1
|
Wang Y, You H, Kong YH, Sun C, Wu LH, Kim SG, Lee JS, Xu L, Xu XW. Genomic-based taxonomic classification of the order Sphingomonadales. Int J Syst Evol Microbiol 2025; 75. [PMID: 40372931 DOI: 10.1099/ijsem.0.006769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025] Open
Abstract
The order Sphingomonadales strains are globally distributed in various biomes and are renowned for their biodegradable and biosynthesis capabilities. At present, it consists of 4 families and 49 genera making it the third largest order within the class Alphaproteobacteria. However, their taxonomy remains complex, especially due to polyphyly in the family Sphingomonadaceae. In this study, we collected 429 Sphingomonadales type strain genomes, reconstructed robust phylogenomic relationships, and proposed delineation thresholds at the genus and family levels based on average amino acid identities (AAI) and evolutionary distances (ED). Based on the maximum-likelihood and Bayesian phylogenomic trees reconstructed by two molecular sets determined by orthologous sequence identity and the Genome Taxonomy Database, the consensus degree values were all higher than 90%, revealing that those phylogenomic trees had similar topological structures. By confirming monophyletic taxa and determining stable nodes, we reclassified the order Sphingomonadales into thirteen families including nine novel ones. AAI calculations indicated that the average intra-family AAI values ranged from 0.62 to 0.84, while inter-family ones were 0.51 to 0.60. ED summaries demonstrated that the average and median intra-family ED values were 0.16 to 0.57, and inter-family ones ranged from 0.50 to 1.22. Comparisons of AAI and ED values calculated by using genomic and phylogenetic analyses supported that those 13 families were significantly separated with p values < 2.2×10-16. Thus, it was speculated that the AAI and ED thresholds for distinguishing different families were <0.6 and >0.5, respectively. Additionally, we reclassified 163 species into new genera with their phylogenetic topologies, according to the previous genus AAI and ED boundaries of 0.7 and 0.4. Our study is the first genomic-based study of the order Sphingomonadales and will promote further insights into the evolution of this order.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
- School of Oceanography, Zhejiang University, Zhoushan 316021, PR China
| | - Hao You
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
- School of Oceanography, Zhejiang University, Zhoushan 316021, PR China
| | - Yan-Hui Kong
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Cong Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Lin-Huan Wu
- Institute of Microbiology Chinese Academy of Sciences, Beijing 100101, PR China
| | - Song-Gun Kim
- Korea Research Institute of Bioscience and Biotechnology, Korean Collection for Type Cultures, Jeongeup 56212, Republic of Korea
| | - Jung-Sook Lee
- Korea Research Institute of Bioscience and Biotechnology, Korean Collection for Type Cultures, Jeongeup 56212, Republic of Korea
| | - Lin Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xue-Wei Xu
- National Deep Sea Center, Ministry of Natural Resources, Qingdao 266237, PR China
| |
Collapse
|
2
|
Semenova EM, Tourova TP, Babich TL, Logvinova EY, Sokolova DS, Loiko NG, Myazin VA, Korneykova MV, Mardanov AV, Nazina TN. Crude Oil Degradation in Temperatures Below the Freezing Point by Bacteria from Hydrocarbon-Contaminated Arctic Soils and the Genome Analysis of Sphingomonas sp. AR_OL41. Microorganisms 2023; 12:79. [PMID: 38257905 PMCID: PMC10818417 DOI: 10.3390/microorganisms12010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Intensive human activity in the Arctic region leads to hydrocarbon pollution of reservoirs and soils. Isolation of bacteria capable of growing at low temperatures and degrading oil and petroleum products is of scientific and practical value. The aim of this work was to study the physiology and growth in oil at temperatures below 0 °C of four strains of bacteria of the genera Pseudomonas, Rhodococcus, Arthrobacter, and Sphingomonas-previously isolated from diesel-contaminated soils of the Franz Josef Land archipelago-as well as genomic analysis of the Sphingomonas sp. AR_OL41 strain. The studied strains grew on hydrocarbons at temperatures from -1.5 °C to 35 °C in the presence of 0-8% NaCl (w/v). Growth at a negative temperature was accompanied by visual changes in the size of cells as well as a narrowing of the spectrum of utilized n-alkanes. The studied strains were psychrotolerant, degraded natural biopolymers (xylan, chitin) and n-alkanes of petroleum, and converted phosphates into a soluble form. The ability to degrade n-alkanes is rare in members of the genus Sphingomonas. To understand how the Sphingomonas sp. AR_OL41 strain has adapted to a cold, diesel-contaminated environment, its genome was sequenced and analyzed. The Illumina HiSeq 2500 platform was used for AR_OL41 genome strain sequencing. The genome analysis of the AR_OL41 strain showed the presence of genes encoding enzymes of n-alkane oxidation, pyruvate metabolism, desaturation of membrane lipids, and the formation of exopolysaccharides, confirming the adaptation of the strain to hydrocarbon pollution and low habitat temperature. Average nucleotide identity and digital DNA-DNA hybridization values for genomes of the AR_OL41 strain with that of the phylogenetically relative Sphingomonas alpine DSM 22537T strain were 81.9% and 20.9%, respectively, which allows the AR_OL41 strain to be assigned to a new species of the genus Sphingomonas. Phenomenological observations and genomic analysis indicate the possible participation of the studied strains in the self-purification of Arctic soils from hydrocarbons and their potential for biotechnological application in bioremediation of low-temperature environments.
