1
|
Braga-Nan L, Trably E, Santa-Catalina G, Bernet N, Delgènes JP, Escudié R. Microbial adaptation to H 2 improves the conversion of volatile fatty acids to methane during in situ biomethanation even in CO 2-depleted conditions. BIORESOURCE TECHNOLOGY 2025; 429:132494. [PMID: 40199393 DOI: 10.1016/j.biortech.2025.132494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/11/2025] [Accepted: 04/05/2025] [Indexed: 04/10/2025]
Abstract
The in situ biomethanation process aims to increase the CH4 content in biogas by injecting H2 into anaerobic digesters, improving its energetic value. However, H2 injection causes CO2 depletion hampering in situ biomethanation performances. This work investigated the effect of H2 addition and CO2 depletion on the adaptation of two microbial consortia to in situ biomethanation. In the in situ biomethanation reactors under CO2-non-limiting conditions (biogas CO2 concentration ∼ 18 %) CH4 was the most produced metabolite (∼80 % of the produced gCOD) whatever the microbial consortia. However, in the in situ biomethanation reactors under CO2 limitation (biogas CO2 concentration ∼ 3 %), CH4 and Volatile Fatty Acids (VFA) accounted for 60 and 40 % of the produced gCOD, despite the tested microbial consortia. Interestingly, all control reactors (operated without H2 and/or CO2 addition) produced mostly VFA instead of CH4 (∼70 to 30 % COD-based-proportion). Hence, VFA accumulation was alleviated by H2 injections in both in situ biomethanation conditions. This lower VFA accumulation was associated with the adaptation of the microbial consortia to H2, evidenced by the improved growth of hydrogenotrophic methanogens (HM). Moreover, competition between HM clades may play a role in microbial adaptation to H2. However, low CO2 availability hindered HM growth and led to lower VFA conversion to CH4 in the in situ biomethanation conditions under CO2 limitation. Methanobacterium spp. was highly resistant to CO2 depletion, dominating the archaeal community in these conditions. This study demonstrated that the microbial adaptation to H2 addition, characterised by an improved HM activity, boosted methanogenesis and enhanced indirectly acetogenesis, preventing VFA accumulation even under CO2-depleted conditions.
Collapse
Affiliation(s)
- L Braga-Nan
- INRAE, Univ. Montpellier, LBE, 102 AV. des Etangs, 11100 Narbonne, France
| | - E Trably
- INRAE, Univ. Montpellier, LBE, 102 AV. des Etangs, 11100 Narbonne, France
| | - G Santa-Catalina
- INRAE, Univ. Montpellier, LBE, 102 AV. des Etangs, 11100 Narbonne, France
| | - N Bernet
- INRAE, Univ. Montpellier, LBE, 102 AV. des Etangs, 11100 Narbonne, France
| | - J-P Delgènes
- INRAE, Univ. Montpellier, LBE, 102 AV. des Etangs, 11100 Narbonne, France
| | - R Escudié
- INRAE, Univ. Montpellier, LBE, 102 AV. des Etangs, 11100 Narbonne, France.
| |
Collapse
|
2
|
Zhai Y, Tong S, Chen L, Zhang Y, Amin FR, Khalid H, Liu F, Duan Y, Chen W, Chen G, Li D. The enhancement of energy supply in syngas-fermenting microorganisms. ENVIRONMENTAL RESEARCH 2024; 252:118813. [PMID: 38574985 DOI: 10.1016/j.envres.2024.118813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
After the second industrial revolution, social productivity developed rapidly, and the use of fossil fuels such as coal, oil, and natural gas increased greatly in industrial production. The burning of these fossil fuels releases large amounts of greenhouse gases such as CO2, which has caused greenhouse effects and global warming. This has endangered the planet's ecological balance and brought many species, including animals and plants, to the brink of extinction. Thus, it is crucial to address this problem urgently. One potential solution is the use of syngas fermentation with microbial cell factories. This process can produce chemicals beneficial to humans, such as ethanol as a fuel while consuming large quantities of harmful gases, CO and CO2. However, syngas-fermenting microorganisms often face a metabolic energy deficit, resulting in slow cell growth, metabolic disorders, and low product yields. This problem limits the large-scale industrial application of engineered microorganisms. Therefore, it is imperative to address the energy barriers of these microorganisms. This paper provides an overview of the current research progress in addressing energy barriers in bacteria, including the efficient capture of external energy and the regulation of internal energy metabolic flow. Capturing external energy involves summarizing studies on overexpressing natural photosystems and constructing semiartificial photosynthesis systems using photocatalysts. The regulation of internal energy metabolic flows involves two parts: regulating enzymes and metabolic pathways. Finally, the article discusses current challenges and future perspectives, with a focus on achieving both sustainability and profitability in an economical and energy-efficient manner. These advancements can provide a necessary force for the large-scale industrial application of syngas fermentation microbial cell factories.
