1
|
Jia L, Sun N, Fang L, Cheng X, Huang X. Enhancing the phytoextraction capacity of chromium-contaminated soil by co-addition of garbage enzymes and microelectrolytic iron-carbon fillers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125224. [PMID: 39505097 DOI: 10.1016/j.envpol.2024.125224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/10/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
Most improved strategies for phytoextraction do not achieve a synergistic enhancement of chromium (Cr) accumulation capacity and biomass. This study investigated the impacts of co-addition of garbage enzyme (GE) and microelectrolytic iron-carbon filler (MF) on soil physicochemical properties, as well as form and uptake of Cr during aging and phytoextraction process. The response of rhizosphere microbial community to co-addition and its role in enhancing the remediation performance of ryegrass was further analyzed. Co-addition of GE and MF during the 12-day aging process resulted in an increase of nutrients, a shift from an oxidising to a reducing soil environment, a decrease of Cr(VI) content, and an enhancement of soil microbial community diversity and richness, creating a suitable environment for subsequent phytoextraction. During the 40-day phytoextraction process, co-addition played a crucial role in facilitating the establishment of a complex, efficient and interdependent ecological network among soil microorganisms and contributed to the evolution of microbial community composition and functional pathways. An increase in the relative abundance of Trichococcus, Azospirillum and g_norank_f_JG30-KF-CM45 elevated soil nutrient levels, while a decrease in the relative abundance of TM7a and Brucella reduced pathogen harbouring. Meanwhile, co-addition increased the relative abundance of Bacillus, Arthrobacter and Exiguobacterium, attenuated Cr phytotoxicity and improved soil biochemical activity. These markedly diminished oxidative damage and improved ryegrass growth by reducing malondialdehyde accumulation. In addition, regular additions of GE and the increase in relative abundance of norank_fnorank_o_Microtrichales led to rhizosphere acidification, which inhibited short-term Cr immobilization and contributed to a notable increase in phytoextraction efficiency. This study presents a strategy to enhance phytoremediation efficiency and soil quality during phytoextraction of Cr-contaminated soils.
Collapse
Affiliation(s)
- Liping Jia
- Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou, 36300, China; Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, China
| | - Nan Sun
- Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou, 36300, China
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, China
| | - Xuelin Cheng
- Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou, 36300, China
| | - Xuguang Huang
- Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou, 36300, China; Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, China.
| |
Collapse
|
2
|
Kappa S, Nikolaidou C, Noutsopoulos C, Mamais D, Hadjimitsi E, Kougias PG, Malamis S. Investigating upflow anaerobic sludge blanket process to treat forward osmosis effluents of concentrated municipal wastewater under psychrophilic temperature. BIORESOURCE TECHNOLOGY 2024; 412:131361. [PMID: 39197662 DOI: 10.1016/j.biortech.2024.131361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/10/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
This work investigated the stability of the Upflow Anaerobic Sludge Blanket (UASB) reactor under psychrophilic temperatures with varying feed streams, simulating typical and concentrated sewage. In Phase I, treating municipal wastewater, chemical oxygen demand (COD) removal dropped from 77 ± 6 % to 41 ± 2 % as hydraulic retention time decreased from 24 to 12 h and organic loading rate (OLR) increased from 0.6 to 1.3 gCOD/(L∙d). In Phase II, at a similar OLR (≈1.2 gCOD/(L∙d)), the UASB treated organic-rich effluents (from 1.0 to 2.1 ± 0.1 gCOD/L) resulting from the pre-treatment of the forward osmosis (FO) process. The UASB performance improved significantly, achieving 87 ± 3 % COD removal and 63 ± 4 % methane recovery, with microbial analysis confirming methanogen growth. The COD mass balance showed up to 30 % more electrical energy recovery from sewage compared to conventional wastewater treatment plants (WWTPs), indicating that the FO-UASB combination is a promising approach to achieve energy-neutral operation in WWTPs.