Collapse
Affiliation(s)
- Ekaterina M. Semenova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (E.M.S.); (T.P.T.); (T.L.B.); (E.Y.L.); (D.S.S.); (N.G.L.)
| | - Tatyana P. Tourova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (E.M.S.); (T.P.T.); (T.L.B.); (E.Y.L.); (D.S.S.); (N.G.L.)
| | - Tamara L. Babich
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (E.M.S.); (T.P.T.); (T.L.B.); (E.Y.L.); (D.S.S.); (N.G.L.)
| | - Ekaterina Y. Logvinova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (E.M.S.); (T.P.T.); (T.L.B.); (E.Y.L.); (D.S.S.); (N.G.L.)
| | - Diyana S. Sokolova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (E.M.S.); (T.P.T.); (T.L.B.); (E.Y.L.); (D.S.S.); (N.G.L.)
| | - Nataliya G. Loiko
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (E.M.S.); (T.P.T.); (T.L.B.); (E.Y.L.); (D.S.S.); (N.G.L.)
| | - Vladimir A. Myazin
- Institute of North Industrial Ecology Problems–Subdivision of the Federal Research Centre “Kola Science Centre of Russian Academy of Science”, 184209 Apatity, Russia;
- Agrarian and Technological Institute, People’s Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Maria V. Korneykova
- Institute of North Industrial Ecology Problems–Subdivision of the Federal Research Centre “Kola Science Centre of Russian Academy of Science”, 184209 Apatity, Russia;
- Agrarian and Technological Institute, People’s Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia;
| | - Tamara N. Nazina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (E.M.S.); (T.P.T.); (T.L.B.); (E.Y.L.); (D.S.S.); (N.G.L.)
| |
Collapse
|
3
|
Zhang H, Hu W, Liu R, Bartlam M, Wang Y. Low and high nucleic acid content bacteria play discrepant roles in response to various carbon supply modes. Environ Microbiol 2023; 25:3703-3718. [PMID: 37964717 DOI: 10.1111/1462-2920.16539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
Planktonic bacteria can be grouped into 'high nucleic acid content (HNA) bacteria' and 'low nucleic acid content (LNA) bacteria.' Nutrient input modes vary in environments, causing nutrient availability heterogeneity. We incubated them with equal amounts of total glucose added in a continuous/pulsed mode. The pulse-treated LNA bacteria exhibited twice the cell abundance and four times the viability of the continuous-treated LNA, while HNA did not show an adaptation to pulsed treatment. In structural equation modelling, LNA bacteria had higher path coefficients than HNA, between growth and carbon-saving metabolic pathways, intracellular ATP and the inorganic energy storage polymer, polyphosphate, indicating their low-cost growth, and flexible energy storage and utilisation. After incubation, the pulse-treated LNA bacteria contained more proteins and polysaccharides (0.00064, 0.0012 ng cell-1 ) than the continuous-treated LNA (0.00014, 0.00014 ng cell-1 ), conferring endurance and rapid response to pulses. Compared to LNA, HNA keystone taxa had stronger correlations with the primary glucose metabolism step, glycolysis, and occupied leading positions to explain the random forest model. They are essential to introduce glucose into the element cycling of the whole community under both treatments. Our work outlines a systematic bacterial response to carbon input.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Wei Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Ruidan Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Mark Bartlam
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| |
Collapse
|
4
|
Jiang L, Choe H, Peng Y, Jeon D, Cho D, Jiang Y, Lee JH, Kim CY, Lee J. Sphingomonas abietis sp. nov., an Endophytic Bacterium Isolated from Korean Fir. J Microbiol Biotechnol 2023; 33:1292-1298. [PMID: 37528562 PMCID: PMC10619552 DOI: 10.4014/jmb.2303.03017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/20/2023] [Accepted: 07/06/2023] [Indexed: 08/03/2023]
Abstract