Collapse
Affiliation(s)
- Yida Zhai
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Sheng Tong
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Limei Chen
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Yuan Zhang
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Farrukh Raza Amin
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Habiba Khalid
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Fuguo Liu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yu Duan
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Wuxi Chen
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China.
| | - Demao Li
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China.
| |
Collapse
|
3
|
Liu FL, Abdugheni R, Ran CG, Zhou N, Liu SJ. Eubacterium album sp. nov., a butyrate-producing bacterium isolated from faeces of a healthy human. Int J Syst Evol Microbiol 2024; 74. [PMID: 38739685 DOI: 10.1099/ijsem.0.006380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
An oval to rod-shaped, Gram-stain-positive, strictly anaerobic bacterium, designated LFL-14T, was isolated from the faeces of a healthy Chinese woman. Cells of the strain were non-spore-forming, grew optimally at 37 °C (growth range 30-45 °C) and pH 7.0 (growth range 6.0-9.0) under anaerobic conditions in the liquid modified Gifu anaerobic medium (mGAM). The result of 16S rRNA gene-based analysis indicated that LFL-14T shared an identity of 94.7 0% with Eubacterium ventriosum ATCC 27560T, indicating LFL-14T represented a novel taxon. The results of genome-based analysis revealed that the average nucleotide identity (ANI), the digital DNA-DNA hybridisation (dDDH) and average amino acid identity (AAI) between LFL-14T and its phylogenetically closest neighbour, Eubacterium ventriosum ATCC 27560T, were 77.0 %, 24.6 and 70.9 %, respectively, indicating that LFL-14T represents a novel species of the genus Eubacterium. The genome size of LFL-14T was 2.92 Mbp and the DNA G+C content was 33.14 mol%. We analysed the distribution of the genome of LFL-14T in cohorts of healthy individuals, type 2 diabetes patients (T2D) and patients with non-alcoholic fatty liver disease (NAFLD). We found that its abundance was higher in the T2D cohort, but it had a low average abundance of less than 0.2 % in all three cohorts. The percentages of frequency of occurrence in the T2D, healthy and NAFLD cohorts were 48.87 %, 16.72 % and 13.10 % respectively. The major cellular fatty acids of LFL-14T were C16 : 0 (34.4 %), C17 : 0 2-OH (21.4 %) and C14 : 0 (11.7 %). Additionally, the strain contained diphosphatidylglycerol (DPG) and phosphatidylethanolamine (PE), as well as unidentified phospholipids and unidentified glycolipids. The glucose fermentation products of LFL-14T were acetate and butyrate. In summary, On the basis of its chemotaxonomic, phenotypic, phylogenetic and phylogenomic properties, strain LFL-14T (= CGMCC 1.18005T = KCTC 25580T) is identified as representing a novel species of the genus Eubacterium, for which the name Eubacterium album sp. nov. is proposed.