Collapse
Affiliation(s)
- Stavroula Kappa
- Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., Zographou Campus, 15780-GR Athens, Greece.
| | - Charitini Nikolaidou
- Soil and Water Resources Institute, Hellenic Agricultural Organization Dimitra, 57001 Thessaloniki, Greece; University Center of International Programmes of Studies, International Hellenic University, 57001 Thessaloniki, Greece
| | - Constantinos Noutsopoulos
- Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., Zographou Campus, 15780-GR Athens, Greece
| | - Daniel Mamais
- Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., Zographou Campus, 15780-GR Athens, Greece
| | - Elpi Hadjimitsi
- Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., Zographou Campus, 15780-GR Athens, Greece
| | - Panagiotis G Kougias
- Soil and Water Resources Institute, Hellenic Agricultural Organization Dimitra, 57001 Thessaloniki, Greece
| | - Simos Malamis
- Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., Zographou Campus, 15780-GR Athens, Greece
| |
Collapse
|
3
|
Mueller J, van Muilekom DR, Ehlers J, Suhr M, Hornburg SC, Bang C, Wilkes M, Schultheiß T, Maser E, Rebl A, Goldammer T, Seibel H, Schulz C. Dietary Chlorella vulgaris supplementation modulates health, microbiota and the response to oxidative stress of Atlantic salmon. Sci Rep 2024; 14:23674. [PMID: 39389986 PMCID: PMC11467335 DOI: 10.1038/s41598-024-72531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Microalgae are emerging as functional feed ingredients in aquaculture due to their immune-stimulating and stress-modulating properties. We investigated the potential of the microalgae Chlorella vulgaris as a feed supplement to improve the health and modulate microbiota and stress responses of Atlantic salmon. Triplicate groups of Atlantic salmon (~ 126 g) were reared in a recirculating aquaculture system (RAS) at 15 °C and received diets supplemented with 2% (CV2) or 14% (CV14) spray-dried C. vulgaris daily, 14% once weekly (CV14w), or a control diet (CD) for 8 weeks. Subsequently, all groups were exposed to an acute one-hour peracetic acid (CH3CO3H; PAA) treatment, a commonly used disinfectant in RAS. While CV14 increased feed conversion (FCR) significantly, feeding the diets CV2 and CV14w improved protein retention efficiency. CV14 significantly modulated beta-diversity in the intestinal digesta and mucosa, but this effect was already visible in fish fed CV2. Feeding CV14 and, to a lesser degree, CV2 increased the relative abundances of Paenarthrobacter and Trichococcus in the digesta and mucosa, which are able to metabolize complex carbohydrates. However, the same diets reduced the abundance of the lactic acid bacteria Lactobacillus and Weissella in the digesta and Floricoccus in the mucosa. Peracetic acid exposure induced systemic stress (increase in plasma glucose and cortisol) and a local immune response in the gill, with the most prominent upregulation of several immune- and stress-regulated genes (clra, cebpb, marco, tnfrsf14, ikba, c1ql2, drtp1) 18 h after exposure in fish fed the control diet. Fish receiving CV14 once a week showed a reduced transcriptional response to PAA exposure. Catalase protein abundance in the liver increased following exposure to PAA, while superoxide dismutase abundance in the gill and liver was increased in response to C. vulgaris inclusion before stress. Overall, the results highlight that a high (14%) inclusion rate of C. vulgaris in feed for Atlantic salmon impairs feed conversion and shifts the intestinal microbiota composition in digesta and mucosa. Weekly feeding of C. vulgaris proves a viable approach in improving protein retention and improving transcriptional resilience towards oxidative stress in increasingly intensive production systems. Thereby this study may motivate future studies on optimizing temporal feeding schedules for health-promoting aquafeeds.
Collapse
Affiliation(s)
- Jonas Mueller
- Department for Marine Aquaculture, Institute of Animal Breeding and Husbandry, Kiel University, Kiel, Germany.
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE, Aquaculture and Aquatic Resources, Büsum, Germany.