PAMB 00755T, a bacterial strain, was isolated from Korean fir leaves. The strain exhibits yellow colonies and consists of Gram-negative, non-motile, short rods or ovoid-shaped cells. It displays optimal growth conditions at 20°C, 0% NaCl, and pH 6.0. Results of 16S rRNA gene-based phylogenetic analyses showed that strain PAMB 00755T was most closely related to Sphingomonas chungangi MAH-6T (97.7%) and Sphingomonas polyaromaticivorans B2-7T (97.4%), and ≤96.5% sequence similarity to other members of the genus Sphingomonas. The values of average nucleotide identity (79.9-81.3%), average amino acid identity (73.3-75.9%), and digital DNA-DNA hybridization (73.3-75.9%) were significantly lower than the threshold values for species boundaries; these overall genome-related indexes (OGRI) analyses indicated that the strain represents a novel species. Genomic analysis revealed that the strain has a 4.4-Mbp genome encoding 4,083 functional genes, while the DNA G+C content of the whole genome is 66.1%. The genome of strain PAMB 00755T showed a putative carotenoid biosynthetic cluster responsible for its antioxidant activity. The respiratory quinone was identified as ubiquinone 10 (Q-10), while the major fatty acids in the profile were identified as C18:1ω7c and/or C18:1ω6c (summed feature 8). The major polar lipids of strain PAMB 00755T were diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid, and phosphatidylcholine. Based on a comprehensive analysis of genomic, phenotypic, and chemotaxonomic characteristics, we proposed the name Sphingomonas abietis sp. nov. for this novel species, with PAMB 00755T as the type strain (= KCTC 92781T = GDMCC 1.3779T).
Collapse
Affiliation(s)
- Lingmin Jiang
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
- Present address: National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, P.R. China
| | - Hanna Choe
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Yuxin Peng
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Doeun Jeon
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Donghyun Cho
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Yue Jiang
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Ju Huck Lee
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
- Department of Biosystem and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Cha Young Kim
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Jiyoung Lee
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
- Department of Biosystem and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
5
|
Yin YL, Li FL, Wang L. Halomonas salinarum sp. nov., a moderately halophilic bacterium isolated from saline soil in Yingkou, China. Arch Microbiol 2022; 204:466. [PMID: 35802152 PMCID: PMC9266089 DOI: 10.1007/s00203-022-03032-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 11/19/2022]
Abstract
Strain G5-11T, a Gram-negative, moderately halotolerant, facultatively aerobic, motile bacterium was isolated from saline soil collected from Yingkou, Liaoning, China. The cells of strain G5-11T grew in the presence of 3–15% (w/v) NaCl (optimum 5%), at between 4 and 35 °C (optimum 30 °C), and at a pH of 6.0–9.0 (optimum 8.0). The major respiratory quinone was Q-9 and the dominant cellular fatty acids were summed feature 8 (C18:1ω7c/C18:1ω6c), C16:0, and summed feature 3 (C16:1ω7c/C16:1ω6c). The major components of the polar lipid profile were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol and unidentified aminolipid. The G + C content of the strain G5-11T genome was 61.0 mol%. The isolated strain G5-11T showed the highest 16S rRNA gene similarity to Halomonas niordiana LMG 31227T and Halomonas taeanensis DSM 16463T, both reaching 98.3%, followed by Halomonas pacifica NBRC 102220T. The results from phenotypic, chemotaxonomic, and phylogenetic analyses showed that strain G5-11T represented a novel species of the genus Halomonas, for which the name Halomonas salinarum sp. nov. was proposed. The type strain of Halomonas salinarum is G5-11T (= CGMCC 1.12051T = LMG 31677T).