Collapse
Affiliation(s)
- Feng-Lan Liu
- College of Life Sciences, Hebei University, Baoding, 071000, PR China
| | - Rashidin Abdugheni
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China
| | - Cong-Guo Ran
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
- University of the Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Nan Zhou
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
- University of the Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
4
|
Flaiz M, Poehlein A, Wilhelm W, Mook A, Daniel R, Dürre P, Bengelsdorf FR. Refining and illuminating acetogenic Eubacterium strains for reclassification and metabolic engineering. Microb Cell Fact 2024; 23:24. [PMID: 38233843 PMCID: PMC10795377 DOI: 10.1186/s12934-024-02301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND The genus Eubacterium is quite diverse and includes several acetogenic strains capable of fermenting C1-substrates into valuable products. Especially, Eubacterium limosum and closely related strains attract attention not only for their capability to ferment C1 gases and liquids, but also due to their ability to produce butyrate. Apart from its well-elucidated metabolism, E. limosum is also genetically accessible, which makes it an interesting candidate to be an industrial biocatalyst. RESULTS In this study, we examined genomic, phylogenetic, and physiologic features of E. limosum and the closest related species E. callanderi as well as E. maltosivorans. We sequenced the genomes of the six Eubacterium strains 'FD' (DSM 3662T), 'Marburg' (DSM 3468), '2A' (DSM 2593), '11A' (DSM 2594), 'G14' (DSM 107592), and '32' (DSM 20517) and subsequently compared these with previously available genomes of the E. limosum type strain (DSM 20543T) as well as the strains 'B2', 'KIST612', 'YI' (DSM 105863T), and 'SA11'. This comparison revealed a close relationship between all eleven Eubacterium strains, forming three distinct clades: E. limosum, E. callanderi, and E. maltosivorans. Moreover, we identified the gene clusters responsible for methanol utilization as well as genes mediating chain elongation in all analyzed strains. Subsequent growth experiments revealed that strains of all three clades can convert methanol and produce acetate, butyrate, and hexanoate via reverse β-oxidation. Additionally, we used a harmonized electroporation protocol and successfully transformed eight of these Eubacterium strains to enable recombinant plasmid-based expression of the gene encoding the fluorescence-activating and absorption shifting tag (FAST). Engineered Eubacterium strains were verified regarding their FAST-mediated fluorescence at a single-cell level using a flow cytometry approach. Eventually, strains 'FD' (DSM 3662T), '2A' (DSM 2593), '11A' (DSM 2594), and '32' (DSM 20517) were genetically engineered for the first time. CONCLUSION Strains of E. limosum, E. callanderi, and E. maltosivorans are outstanding candidates as biocatalysts for anaerobic C1-substrate conversion into valuable biocommodities. A large variety of strains is genetically accessible using a harmonized electroporation protocol, and FAST can serve as a reliable fluorescent reporter protein to characterize genetically engineered cells. In total eleven strains have been assigned to distinct clades, providing a clear and updated classification. Thus, the description of respective Eubacterium species has been emended, improved, aligned, and is requested to be implemented in respective databases.
Collapse
Affiliation(s)
- Maximilian Flaiz
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany.
| | - Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Wiebke Wilhelm
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Alexander Mook
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Peter Dürre
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Frank R Bengelsdorf
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany.