| | - Doret R van Muilekom
- Working Group Fish Genetics, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Jannick Ehlers
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE, Aquaculture and Aquatic Resources, Büsum, Germany
| | - Marvin Suhr
- Institute of Animal Nutrition and Physiology, Kiel University, Kiel, Germany
| | | | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Marie Wilkes
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Thekla Schultheiß
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Alexander Rebl
- Working Group Fish Genetics, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Tom Goldammer
- Working Group Fish Genetics, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Faculty of Agriculture and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Henrike Seibel
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE, Aquaculture and Aquatic Resources, Büsum, Germany
| | - Carsten Schulz
- Department for Marine Aquaculture, Institute of Animal Breeding and Husbandry, Kiel University, Kiel, Germany
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE, Aquaculture and Aquatic Resources, Büsum, Germany
| |
Collapse
|
4
|
Zhang J, Xu H, Zhang X, Xiang Y, Li S, Holmes DE. Enhancing H 2-driven CO 2 biomethanation performance in bidirectional flow tidal bioreactor by reducing liquid film resistance and heterogeneity. BIORESOURCE TECHNOLOGY 2024; 409:131247. [PMID: 39122127 DOI: 10.1016/j.biortech.2024.131247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
This study presents a bidirectional flow tidal bioreactor designed to enhance H2-driven CO2 biomethanation. The bioreactor alternated biofilms between immersion in nutrient solution and exposure to H2/CO2, creating alternating dry and wet states. This tidal operation minimized liquid film thickness during dry periods and ensured uniform nutrient distribution during wet periods. Bidirectional H2/CO2 supply was used to reduce biofilm thickness heterogeneity across the reactor height. CO2 biomethanation remained stable with an empty bed residence time of 9.7 min, achieving a methane (CH4) formation rate of 26.8 Nm3 CH4/(m3·d). The product gas contained 95.0 ± 2.5 % CH4, with a H2/CO2 conversion efficiency of 90.8 %. Tidal operation mitigated the buildup of dissolved and suspended organics, such as organic acids and detached biofilms. Dominant bacteria in biofilms included fermentative species like Petrimonas and H2-utilizing homoacetogens like Sporomusa. Enriched hydrogenotrophic methanogens, particularly Methanobacterium, were observed. Overall, this study highlights the bioreactor's effectiveness in improving CO2 biomethanation.
Collapse
Affiliation(s)
- Jiayin Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Heng Xu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China.
| | - Xinmiao Zhang
- Sinopec Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Yang Xiang
- State Nuclear Electric Power Planning Design & Research Institute Co., Ltd, Beijing 100095, China
| | - Shaohua Li
- Sinopec Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Dawn E Holmes
- Department of Physical and Biological Sciences, Western New England University, 1215 Wilbraham Road, Springfield, MA 01119, United States
| |
Collapse
|
5
|
Huang Y, Cai B, Dong H, Li H, Yuan J, Xu H, Wu H, Xu Z, Sun D, Dang Y, Holmes DE. Enhancing anaerobic digestion of food waste with granular activated carbon immobilized with riboflavin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158172. [PMID: 35988634 DOI: 10.1016/j.scitotenv.2022.158172] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Previous studies have shown that anaerobic digestion of food waste can be enhanced by addition of conductive materials that stimulate direct interspecies electron transfer (DIET) between bacteria and methanogens. However, at extremely high organic loading rates (OLRs), volatile fatty acids (VFAs) still tend to accumulate even in the presence of conductive materials because of an imbalance between the formation of fermentation products and the rate of methanogenesis. In this study, granular activated carbon (GAC) immobilized with riboflavin (GAC-riboflavin) was added to an anaerobic digester treating food waste. The GAC-riboflavin reactor operated stably at OLRs as high as 11.5 kgCOD/ (m3·d) and kept VFA concentrations below 69.4 mM, COD removal efficiencies, methane production rates, and biogas methane concentrations were much higher in the GAC-riboflavin reactor than the GAC- and non-amended reactors. Transcripts associated with genes that code for proteins involved in DIET based metabolism were somewhat more highly expressed by Methanothrix in the GAC-riboflavin reactor. However, it is unlikely that riboflavin acted as an electron shuttle to stimulate DIET. Rather, it seemed to provide nutrients that enhanced the growth of microorganisms involved in the anaerobic digestion process, including those that are capable of DIET.
