacteria Mycobacterium sp. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Virdi R, Lowe ME, Norton GJ, Dawrs SN, Hasan NA, Epperson LE, Glickman CM, Chan ED, Strong M, Crooks JL, Honda JR. Lower Recovery of Nontuberculous Mycobacteria from Outdoor Hawai'i Environmental Water Biofilms Compared to Indoor Samples. Microorganisms 2021; 9:microorganisms9020224. [PMID: 33499212 PMCID: PMC7910870 DOI: 10.3390/microorganisms9020224] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 01/15/2023] Open
Abstract
Nontuberculous mycobacteria (NTM) are environmental organisms that can cause opportunistic pulmonary disease with species diversity showing significant regional variation. In the United States, Hawai'i shows the highest rate of NTM pulmonary disease. The need for improved understanding of NTM reservoirs led us to identify NTM from patient respiratory specimens and compare NTM diversity between outdoor and indoor locations in Hawai'i. A total of 545 water biofilm samples were collected from 357 unique locations across Kaua'i (n = 51), O'ahu (n = 202), Maui (n = 159), and Hawai'i Island (n = 133) and divided into outdoor (n = 179) or indoor (n = 366) categories. rpoB sequence analysis was used to determine NTM species and predictive modeling applied to develop NTM risk maps based on geographic characteristics between environments. M. chimaera was frequently identified from respiratory and environmental samples followed by M. chelonae and M. abscessus; yet significantly less NTM were consistently recovered from outdoor compared to indoor biofilms, as exemplified by showerhead biofilm samples. While the frequency of M. chimaera recovery was comparable between outdoor and indoor showerhead biofilms, phylogenetic analyses demonstrate similar rpoB gene sequences between all showerhead and respiratory M. chimaera isolates, supporting outdoor and indoor environments as possible sources for pulmonary M. chimaera infections.
Collapse
Affiliation(s)
- Ravleen Virdi
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA; (R.V.); (G.J.N.); (S.N.D.); (N.A.H.); (L.E.E.); (M.S.)
| | - Melissa E. Lowe
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, CO 80206, USA; (M.E.L.); (J.L.C.)
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO 80045, USA
| | - Grant J. Norton
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA; (R.V.); (G.J.N.); (S.N.D.); (N.A.H.); (L.E.E.); (M.S.)
| | - Stephanie N. Dawrs
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA; (R.V.); (G.J.N.); (S.N.D.); (N.A.H.); (L.E.E.); (M.S.)
| | - Nabeeh A. Hasan
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA; (R.V.); (G.J.N.); (S.N.D.); (N.A.H.); (L.E.E.); (M.S.)
| | - L. Elaine Epperson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA; (R.V.); (G.J.N.); (S.N.D.); (N.A.H.); (L.E.E.); (M.S.)
| | - Cody M. Glickman
- Computational Biosciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Edward D. Chan
- Department of Medicine and Academic Affairs, National Jewish Health, Denver, CO 80206, USA;
- Division of Pulmonary Science and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Denver, CO 80523, USA
| | - Michael Strong
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA; (R.V.); (G.J.N.); (S.N.D.); (N.A.H.); (L.E.E.); (M.S.)
| | - James L. Crooks
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, CO 80206, USA; (M.E.L.); (J.L.C.)
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO 80045, USA
| | - Jennifer R. Honda
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA; (R.V.); (G.J.N.); (S.N.D.); (N.A.H.); (L.E.E.); (M.S.)
- Correspondence: ; Tel.: +1-303-398-1015
| |
Collapse
|
12
|
Munson E, Carroll KC. Summary of Novel Bacterial Isolates Derived from Human Clinical Specimens and Nomenclature Revisions Published in 2018 and 2019. J Clin Microbiol 2021; 59:e01309-20. [PMID: 32967902 PMCID: PMC8111135 DOI: 10.1128/jcm.01309-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Knowledge of novel prokaryotic taxon discovery and nomenclature revisions is of importance to clinical microbiology laboratory practice, infectious disease epidemiology, and studies of microbial pathogenesis. Relative to bacterial isolates derived from human clinical specimens, we present an in-depth summary of novel taxonomic designations and revisions to prokaryotic taxonomy that were published in 2018 and 2019. Included are several changes pertinent to former designations of or within Propionibacterium spp., Corynebacterium spp., Clostridium spp., Mycoplasma spp., Methylobacterium spp., and Enterobacteriaceae Future efforts to ascertain clinical relevance for many of these changes may be augmented by a document development committee that has been appointed by the Clinical and Laboratory Standards Institute.