Collapse
Affiliation(s)
- Ya-Lin Yin
- MOA Key Laboratory of Soil Microbiology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Fang-Ling Li
- MOA Key Laboratory of Soil Microbiology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lei Wang
- MOA Key Laboratory of Soil Microbiology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
6
|
Sphingomonas quercus sp. nov., Isolated from Rhizosphere Soil of Quercus mongolica. Curr Microbiol 2022; 79:122. [PMID: 35239058 DOI: 10.1007/s00284-022-02819-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/18/2022] [Indexed: 11/03/2022]
Abstract
Strain XMGL2T, isolated from rhizosphere soil of Quercus mongolica in China, was characterized using a polyphasic taxonomic approach. Cells were Gram-negative, aerobic, non-spore-forming, and rod-shaped. Growth occurred at 20-37 °C (optimum, 28 °C), pH 5.0-10.0 (optimum, pH 6.0), and with 0-1% NaCl (optimum, 1%). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain XMGL2T was related to members of the genus Sphingomonas and had the highest 16S rRNA gene sequence identity to Sphingomonas oleivorans FW-11 T (96.4%). The average nucleotide identity and digital DNA-DNA hybridization values between strain XMGL2T and the closely related taxa Sphingomonas oleivorans FW-11 T and Sphingomonas fennica K101T were 75.3/19.8% and 75.8/20.2%, respectively. The major cellular fatty acids were C18:1 ω7c, C14:0 2-OH, and C16:0. The major isoprenoid quinone was Q-10 and the polar lipid profile contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidyldimethylethanolamine, phosphatidylmonomethylethanolamine, an unidentified glycophospholipid and an unidentified phospholipid. The genomic DNA G + C content was 67.9%. Based on the phenotypic and genotypic properties and phylogenetic inference, strain XMGL2T represents a novel species of the genus Sphingomonas, for which the name Sphingomonas quercus sp. nov. is proposed. The type strain is XMGL2T (= JCM 34441 T = GDMCC 1.2153 T).
Collapse
|
7
|
Chen D, Feng Q, Liang H. Effects of long-term discharge of acid mine drainage from abandoned coal mines on soil microorganisms: microbial community structure, interaction patterns, and metabolic functions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53936-53952. [PMID: 34046832 DOI: 10.1007/s11356-021-14566-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
More than twenty abandoned coal mines in the Yudong River Basin of Guizhou Province have discharged acid mine drainage (AMD) for a long time. The revelation of microbial community composition, interaction patterns, and metabolic functions can contribute to a better understanding of such ecosystems, which in its turn can be helpful in the development of strategies aiming at the ecological remediation of AMD pollution. In this study, reference and contaminated soil samples were collected along the AMD flow path for high-throughput sequencing. Results showed that the long-term AMD pollution promoted the evolution of γ-Proteobacteria, and the acidophilic iron-oxidizing bacteria Ferrovum (relative abundance of 15.50%) and iron-reducing bacteria Metallibacterium (9.87%) belonging to this class became the dominant genera. Co-occurrence analysis revealed that the proportion of positive correlations among bacteria increased from 51.02 (reference soil) to 75.16% (contaminated soil), suggesting that acidic pollution promotes the formation of mutualistic interaction networks of microorganisms. Metabolic function prediction (Tax4Fun) revealed that AMD contamination enhanced microbial functions such as translation, repair, and biosynthesis of peptidoglycan and lipopolysaccharide, etc., which may be an adaptive mechanism for microbial survival in extremely acidic environment. In addition, acidic pollution promoted the high expression of nitrogen-fixing genes in soil, and the discovery of autotrophic nitrogen-fixing bacteria such as Ferrovum highlights the possibility of using this taxon for bioremediation of AMD pollution.
Collapse
Affiliation(s)
- Di Chen
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No. 1 Daxue Street, Quanshan District, Xuzhou, 221116, People's Republic of China.