Collapse
Affiliation(s)
- Yinhui Huang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Boquan Cai
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - He Dong
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Haoyong Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jie Yuan
- Wukong Chuangxiang Techolology Co, Ltd, Beijing 100083, China
| | - Haiyu Xu
- Xinneng Qinglin (Beijing) Technology Co., Ltd, Beijing 100083, China
| | - Hongbin Wu
- Xinneng Qinglin (Beijing) Technology Co., Ltd, Beijing 100083, China
| | - Ziyao Xu
- Lingxi Medical Technology (Beijing) Co., Ltd, Beijing 100083, China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yan Dang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Dawn E Holmes
- Department of Physical and Biological Sciences, Western New England University, 1215 Wilbraham Rd, Springfield, MA 01119, USA
| |
Collapse
|
6
|
Virpiranta H, Leiviskä T, Taskila S, Tanskanen J. Bioregeneration of sulfate-laden anion exchange resin. WATER RESEARCH 2022; 224:119110. [PMID: 36126630 DOI: 10.1016/j.watres.2022.119110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Ion exchange technology removes ionic compounds from waters effectively but treatment of the spent regenerant is expensive. The bioregeneration of sulfate-laden strong base anion exchange resin was successfully tested using both pure and mixed sulfate-reducing bacterial cultures. The resin was first used for removal of sulfate from neutral (pH 6.7 ± 0.5) synthetic sodium sulfate solutions, after which the spent resin was regenerated by incubating with a viable sulfate-reducing bacterial culture in batch and column modes. In the batch bioregeneration tests, the achieved bioregeneration was 36-95% of the original capacity of the fresh resin (112 mg SO42-/g) and it increased with regeneration time (1-14 days). The capacity achieved in the column tests during 24 hours of bioregeneration was 107 mg SO42-/g after the first regeneration cycle. During the bioregeneration, sulfate was mainly reduced by the sulfate-reducing bacteria (approx. 60%), but part of it was only detached from the resins (approx. 30%). The resin-attached sulfate was most likely replaced with ions present in the liquid sulfate-reducing bacterial culture (e.g., HCO3-, HS-, and Cl-). During the subsequent exhaustion cycles with the bioregenerated resin, the pH of the treated sodium sulfate solution increased from the original 6.7 ± 0.5 to around 9. The study showed that biological sulfate reduction could be used for sulfate removal in combination with ion exchange, and that the exhausted ion exchange resins could be regenerated using a liquid sulfate-reducing bacterial culture without producing any brine.
Collapse
Affiliation(s)
- Hanna Virpiranta
- University of Oulu, Chemical Process Engineering, PO Box 4300, 90014 Oulu, Finland.
| | - Tiina Leiviskä
- University of Oulu, Chemical Process Engineering, PO Box 4300, 90014 Oulu, Finland
| | - Sanna Taskila
- University of Oulu, Chemical Process Engineering, PO Box 4300, 90014 Oulu, Finland
| | - Juha Tanskanen
- University of Oulu, Chemical Process Engineering, PO Box 4300, 90014 Oulu, Finland
| |
Collapse
|
7
|
Stimulating Effect of Trichococcus flocculiformis on a Coculture of Syntrophomonas wolfei and Methanospirillum hungatei. Appl Environ Microbiol 2022; 88:e0039122. [PMID: 35699440 PMCID: PMC9275234 DOI: 10.1128/aem.00391-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Syntrophic anaerobic consortia comprised of fatty acid-degrading bacteria and hydrogen/formate-scavenging methanogenic archaea are of central importance for balanced and resilient natural and manufactured ecosystems: anoxic sediments, soils, and wastewater treatment bioreactors. Previously published studies investigated interaction between the syntrophic bi-cultures, but little information is available on the influence of fermentative bacteria on syntrophic fatty acid oxidation, even though fermentative organisms are always present together with syntrophic partners in the above-mentioned ecosystems. Here, we present experimental observations of stimulated butyrate oxidation and methane generation by a coculture of Syntrophomonas wolfei with any of the following methanogens: Methanospirillum hungatei, Methanobrevibacter arboriphilus, or Methanobacterium formicicum due to the addition of a fermentative Trichococcus flocculiformis strain ES5. The addition of T. flocculiformis ES5 to the syntrophic cocultures led to an increase in the rates of butyrate consumption (120%) and volumetric methane production (150%). Scanning electron microscopy of the most positively affected coculture (S. wolfei, M. hungatei, and T. flocculiformis ES5) revealed a tendency of T. flocculiformis ES5 to aggregate with the syntrophic partners. Analysis of coculture’s proteome with or without addition of the fermentative bacterium points to a potential link with signal transducing systems of M. hungatei, as well as activation of additional butyryl coenzyme A dehydrogenase and an electron transfer flavoprotein in S. wolfei. IMPORTANCE Results from the present study open doors to fascinating research on complex microbial cultures in anaerobic environments (of biotechnological and ecological relevance). Such studies of defined mixed populations are critical to understanding the highly intertwined natural and engineered microbial systems and to developing more reliable and trustable metabolic models. By investigating the existing cultured microbial consortia, like the ones described here, we can acquire knowledge on microbial interactions that go beyond “who feeds whom” relations but yet benefit the parties involved. Transfer of signaling compounds and stimulation of gene expression are examples of indirect influence that members of mixed communities can exert on each other. Understanding such microbial relationships will enable development of new sustainable biotechnologies with mixed microbial cocultures and contribute to the general understanding of the complex natural microbial interactions.