Collapse
Affiliation(s)
- Erik Munson
- College of Health Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Karen C Carroll
- Division of Medical Microbiology, Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Yamada H, Chikamatsu K, Aono A, Murata K, Miyazaki N, Kayama Y, Bhatt A, Fujiwara N, Maeda S, Mitarai S. Fundamental Cell Morphologies Examined With Cryo-TEM of the Species in the Novel Five Genera Robustly Correlate With New Classification in Family Mycobacteriaceae. Front Microbiol 2020; 11:562395. [PMID: 33304323 PMCID: PMC7701246 DOI: 10.3389/fmicb.2020.562395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/12/2020] [Indexed: 11/25/2022] Open
Abstract
A recent study proposed the novel classification of the family Mycobacteriaceae based on the genome analysis of core proteins in 150 Mycobacterium species. The results from these analyses supported the existence of five distinct monophyletic groups within the genus Mycobacterium. That is, Mycobacterium has been divided into two novel genera for rapid grower Mycobacteroides and Mycolicibacterium, and into three genera for slow grower Mycolicibacter, Mycolicibacillus, and an emended genus Mycobacterium, which include all the major human pathogens. Here, cryo-TEM examinations of 1,816 cells of 31 species (34 strains) belonging to the five novel genera were performed. The fundamental morphological properties of every single cell, such as cell diameter, cell length, cell perimeter, cell circularity, and aspect ratio were measured and compared between these genera. In 50 comparisons on the five parameters between any two genera, only five comparisons showed “non-significant” differences. That is, there are non-significant differences between slow grower genus Mycolicibacillus and genus Mycobacterium in average cell diameter (p = 0.15), between rapid grower genus Mycobacteroides and slow grower genus Mycobacterium in average cell length (p > 0.24), between genus Mycobacteroides and genus Mycobacterium (p > 0.68) and between genus Mycolicibacter and genus Mycolicibacillus (p > 0.11) in average cell perimeter, and between genus Mycolicibacterium and genus Mycobacterium in circularity (p > 0.73). The other 45 comparisons showed significant differences between the genera. Genus Mycobacteroides showed the longest average cell diameter, whereas the genus Mycolicibacter showed the shortest average diameter. Genus Mycolicibacterium showed the most extended average cell length, perimeter, and aspect ratio, whereas the genus Mycolicibacillus showed the shortest average cell length, perimeter, and aspect ratio. Genus Mycolicibacillus showed the highest average cell circularity, whereas genus Mycobacterium showed the lowest average cell circularity. These fundamental morphological data strongly support the new classification in the family Mycobacteriaceae, and this classification is rational and effective in the study of the members of the family Mycobacteriaceae. Because both the genus Mycolicibacterium and the genus Mycobacterium contain many species and showed larger significant standard deviations in every parameter, these genera may be divided into novel genera which show common genotype and phenotypes in morphology and pathogenicity.