| |
Collapse
|
5
|
El-Salhy M. Intestinal bacteria associated with irritable bowel syndrome and chronic fatigue. Neurogastroenterol Motil 2023; 35:e14621. [PMID: 37246923 DOI: 10.1111/nmo.14621] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/18/2023] [Accepted: 05/17/2023] [Indexed: 05/30/2023]
Abstract
The etiology of irritable bowel syndrome (IBS) is unknown. Abnormal intestinal bacterial profiles and low bacterial diversity appear to play important roles in the pathophysiology of IBS. This narrative review was designed to present recent observations made relating to fecal microbiota transplantation (FMT), which implicate possible roles of 11 intestinal bacteria in the pathophysiology of IBS. The intestinal abundances of nine of these bacteria increased after FMT in patients with IBS, and these increases were inversely correlated with IBS symptoms and fatigue severity. These bacteria were Alistipes spp., Faecalibacterium prausnitzii, Eubacterium biforme, Holdemanella biformis, Prevotella spp., Bacteroides stercoris, Parabacteroides johnsonii, Bacteroides zoogleoformans, and Lactobacillus spp. The intestinal abundances of two bacteria were decreased in patients with IBS after FMT and were correlated with the severity of IBS symptoms and fatigue (Streptococcus thermophilus and Coprobacillus cateniformis). Ten of these bacteria are anaerobic and one (Streptococcus thermophilus) is facultative anaerobic. Several of these bacteria produce short-chain fatty acids, especially butyrate, which is used as an energy source by large intestine epithelial cells. Moreover, it modulates the immune response and hypersensitivity of the large intestine and decreases intestinal cell permeability and intestinal motility. These bacteria could be used as probiotics to improve these conditions. Protein-rich diets could increase the intestinal abundance of Alistipes, and plant-rich diet could increase the intestinal abundance of Prevotella spp., and consequently improve IBS and fatigue.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Gastroenterology, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
- Department of Research and Innovation, Helse Fonna, Stord, Norway
| |
Collapse
|
6
|
El-Salhy M, Winkel R, Casen C, Hausken T, Gilja OH, Hatlebakk JG. Efficacy of Fecal Microbiota Transplantation for Patients With Irritable Bowel Syndrome at 3 Years After Transplantation. Gastroenterology 2022; 163:982-994.e14. [PMID: 35709830 DOI: 10.1053/j.gastro.2022.06.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/09/2022] [Accepted: 06/05/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS The long-term efficacy and possible adverse events of fecal microbiota transplantation (FMT) for irritable bowel syndrome (IBS) are unknown. This study performed a 3-year follow-up of the patients in our previous clinical trial to clarify these aspects. METHODS This study included 125 patients (104 females, and 21 males): 38 in a placebo group, 42 who received 30 g of donor feces, and 45 who received 60 g of donor feces. Feces was administered to the duodenum. The patients provided a fecal sample and completed 5 questionnaires at baseline and at 2 and 3 years after FMT. Fecal bacteria and dysbiosis index were analyzed using 16S ribosomal RNA gene polymerase chain reaction DNA amplification/probe hybridization covering the V3 to V9 regions. RESULTS Response rates were 26.3%, 69.1%, and 77.8% in the placebo, 30-g, and 60-g groups, respectively, at 2 years after FMT, and 27.0%, 64.9%, and 71.8%, respectively, at 3 years after FMT. The response rates were significantly higher in the 30-g and 60-g groups than in the placebo group. Patients in the 30-g and 60-g groups had significantly fewer IBS symptoms and fatigue, and a greater quality of life both at 2 and 3 years after FMT. The dysbiosis index decreased only in the active treatment groups at 2 and 3 years after FMT. Fluorescent signals of 10 bacteria had significant correlations with IBS symptoms and fatigue after FMT in the 30-g and 60-g groups. No long-term adverse events were recorded. CONCLUSIONS FMT performed according to our protocol resulted in high response rates and long-standing effects with only few mild self-limited adverse events. This study was registered at www. CLINICALTRIALS gov (NCT03822299).
Collapse
Affiliation(s)
- Magdy El-Salhy
- Department of Medicine, Stord Hospital, Stord, Norway; Department of Clinical Medicine and Department of Gastroenterology, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway.