Collapse
|
8
|
Zhou S, Zhang Z, Sun Z, Song Z, Bai Y, Hu J. Responses of simultaneous anammox and denitrification (SAD) process to nitrogen loading variation: Start-up, performance, sludge morphology and microbial community dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148911. [PMID: 34328926 DOI: 10.1016/j.scitotenv.2021.148911] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
The effects of loading variation on the efficiency, EPS, sludge morphology and microbial population of simultaneous anammox and denitrification (SAD) were thoroughly investigated with the low-abundance SAD sludge. Results indicated that the first stage lasted the longest (33d), and the average removal rate of TN can be maintained above 95%. The specific anammox activity (SAA), specific denitrification activity and PN/PS continued to increase, but the excessive loading caused the effluent to deteriorate rapidly, and SAA and PN/PS also decreased slightly, but it could be recovered quickly. The contribution rate of anammox and denitrification to N removal reached 87.6% and 12.4% eventually, respectively. The abundance of AnAOB was 10.68%-18.01%, 9.01%-15.54%, 5.74%-12.88% in the upper, middle and lower layers, respectively. Candidatus Kuenenia was always the dominant AnAOB, especially after high loading inhibition. The abundance of denitrifying bacteria (mainly Bacillus, Comamonas and Denitratisoma) gradually became the highest.
Collapse
Affiliation(s)
- Shun Zhou
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Zhi Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| | - Zhulong Sun
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Zhuangzhuang Song
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yun Bai
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jiawei Hu
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
9
|
Esteves E, Whyte P, Mills J, Brightwell G, Gupta TB, Bolton D. An investigation into the anaerobic spoilage microbiota of beef carcass and rump steak cuts using high- throughput sequencing. FEMS Microbiol Lett 2021; 368:6362601. [PMID: 34472614 DOI: 10.1093/femsle/fnab109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/31/2021] [Indexed: 11/14/2022] Open
Abstract
The presence of anaerobic microflora on fresh beef carcass and rump steaks, which may contribute to meat spoilage, was explored in this study. A total of 120 carcass and 120 rump steak swabs were collected immediately after slaughtering and boning, respectively from five meat plants, anaerobically incubated and enriched at 4°C for 3 weeks. This was followed by DNA extraction and 16S rRNA amplicon sequencing using the Illumina MiSeq, with subsequent bioinformatics analysis. The enriched microbiota of the samples was classified and grouped into 149 operational taxonomic units (OTUs). The microbiota recovered from both sample types consisted mainly of Carnobacterium, with an average relative abundance of 28.4% and 32.8% in beef carcasses and beef rump steaks, respectively. This was followed by Streptococcus, Serratia, Lactococcus, Enterococcus, Escherichia-Shigella, Raoultella and Aeromonas ranging from 1.5 to 20% and 0.1 to 29.8% in enriched carcasses and rump steak swabs, respectively. Trichococcus, Bacteroides, Dysgomonas, Providencia, Paraclostridium and Proteus were also present ranging from 0 to 0.8% on carcass and 0 to 1.8% on rump steak swabs, respectively. Alpha and beta diversity measurements showed limited diversity between the two sample types, but some differences between samples from the beef plants investigated were evident. This study highlights the presence of potential spoilage bacteria, mainly anaerobic genera on and between carcass and rump steaks, as an indication of contamination on and between these samples.