Collapse
Affiliation(s)
- Hiroyuki Yamada
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Kinuyo Chikamatsu
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Akio Aono
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Kazuyoshi Murata
- Supportive Center for Brain Research, National Institute for Physiological Science, Okazaki, Japan
| | - Naoyuki Miyazaki
- Supportive Center for Brain Research, National Institute for Physiological Science, Okazaki, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | | | - Apoorva Bhatt
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Nagatoshi Fujiwara
- Department of Food and Nutrition, Faculty of Contemporary Human Life Science, Tezukayama University, Nara, Japan
| | - Shinji Maeda
- Department of Pharmacy, Faculty of Pharmaceutical Science, Hokkaido University of Science, Sapporo, Japan
| | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan.,Department of Basic Mycobacteriology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
14
|
Diversity of Mycobacteriaceae from aquatic environment at the São Paulo Zoological Park Foundation in Brazil. PLoS One 2020; 15:e0227759. [PMID: 31935265 PMCID: PMC6959594 DOI: 10.1371/journal.pone.0227759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/28/2019] [Indexed: 12/22/2022] Open
Abstract
We investigated the species diversity of Mycobacteriaceae in surface water samples from six environments at the zoological park in São Paulo, Brazil. Three hundred and eighty isolates were cultivated and identified by phenotypic characteristics (growth rate and pigmentation) and sequencing of hsp65, rpoB and 16S rRNA genes. The results revealed that almost 48% of the isolates could be identified at the species level; about 50% were classified at the genus level, and only less than 2% of the isolates showed an inconclusive identification. The isolates classified at the genus level and not identified were then evaluated by phylogenetic analyses using the same three concatenated target genes. The results allowed us to identify at the genus level some isolates that previously had inconclusive identification, and they also suggested the presence of putative candidate species within the sample, demonstrating that this zoological park is an important source of diversity.
Collapse
|
15
|
del Barrio-Duque A, Ley J, Samad A, Antonielli L, Sessitsch A, Compant S. Beneficial Endophytic Bacteria- Serendipita indica Interaction for Crop Enhancement and Resistance to Phytopathogens. Front Microbiol 2019; 10:2888. [PMID: 31921065 PMCID: PMC6930893 DOI: 10.3389/fmicb.2019.02888] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/02/2019] [Indexed: 12/30/2022] Open
Abstract
Serendipita (=Piriformospora) indica is a fungal endophytic symbiont with the capabilities to enhance plant growth and confer resistance to different stresses. However, the application of this fungus in the field has led to inconsistent results, perhaps due to antagonism with other microbes. Here, we studied the impact of individual bacterial isolates from the endophytic bacterial community on the in vitro growth of S. indica. We further analyzed how combinations of bacteria and S. indica influence plant growth and protection against the phytopathogens Fusarium oxysporum and Rhizoctonia solani. Bacterial strains of the genera Bacillus, Enterobacter and Burkholderia negatively affected S. indica growth on plates, whereas Mycolicibacterium, Rhizobium, Paenibacillus strains and several other bacteria from different taxa stimulated fungal growth. To further explore the potential of bacteria positively interacting with S. indica, four of the most promising strains belonging to the genus Mycolicibacterium were selected for further experiments. Some dual inoculations of S. indica and Mycolicibacterium strains boosted the beneficial effects triggered by S. indica, further enhancing the growth of tomato plants, and alleviating the symptoms caused by the phytopathogens F. oxysporum and R. solani. However, some combinations of S. indica and bacteria were less effective than individual inoculations. By analyzing the genomes of the Mycolicibacterium strains, we revealed that these bacteria encode several genes predicted to be involved in the stimulation of S. indica growth, plant development and tolerance to abiotic and biotic stresses. Particularly, a high number of genes related to vitamin and nitrogen metabolism were detected. Taking into consideration multiple interactions on and inside plants, we showed in this study that some bacterial strains may induce beneficial effects on S. indica and could have an outstanding influence on the plant-fungus symbiosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Stéphane Compant
- Bioresources Unit, Center for Health and Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| |
Collapse
|
16
|
Oren A, Trujillo ME. On the valid publication of names of mycobacteria. Eur Respir J 2019; 54:54/4/1901483. [PMID: 31649146 DOI: 10.1183/13993003.01483-2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Martha E Trujillo
- Departamento de Microbiología y Genética, Campus Miguel de Unamuno, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