| | - Renate Winkel
- Department of Medicine, Stord Hospital, Stord, Norway
| | | | - Trygve Hausken
- Department of Clinical Medicine and Department of Gastroenterology, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway; National Centre of Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway
| | - Odd Helge Gilja
- Department of Clinical Medicine and Department of Gastroenterology, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway; National Centre of Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway
| | - Jan Gunnar Hatlebakk
- Department of Clinical Medicine and Department of Gastroenterology, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| |
Collapse
|
7
|
Feng Y, Bui TPN, Stams AJM, Boeren S, Sánchez-Andrea I, de Vos WM. Comparative genomics and proteomics of Eubacterium maltosivorans: functional identification of trimethylamine methyltransferases and bacterial microcompartments in a human intestinal bacterium with a versatile lifestyle. Environ Microbiol 2022; 24:517-534. [PMID: 34978130 PMCID: PMC9303578 DOI: 10.1111/1462-2920.15886] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/01/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022]
Abstract
Eubacterium maltosivorans YIT is a human intestinal isolate capable of acetogenic, propionogenic and butyrogenic growth. Its 4.3-Mb genome sequence contains coding sequences for 4227 proteins, including 41 different methyltransferases. Comparative proteomics of strain YIT showed the Wood-Ljungdahl pathway proteins to be actively produced during homoacetogenic growth on H2 and CO2 while butyrogenic growth on a mixture of lactate and acetate significantly upregulated the production of proteins encoded by the recently identified lctABCDEF cluster and accessory proteins. Growth on H2 and CO2 unexpectedly induced the production of two related trimethylamine methyltransferases. Moreover, a set of 16 different trimethylamine methyltransferases together with proteins for bacterial microcompartments were produced during growth and deamination of the quaternary amines, betaine, carnitine and choline. Growth of strain YIT on 1,2-propanediol generated propionate with propanol and induced the formation of bacterial microcompartments that were also prominently visible in betaine-grown cells. The present study demonstrates that E. maltosivorans is highly versatile in converting low-energy fermentation end-products in the human gut into butyrate and propionate whilst being capable of preventing the formation of the undesired trimethylamine by converting betaine and other quaternary amines in bacterial microcompartments into acetate and butyrate.
Collapse
Affiliation(s)
- Yuan Feng
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Thi Phuong Nam Bui
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands.,Caelus Pharmaceuticals, Amsterdam, The Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands.,Centre of Biological Engineering, IBB - Institute for Biotechnology and Bioengineering, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands.,Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland
| |
Collapse
|
8
|
|
9
|
Picking JW, Behrman EJ, Zhang L, Krzycki JA. MtpB, a member of the MttB superfamily from the human intestinal acetogen Eubacterium limosum, catalyzes proline betaine demethylation. J Biol Chem 2019; 294:13697-13707. [PMID: 31341018 DOI: 10.1074/jbc.ra119.009886] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
The trimethylamine methyltransferase MttB is the founding member of a widely distributed superfamily of microbial proteins. Genes encoding most members of the MttB superfamily lack the codon for pyrrolysine that distinguishes previously characterized trimethylamine methyltransferases, leaving the function(s) of most of the enzymes in this superfamily unknown. Here, investigating the MttB family member MtpB from the human intestinal isolate Eubacterium limosum ATCC 8486, an acetogen that excretes N-methyl proline during growth on proline betaine, we demonstrate that MtpB catalyzes anoxic demethylation of proline betaine. MtpB along with MtqC (a corrinoid protein) and MtqA (a methylcorrinoid:tetrahydrofolate methyltransferase) was much more abundant in E. limosum cells grown on proline betaine than on lactate. We observed that recombinant MtpB methylates Co(I)-MtqC in the presence of proline betaine and that other quaternary amines are much less preferred substrates. MtpB, MtqC, and MtqA catalyze tetrahydrofolate methylation with proline betaine, thereby forming a key intermediate in the Wood-Ljungdahl acetogenesis pathway. To our knowledge, MtpB methylation of Co(I)-MtqC for the subsequent methylation of tetrahydrofolate represents the first described anoxic mechanism of proline betaine demethylation. The activities of MtpB and associated proteins in acetogens or other anaerobes provide a possible mechanism for the production of N-methyl proline by the gut microbiome. MtpB's activity characterized here strengthens the hypothesis that much of the MttB superfamily comprises quaternary amine-dependent methyltransferases.
Collapse
Affiliation(s)
- Jonathan W Picking
- Ohio State Biochemistry Program, Ohio State University, Columbus, Ohio 43210
| | - Edward J Behrman
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210
| | - Liwen Zhang
- Campus Chemical Instrument Center Mass Spectrometry and Proteomics Facility, Ohio State University, Columbus, Ohio 43210
| | - Joseph A Krzycki
- Ohio State Biochemistry Program, Ohio State University, Columbus, Ohio 43210 .,Department of Microbiology, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|