Collapse
Affiliation(s)
- Eden Esteves
- Department of Food Safety, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.,School of Veterinary Medicine, UCD, Belfield, Dublin 4, Ireland.,Food Assurance Team, AgResearch Limited, Hopkirk Research Institute, Massey University, Palmerston North 4472, New Zealand
| | - Paul Whyte
- School of Veterinary Medicine, UCD, Belfield, Dublin 4, Ireland
| | - John Mills
- Food Assurance Team, AgResearch Limited, Hopkirk Research Institute, Massey University, Palmerston North 4472, New Zealand
| | - Gale Brightwell
- Food Assurance Team, AgResearch Limited, Hopkirk Research Institute, Massey University, Palmerston North 4472, New Zealand
| | - Tanushree B Gupta
- Food Assurance Team, AgResearch Limited, Hopkirk Research Institute, Massey University, Palmerston North 4472, New Zealand
| | - Declan Bolton
- Department of Food Safety, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| |
Collapse
|
10
|
Zhao R, Liu J, Feng J, Li X, Li B. Microbial community composition and metabolic functions in landfill leachate from different landfills of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144861. [PMID: 33422962 DOI: 10.1016/j.scitotenv.2020.144861] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Landfill leachate usually harbors complex microbial communities responsible for the decomposition of municipal solid waste. However, the diversity and metabolic functions of the microbial communities in landfill leachate as well as the factors that influence them are still not well understood. In this study, Illumina MiSeq high-throughput sequencing was used to investigate the microbial community composition and metabolic functions in landfill leachate from 11 cities in China. The microbial diversity and structure of different leachate samples exhibited obvious differences. In general, Bacteroidetes, Firmicutes and Proteobacteria were the three dominant microbial communities among the 26 bacterial phyla identified in landfill leachate, regardless of the geographical locations. Diverse bacterial genera associated with various functions such as cellulolytic bacteria (e.g., Sphaerochaeta and Defluviitoga), acidifying bacteria (e.g., Prevotella and Trichococcus) and sulfate-reducing bacteria (e.g., Desulfuromonas and Desulfobacterium) were detected abundantly in the landfill leachate. Moreover, the archaeal community in all leachate samples was dominated by the orders Methanomicrobiales and Methanosarcinales belonging to the Euryarchaeota phylum. Notably, the archaea-specific primer pair covered more diverse archaeal communities than the universal bacteria-archaea primer pair. Seventeen archaeal genera belonging to acetoclastic, hydrogenotrophic, and methylotrophic methanogens were identified, and the composition of the dominant genera in these samples varied greatly. The canonical correlation analysis indicated that landfill age, electrical conductivity, ammonia nitrogen, and total nitrogen were significantly correlated with the microbial community structure. Based on PICRUSt2, a total of 41 metabolic pathways belonging to six metabolic pathway groups were predicted, and the KEGG pathway Metabolism was the most abundant group across all leachate samples. This study provides an important insight into the composition and functional characteristics of the microbial communities in landfill leachate.
Collapse
Affiliation(s)
- Renxin Zhao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jie Liu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China
| | - Jie Feng
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Research Academy of Environmental Sciences, Shenzhen 518001, China
| | - Xiaoyan Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
11
|
Han R, Liu L, Meng Y, Han H, Xiong R, Li Y, Chen L. Archaeal and bacterial community structures of rural household biogas digesters with different raw materials in Qinghai Plateau. Biotechnol Lett 2021; 43:1337-1348. [PMID: 33811593 DOI: 10.1007/s10529-021-03105-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/10/2021] [Indexed: 10/21/2022]
Abstract
The present study aims to investigate microbial community structures household biogas digesters with different raw materials in Qinghai Plateau rural. High-throughput 16S rRNA gene sequencing analysis revealed that Firmicutes, Bacteroidetes, and Proteobacteria are the most abundant bacterial phyla (64.08%). Prevotella group 7 was the most abundant genus in digester YL9 and YL10 (69.72% and 26.96%, respectively) using vegetable waste raw materials. Trichococcus exhibited the highest abundance (14.55%) in YL1 digester using sheep and pig manure. Clostridium sensu stricto 1 (13.89%) and Synergistaceae_uncultured (15.52%) comprised the highest abundances in digester YL5 with mixed raw materials (i.e., dairy manure, sheep manure, and human feces). In addition, Proteiniphilum and Pseudomonas exhibited the highest abundances among bacterial genera in YL4 digester using pig manure. Methanomicrobiales was the most dominant archaeal communities, ranging from 13.35% to 81.34% in abundance. Methanocorpusculum exhibited dominant abundances in all digesters using various raw materials. Methanogenium was the most abundant archaeal genera in YL4 and YL6 digesters, which consume pig manure as primary raw material. In addition, Methanosarcina and Methanosaeta exhibited the highest abundances in digester YL1 (55.03%) and YL9 (51.40%), respectively. Moreover, fermentation temperatures and pH both contributed to the archaeal and bacterial community structures in all the investigated digesters. Specially, fermentation temperature showed positive correlation with the abundances of Synergistaceae_uncultured, Methanogenium, and Methanosaeta, and pH was positively correlated with the abundances of Prevotella group 7 and Methanosarcina abundances.