17
|
Estrada-de los Santos P, Palmer M, Steenkamp ET, Maluk M, Beukes C, Hirsch AM, James EK, Venter SN. Trinickia dabaoshanensis sp. nov., a new name for a lost species. Arch Microbiol 2019; 201:1313-1316. [DOI: 10.1007/s00203-019-01703-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/27/2019] [Accepted: 07/05/2019] [Indexed: 11/30/2022]
|
18
|
Tortoli E, Brown-Elliott BA, Chalmers JD, Cirillo DM, Daley CL, Emler S, Floto RA, Garcia MJ, Hoefsloot W, Koh WJ, Lange C, Loebinger M, Maurer FP, Morimoto K, Niemann S, Richter E, Turenne CY, Vasireddy R, Vasireddy S, Wagner D, Wallace RJ, Wengenack N, van Ingen J. Same meat, different gravy: ignore the new names of mycobacteria. Eur Respir J 2019; 54:54/1/1900795. [PMID: 31296783 DOI: 10.1183/13993003.00795-2019] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Enrico Tortoli
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Barbara A Brown-Elliott
- Dept of Microbiology, Mycobacteria/Nocardia Research Laboratory, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - James D Chalmers
- Scottish Centre for Respiratory Research, University of Dundee, Dundee, UK
| | - Daniela M Cirillo
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Charles L Daley
- Division of Mycobacterial and Respiratory Infections, National Jewish Health, Denver, CO, USA.,Dept of Medicine, University of Colorado, Aurora, CO, USA
| | | | - R Andres Floto
- Cambridge Centre for Lung Infection, Papworth Hospital, Cambridge, UK
| | - Maria J Garcia
- Dept of Preventive Medicine, Public Health and Microbiology, Autonoma University of Madrid, Madrid, Spain
| | - Wouter Hoefsloot
- Radboudumc Center for Infectious Diseases, Dept of Pulmonary Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Won-Jung Koh
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Christoph Lange
- Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany.,Clinical Tuberculosis Unit, German Center for Infection Research, Borstel, Germany.,Respiratory Medicine and International Health, University of Lübeck, Lübeck, Germany.,Arctic Tuberculosis Center, University of Umeå, Umeå, Sweden.,Dept of Medicine, Karolinska Institute, Stockholm, Sweden
| | | | - Florian P Maurer
- National Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - Kozo Morimoto
- Division of Clinical Research, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF), Partnersite Hamburg-Lübeck-Borstel, Germany
| | | | - Christine Y Turenne
- Dept of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Ravikiran Vasireddy
- Dept of Microbiology, Mycobacteria/Nocardia Research Laboratory, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Sruthi Vasireddy
- Dept of Microbiology, Mycobacteria/Nocardia Research Laboratory, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Dirk Wagner
- Division of Infectious Diseases, Department of Medicine II, University Medical Center Freiburg, Freiburg, Germany
| | - Richard J Wallace
- Dept of Microbiology, Mycobacteria/Nocardia Research Laboratory, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Nancy Wengenack
- Division of Clinical Microbiology, Mayo Clinic, Rochester, MN, USA
| | - Jakko van Ingen
- Radboudumc Center for Infectious Diseases, Dept of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
19
|
Sakamoto M, Ikeyama N, Murakami T, Mori H, Yuki M, Ohkuma M. Comparative genomics of Parolsenella catena and Libanicoccus massiliensis: Reclassification of Libanicoccus massiliensis as Parolsenella massiliensis comb. nov. Int J Syst Evol Microbiol 2019; 69:1123-1129. [DOI: 10.1099/ijsem.0.003283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Previous analyses based on 16S rRNA and hsp60 genes indicated that Parolsenella catena and Libanicoccus massiliensis were closely related to each other and formed a monophyletic cluster independent of the related
Olsenella
species. To clarify the relationship of these two species, we determined the genome sequence of
P. catena
JCM 31932T and compared it with that already sequenced for
L. massiliensis
Marseille-P3237T. Phylogenetic trees based on the concatenated 37 single-copy ribosomal proteins or RpoB robustly supported the relationship observed in the previous studies. Digital DNA–DNA hybridization and average nucleotide identity (ANI) values between
P. catena
JCM 31932T and
L. massiliensis
Marseille-P3237T were 32.6 and 87.8 %, respectively, indicating that
P. catena
JCM 31932T and
L. massiliensis
Marseille-P3237T are independent species. Alignment fraction and ANI values between the two genomes were 0.75 and 88.84 %, respectively, thus indicating that the two species should be classified into the same genus. The number of putative orthologous genes shared between the two genomes was 1321, which was significantly larger than those (482–928) reported between
L. massiliensis
Marseille-P3237T and other closely related species. In addition, the genome of
P. catena
JCM 31932T had a high degree of synteny conservation with that of
L. massiliensis
Marseille-P3237T. On the basis of these findings, we propose that
L. massiliensis
should be reclassified as Parolsenella massiliensis comb. nov.; the type strain is Marseille-P3237T (=JCM 33000T=CCUG 71182T).