| | - Qiyan Feng
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No. 1 Daxue Street, Quanshan District, Xuzhou, 221116, People's Republic of China
| | - Haoqian Liang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No. 1 Daxue Street, Quanshan District, Xuzhou, 221116, People's Republic of China
| |
Collapse
|
8
|
Yin YL, Li FL, Du XY, Zhang YX, Wang L. Paraliobacillus salinarum sp. nov., isolated from saline soil in Yingkou, China. Int J Syst Evol Microbiol 2021; 71. [PMID: 34232854 DOI: 10.1099/ijsem.0.004877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A novel Gram-stain-positive, facultatively aerobic, slightly halophilic, endospore-forming bacterium, designated G6-18T, was isolated from saline soil collected in Yingkou, Liaoning, PR China. Cells of strain G6-18T grew at 10-37 °C (optimum, 30 °C), at pH 6.0-9.0 (optimum, pH 8.0) and in the presence of 2-15 % (w/v) NaCl (optimum, 5 %). The strain could be clearly distinguished from the related species of the genus Paraliobacillus by its phylogenetic position and biochemical characteristics. It presented MK-7 as the major quinone and the dominant cellular fatty acids were iso-C16 : 0, anteiso-C15 : 0, C16 : 0 and iso-C14 : 0. The polar lipids consisted of diphosphatidylglycerol and phosphatidylglycerol as the major components. The G+C content of strain G6-18T genome was 35.3 mol%. 16S rRNA analysis showed that strain G6-18T had the highest similarity to Paraliobacillus ryukyuensis DSM 15140T, reaching 97.0 %, followed by Paraliobacillus quinghaiensis CGMCC 1.6333T with a value of 96.3 %. The average nucleotide identity values between strain G6-18T and Paraliobacillus ryukyuensis DSM 15140T, Paraliobacillus sedimins KCTC 33762T, Paraliobacillus quinghaiensis CGMCC 1.6333T and Paraliobacillus zengyii DSM 107811T were 74.3, 72.0, 73.2 and 72.8 %, respectively, and the digital DNA-DNA hybridization values between strain G6-18T and the neighbouring strains were 15.6, 13.8, 14.2 and 14.2 %, respectively. Based on phenotypic, chemotaxonomic and phylogenetic inferences, strain G6-18T represents a novel species of the genus Paraliobacillus, for which the name Paraliobacillus salinarum sp. nov. (=CGMCC 1.12058T=DSM 25428T) is proposed.
Collapse
Affiliation(s)
- Ya-Lin Yin
- State Key Laboratory of Agrobiotechnology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Fang-Ling Li
- State Key Laboratory of Agrobiotechnology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Xian-Yuan Du
- State Key Laboratory of Petroleum Pollution Control, China National Petroleum Corporation Research Institute of Safety and Environment Technology, Beijing 102206, PR China
| | - Ya-Xi Zhang
- State Key Laboratory of Agrobiotechnology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Lei Wang
- State Key Laboratory of Agrobiotechnology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
9
|
Li FL, Zhang YX, Zhang YK, Chen WF, Li WJ, Wang L. Siccirubricoccus phaeus sp. nov., isolated from oil reservoir water and emended description of the genus Siccirubricoccus. Antonie van Leeuwenhoek 2021; 114:355-364. [DOI: 10.1007/s10482-021-01516-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/06/2021] [Indexed: 11/28/2022]
|
10
|
Li FL, Wang XT, Shan JJ, Li S, Zhang YX, Li XZ, Li DA, Li WJ, Wang L. Oleiliquidispirillum nitrogeniifigens gen. nov., sp. nov., a new member of the family Rhodospirillaceae isolated from oil reservoir water. Int J Syst Evol Microbiol 2020; 70:3468-3474. [PMID: 32369003 DOI: 10.1099/ijsem.0.004200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-staining-negative, spiral-shaped bacterium, designated strain 64-1T, was isolated from oil reservoir water collected from Liaohe oilfield, north-eastern China. Growth occurred at 15-55 °C and pH 6.0-10.0. The sole respiratory quinone was Q-10. The predominant cellular fatty acids were summed feature 8 (C18 : 1 ω7c /C18 : 1 ω6c), C16 : 0 and C19 : 0 cyclo ω8c. The polar lipids consisted of phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylcholine (PC), an unidentified aminophospholipid (UAPL), an unidentified aminolipid (UAL) and two unidentified polar lipids (UPL). The genomic DNA G+C content of strain 64-1T was 64.5 mol%. Strain 64-1T shared the highest 16S rRNA gene sequence similarities with Phaeospirillum chandramohanii JA145T (92.0 %) and Telmatospirillum siberiense 26-4b1T (91.8 %). In the phylogenetic trees, the strain constituted a sub-cluster within the family Rhodospirillaceae. Based on the results of morphological, physiological, biochemical and phylogenetic analysis, strain 64-1T represents a new species of a novel genus within the family Rhodospirillaceae, for which the name Oleiliquidispirillum nitrogeniifigens gen. nov., sp. nov. is proposed. The type strain is 64-1T (=CGMCC 1.16798T=LMG 31399T).