Collapse
Affiliation(s)
- Rui Han
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry, Qinghai University, Ningda Road 253, Xining, 810016, Qinghai, China
| | - Li Liu
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry, Qinghai University, Ningda Road 253, Xining, 810016, Qinghai, China
| | - Yan Meng
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry, Qinghai University, Ningda Road 253, Xining, 810016, Qinghai, China
| | - Hairong Han
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry, Qinghai University, Ningda Road 253, Xining, 810016, Qinghai, China
| | - Rongbo Xiong
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry, Qinghai University, Ningda Road 253, Xining, 810016, Qinghai, China
| | - Yi Li
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry, Qinghai University, Ningda Road 253, Xining, 810016, Qinghai, China.
| | - Laisheng Chen
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry, Qinghai University, Ningda Road 253, Xining, 810016, Qinghai, China.
| |
Collapse
|
12
|
Guo B, Zhang Y, Yu N, Liu Y. Impacts of conductive materials on microbial community during syntrophic propionate oxidization for biomethane recovery. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:84-93. [PMID: 32391609 DOI: 10.1002/wer.1357] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/21/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
Propionate is one of the most important intermediates in anaerobic digestion, and its degradation requires a syntrophic partnership between propionate-oxidizing bacteria and hydrogenotrophic methanogens. Anaerobic digestion efficiency can be improved by direct interspecies electron transfer (DIET) through conductive materials. This study aimed to investigate the effects of DIET on syntrophic propionate oxidization under room temperature (20°C) and reveal the syntrophic partners. Firstly, conventional anaerobic consortium and conductive material-enriched consortium were tested for DIET under high H2 partial pressure. The latter supplemented with granular activated carbon (GAC) can mitigate H2 inhibition through DIET. Secondly, a DIET consortium was enriched for testing GAC and magnetite, both showed DIET facilitation. Microbial communities in GAC- and magnetite-supplemented reactors were similar. Syntrophic propionate-oxidizing bacteria, for example, Smithella (3.9%-9.9%) and a genus from the family Syntrophaceae (1.9%-3.6%) and methanogens Methanobacterium (30.3%-75.2%), Methanolinea (8.5%-25.2%), Methanosaeta (11.4%-36.7%), and Candidatus Methanofastidiosum (3.6%-6.6%), were predominant. Functional genes for cell mobility and membrane transport (3.3% and 9.5% in control reactor) increased with GAC (3.7% and 11.1%, respectively) and magnetite (3.7% and 10.9%, respectively) addition. Syntrophic propionate-oxidizing bacteria and methanogenesis partners were revealed by co-occurrence network, for example, Methanobacterium with Smithella, Syntrophobacter, Dechloromonas, and Trichococcus, signifying the importance of the syntrophic partnership in DIET environment. PRACTITIONER POINTS: DIET improved syntrophic propionate oxidization under room temperature condition (20°C). Microbial communities were similar for GAC- and magnetite-supplemented reactors, different with control reactor. Syntrophic propionate-oxidizing bacteria and methanogenesis partners were revealed by co-occurrence network. Methanobacterium and Smithella, Syntrophobacter, Dechloromonas, and Trichococcus were correlated.