Collapse
Affiliation(s)
- Mitsuo Sakamoto
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Japan
- PRIME, Japan Agency for Medical Research and Development (AMED), Tsukuba, Japan
| | - Nao Ikeyama
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Takumi Murakami
- Center for Information Biology, National Institute of Genetics, Shizuoka, Japan
| | - Hiroshi Mori
- Center for Information Biology, National Institute of Genetics, Shizuoka, Japan
| | - Masahiro Yuki
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Moriya Ohkuma
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Japan
| |
Collapse
|
20
|
Del Portillo P, García-Morales L, Menéndez MC, Anzola JM, Rodríguez JG, Helguera-Repetto AC, Ares MA, Prados-Rosales R, Gonzalez-y-Merchand JA, García MJ. Hypoxia Is Not a Main Stress When Mycobacterium tuberculosis Is in a Dormancy-Like Long-Chain Fatty Acid Environment. Front Cell Infect Microbiol 2019; 8:449. [PMID: 30687646 PMCID: PMC6333855 DOI: 10.3389/fcimb.2018.00449] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
The capacity of Mycobacterium tuberculosis (Mtb) to sense, respond and adapt to a variable and hostile environment within the host makes it one of the most successful human pathogens. During different stages of infection, Mtb is surrounded by a plethora of lipid molecules and current evidence points out the relevance of fatty acids during the infectious process. In this study, we have compared the transcriptional response of Mtb to hypoxia in cultures supplemented with a mix of even long-chain fatty acids or dextrose as main carbon sources. Using RNA sequencing, we have identified differential expressed genes in early and late hypoxia, defined according to the in vitro Wayne and Hayes model, and compared the results with the exponential phase of growth in both carbon sources. We show that the number of genes over-expressed in the lipid medium was quite low in both, early and late hypoxia, relative to conditions including dextrose, with the exception of transcripts of stable and non-coding RNAs, which were more expressed in the fatty acid medium. We found that sigB and sigE were over-expressed in the early phase of hypoxia, confirming their pivotal role in early adaptation to low oxygen concentration independently of the carbon source. A drastic contrast was found with the transcriptional regulatory factors at early hypoxia. Only 2 transcriptional factors were over-expressed in early hypoxia in the lipid medium compared to 37 that were over-expressed in the dextrose medium. Instead of Rv0081, known to be the central regulator of hypoxia in dextrose, Rv2745c (ClgR), seems to play a main role in hypoxia in the fatty acid medium. The low level of genes associated to the stress-response during their adaptation to hypoxia in fatty acids, suggests that this lipid environment makes hypoxia a less stressful condition for the tubercle bacilli. Taken all together, these results indicate that the presence of lipid molecules shapes the metabolic response of Mtb to an adaptive state for different stresses within the host, including hypoxia. This fact could explain the success of Mtb to establish long-term survival during latent infection.