Collapse
Affiliation(s)
- Fang-Ling Li
- State Key Laboratory of Agrobiotechnology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Xiao-Tong Wang
- Unovation Bio & EP Technology Company Limited, Beijing, 100029, PR China
| | - Jian-Jie Shan
- Unovation Bio & EP Technology Company Limited, Beijing, 100029, PR China
| | - Shuai Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Ya-Xi Zhang
- State Key Laboratory of Agrobiotechnology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Xi-Zhe Li
- Research Institute of Petroleum Exploration & Development, PetroChina Company Limited, Langfang, Hebei, 065007, PR China.,Research Institute of Petroleum Exploration & Development, PetroChina Company Limited, Beijing, 10083, PR China
| | - Dong-An Li
- Unovation Bio & EP Technology Company Limited, Beijing, 100029, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Lei Wang
- State Key Laboratory of Agrobiotechnology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
11
|
Tanner K, Mancuso CP, Peretó J, Khalil AS, Vilanova C, Pascual J. Sphingomonas solaris sp. nov., isolated from a solar panel in Boston, Massachusetts. Int J Syst Evol Microbiol 2020; 70:1814-1821. [PMID: 31951194 DOI: 10.1099/ijsem.0.003977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Solar panel surfaces, although subjected to a range of extreme environmental conditions, are inhabited by a diverse microbial community adapted to solar radiation, desiccation and temperature fluctuations. This is the first time a new bacterial species has been isolated from this environment. Strain R4DWNT belongs to the genus Sphingomonas and was isolated from a solar panel surface in Boston, MA, USA. Strain R4DWNT is a Gram-negative, non-motile and rod-shaped bacteria that tested positive for oxidase and catalase and forms round-shaped, shiny and orange-coloured colonies. It is mesophilic, neutrophilic and non-halophilic, and presents a more stenotrophic metabolism than its closest neighbours. The major fatty acids in this strain are C18:1ω7c/C18:1ω6c, C16:1ω7c/C16:1ω6c, C14:0 2OH and C16:0. Comparison of 16S rRNA gene sequences revealed that the closest type strains to R4DWNT are Sphingomonas fennica, Sphingomonas formosensis, Sphingomonas prati, Sphingomonas montana and Sphingomonas oleivorans with 96.3, 96.1, 96.0, 95.9 and 95.7 % pairwise similarity, respectively. The genomic G+C content of R4DWNT is 67.9 mol%. Based on these characteristics, strain R4DWNT represents a novel species of the genus Sphingomonas for which the name Sphingomonas solaris sp. nov. is proposed with the type strain R4DWNT (=CECT 9811T=LMG 31344T).
Collapse
Affiliation(s)
- Kristie Tanner
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia-CSIC), Calle del Catedratico Agustín Escardino Benlloch 9, 46980 Paterna, Spain.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Harvard University, 3 Blackfan Cir, Boston, MA 02115, USA.,Real Colegio Complutense at Harvard University, 26 Trowbridge St, Cambridge, MA 02138, USA.,Darwin Bioprospecting Excellence S.L., Calle Catedrático Agustín Escardino, 9, 46980 Paterna, Spain
| | - Christopher P Mancuso
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA.,Biological Design Center, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA
| | - Juli Peretó
- Darwin Bioprospecting Excellence S.L., Calle Catedrático Agustín Escardino, 9, 46980 Paterna, Spain.,Department of Biochemistry and Molecular Biology, University of Valencia, Calle del Dr. Moliner 50, 46100 Burjassot, Spain.,Institute for Integrative Systems Biology (I2SysBio, University of Valencia-CSIC), Calle del Catedratico Agustín Escardino Benlloch 9, 46980 Paterna, Spain
| | - Ahmad S Khalil
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Harvard University, 3 Blackfan Cir, Boston, MA 02115, USA.,Biological Design Center, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA.,Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Cristina Vilanova
- Darwin Bioprospecting Excellence S.L., Calle Catedrático Agustín Escardino, 9, 46980 Paterna, Spain
| | - Javier Pascual
- Darwin Bioprospecting Excellence S.L., Calle Catedrático Agustín Escardino, 9, 46980 Paterna, Spain
| |
Collapse
|