Collapse
Affiliation(s)
- Patricia Del Portillo
- Departamento de Biotecnología Molecular y Biología Computacional y Bioinformática, Corporación CorpoGen, Bogotá, Colombia
| | - Lázaro García-Morales
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México, Mexico
| | - María Carmen Menéndez
- Departamento de Medicina Preventiva, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Manuel Anzola
- Departamento de Biotecnología Molecular y Biología Computacional y Bioinformática, Corporación CorpoGen, Bogotá, Colombia
| | - Juan Germán Rodríguez
- Departamento de Biotecnología Molecular y Biología Computacional y Bioinformática, Corporación CorpoGen, Bogotá, Colombia
| | - Addy Cecilia Helguera-Repetto
- Departamento de Inmunobioquímica, Torre de Investigación, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| | - Miguel A. Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Rafael Prados-Rosales
- Departamento de Medicina Preventiva, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Center for Cooperative Research bioGUNE (CICbioGUNE), Bizkaia Technology Park, Derio, Spain
| | - Jorge A. Gonzalez-y-Merchand
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - María Jesús García
- Departamento de Medicina Preventiva, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
21
|
Seth-Smith HMB, Imkamp F, Tagini F, Cuénod A, Hömke R, Jahn K, Tschacher A, Grendelmeier P, Bättig V, Erb S, Reinhard M, Rütimann G, Borrell S, Gagneux S, Casanova C, Droz S, Osthoff M, Tamm M, Nübel U, Greub G, Keller PM, Egli A. Discovery and Characterization of Mycobacterium basiliense sp. nov., a Nontuberculous Mycobacterium Isolated From Human Lungs. Front Microbiol 2019; 9:3184. [PMID: 30671031 PMCID: PMC6331445 DOI: 10.3389/fmicb.2018.03184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022] Open
Abstract
Bacteria belonging to the genus Mycobacterium are predominantly responsible for pulmonary diseases; most notably Mycobacterium tuberculosis causes granulomatous pulmonary infections. Here we describe a novel slow growing mycobacterial species isolated from respiratory samples from five patients, four with underlying pulmonary disease. The isolates were characterized by biochemical and molecular techniques, including whole genome sequencing. Biochemical characteristics generally match those of M. marinum and M. ulcerans; however, the most striking difference of the new species is its ability to grow at 37°C. The new species was found to grow in human macrophages, but not amoebae, suggesting a pathogenic rather than an environmental lifestyle. Phylogenetic analysis reveals a deep-rooting relationship to M. marinum and M. ulcerans. A complete genome sequence was obtained through combining short and long-read sequencing, providing a genome of 5.6 Mb. The genome appears to be highly intact, syntenic with that of M. marinum, with very few insertion sequences. A vast array of virulence factors includes 283 PE/PPE surface-associated proteins, making up 10% of the coding capacity, and 22 non-ribosomal peptide synthase clusters. A comparison of six clinical isolates from the five patients shows that they differ by up to two single nucleotide polymorphisms, suggesting a common source of infection. Our findings are in accordance with the recognition of a new taxonomic entity. We propose the name M. basiliense, as all isolates were found in patients from the Basel area of Switzerland.
Collapse
Affiliation(s)
- Helena M. B. Seth-Smith
- Division of Clinical Microbiology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Frank Imkamp
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Florian Tagini
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Aline Cuénod
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Rico Hömke
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- National Center for Mycobacteria, Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Kathleen Jahn
- Division of Pneumology, University Hospital Basel, Basel, Switzerland
| | - Anne Tschacher
- Division of Pneumology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Peter Grendelmeier
- Division of Pneumology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Veronika Bättig
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Stefan Erb
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Miriam Reinhard
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Carlo Casanova
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Sara Droz
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Michael Osthoff
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Michael Tamm
- Division of Pneumology, University Hospital Basel, Basel, Switzerland
| | - Ulrich Nübel
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Gilbert Greub
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Peter M. Keller
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- National Center for Mycobacteria, Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Adrian Egli
- Division of Clinical Microbiology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
22
|
Mycobacterium avium: an overview. Tuberculosis (Edinb) 2019; 114:127-134. [PMID: 30711152 DOI: 10.1016/j.tube.2018.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 01/15/2023]
Abstract
Mycobacterium avium is an environmental microorganism found in soil and water sources worldwide. It is the most prevalent species of nontuberculous mycobacteria that causes infectious diseases, especially in immunocompromised individuals. This review discusses and highlights key topics about M. avium, such as epidemiology, pathogenicity, glycopeptidolipids, laboratory identification, genotyping, antimicrobial therapy and antimicrobial resistance. Additionally, the main comorbidities associated with M. avium infection are discussed.
Collapse
|
23
|
Yamada H, Yamaguchi M, Igarashi Y, Chikamatsu K, Aono A, Murase Y, Morishige Y, Takaki A, Chibana H, Mitarai S. Mycolicibacterium smegmatis, Basonym Mycobacterium smegmatis, Expresses Morphological Phenotypes Much More Similar to Escherichia coli Than Mycobacterium tuberculosis in Quantitative Structome Analysis and CryoTEM Examination. Front Microbiol 2018; 9:1992. [PMID: 30258411 PMCID: PMC6145149 DOI: 10.3389/fmicb.2018.01992] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/07/2018] [Indexed: 01/05/2023] Open
Abstract
A series of structome analyses, that is, quantitative and three-dimensional structural analysis of a whole cell at the electron microscopic level, have already been achieved individually in Exophiala dermatitidis, Saccharomyces cerevisiae, Mycobacterium tuberculosis, Myojin spiral bacteria, and Escherichia coli. In these analyses, sample cells were processed through cryo-fixation and rapid freeze-substitution, resulting in the exquisite preservation of ultrastructures on the serial ultrathin sections examined by transmission electron microscopy. In this paper, structome analysis of non pathogenic Mycolicibacterium smegmatis, basonym Mycobacterium smegmatis, was performed. As M. smegmatis has often been used in molecular biological experiments and experimental tuberculosis as a substitute of highly pathogenic M. tuberculosis, it has been a task to compare two species in the same genus, Mycobacterium, by structome analysis. Seven M. smegmatis cells cut into serial ultrathin sections, and, totally, 220 serial ultrathin sections were examined by transmission electron microscopy. Cell profiles were measured, including cell length, diameter of cell and cytoplasm, surface area of outer membrane and plasma membrane, volume of whole cell, periplasm, and cytoplasm, and total ribosome number and density per 0.1 fl cytoplasm. These data are based on direct measurement and enumeration of exquisitely preserved single cell structures in the transmission electron microscopy images, and are not based on the calculation or assumptions from biochemical or molecular biological indirect data. All measurements in M. smegmatis, except cell length, are significantly higher than those of M. tuberculosis. In addition, these data may explain the more rapid growth of M. smegmatis than M. tuberculosis and contribute to the understanding of their structural properties, which are substantially different from M. tuberculosis, relating to the expression of antigenicity, acid-fastness, and the mechanism of drug resistance in relation to the ratio of the targets to the corresponding drugs. In addition, data obtained from cryo-transmission electron microscopy examination were used to support the validity of structome analysis. Finally, our data strongly support the most recent establishment of the novel genus Mycolicibacterium, into which basonym Mycobacterium smegmatis has been classified.
Collapse
Affiliation(s)
- Hiroyuki Yamada
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | | | - Yuriko Igarashi
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Kinuyo Chikamatsu
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Akio Aono
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Yoshiro Murase
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Yuta Morishige
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Akiko Takaki
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
- Department of Basic Mycobacteriology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
24
|
Oren A, Garrity GM, Parte AC. Why are so many effectively published names of prokaryotic taxa never validated? Int J Syst Evol Microbiol 2018; 68:2125-2129. [PMID: 29873629 DOI: 10.1099/ijsem.0.002851] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Nearly half of the new names of prokaryotic taxa between the ranks of subspecies and class that were effectively published in journals other than the International Journal of Systematic and Evolutionary Microbiology (IJSEM) in the period 2014-2017 were never submitted for validation. A survey of such effectively published names that include information on the etymology of the name, a description of the taxon, and for species and subspecies generally at least one culture collection deposit, shows that for more than 150 such effectively published names per year on average, validation was never requested. To prevent further accumulation in the literature of names of prokaryotic taxa without standing in the nomenclature, we call upon authors of taxon descriptions and on the editors of the journals handling such papers to be more aware of the duty to validate effectively published names.
Collapse
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, Givat Ram, 9190401 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology and Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| | | |
Collapse
|