Collapse
Affiliation(s)
- Bing Guo
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| | - Yingdi Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| | - Najiaowa Yu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
13
|
Xu J, Sun L, Xing X, Sun Z, Gu H, Lu X, Li Z, Ren Q. Culturing Bacteria From Fermentation Pit Muds of Baijiu With Culturomics and Amplicon-Based Metagenomic Approaches. Front Microbiol 2020; 11:1223. [PMID: 32714285 PMCID: PMC7344326 DOI: 10.3389/fmicb.2020.01223] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 05/14/2020] [Indexed: 12/22/2022] Open
Abstract
The Baijiu-making microbiota has an important role in the alcohol production, flavor, and character of Baijiu. 16S rRNA gene sequencing revolutionized the understanding of Baijiu-making microbiota. In this study, nine phyla, 23 classes, 49 orders, 99 families, and 201 genera were detected in pit muds (PMs) by 16S rRNA gene sequencing. Firmicutes and Bacteroidetes predominated (>99%). At the order level, Clostridiales, Bacteroidales, and Bacillales predominated (>92%). At the genus level, Hydrogenispora, Petrimonas, Proteiniphilum, and Sedimentibacter predominated. The pure culture of Baijiu-making prokaryotes was essential to elucidating the role of these microbes in the fermentation of Baijiu. According to the theory of microbial culturomics, a culturing approach with multiple culture conditions was adopted, combining 16S rRNA gene sequencing. We identified 215 prokaryotic strains, which were assigned to 66 species, 41 genera, four phyla, and 19 potential new species. Gas conditions were key factors in culturomics. In addition, culturomics significantly increased the number of species isolated from the fermentation PM compared with previous reports. With culturomics, the diversity spectrum of culturable bacteria in the PM was increased 273.33% at the genus level. This study confirms the complementary role of culturomics in the exploration of complex microbiota.
Collapse
Affiliation(s)
- Jialiang Xu
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Leping Sun
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Xuan Xing
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Zhanbin Sun
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Haoyue Gu
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Xin Lu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhenpeng Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qing Ren
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
14
|
Luo Y, Yao J, Wang X, Zheng M, Guo D, Chen Y. Efficient municipal wastewater treatment by oxidation ditch process at low temperature: Bacterial community structure in activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135031. [PMID: 31726299 DOI: 10.1016/j.scitotenv.2019.135031] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Temperature is a key element affecting the activity of microorganisms in activated sludge. Low water temperature generally leads to decreasing wastewater treatment efficiency and destroying sludge settleability. In this study, activated sludge samples from a municipal wastewater treatment plant (WWTP) implementing oxidation ditch process was used to investigate the bacterial community characteristics of a system that operates well in a cold region (Xinjiang, China) by high-throughput 16S rRNA gene sequencing. The results showed that the influent temperature was 7-12 °C in winter and 13-17 °C in summer, while the sludge volume index (SVI) of samples was between 51 and 74 mL/g. The average removal efficiencies for chemical oxygen demand (COD), biochemical oxygen demand (BOD5), suspended solid (SS), ammonia nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) were 94%, 95%, 95%, 91%, 73% and 89%, respectively. The bacteria were distributed in 32 phyla and 559 genera. The dominant phyla were Proteobacteria (28.85-48.45%), Bacteroidetes (20.00-31.22%), Chloroflexi (3.59-12.23%), Actinobacteria (1.58-15.54%) and Firmicutes (1.38-10.49%). The dominant genera were Saprospiraceae_norank (4.41-12.23%), Comamonadaceae_unclassified (3.82-8.83%), Anaerolineaceae_norank (1.39-9.35%), Dokdonella (1.13-11.26%), Candidatus_Microthrix (0.26-7.50%), Flavobacterium (0.32-8.14%), Ferribacterium (0.36-5.19%) and Nitrospira (0.084-5.37%), which were different from those found in warm-region WWTPs. Contrary to previous studies, the relative abundance of ammonia-oxidizing bacteria (AOB; Nitrosomonas and Nitrosomonadaceae) and nitrite-oxidizing bacteria (NOB; Nitrospira) increased when the temperature decreased. The successful operation of this WWTP suggests that cold-region WWTPs can achieve good pollutants removal efficiency by simultaneously maintaining an ultra-low sludge load and high dissolved oxygen concentration in the oxidation ditch. The findings of this study provide fundamental knowledge required for an efficient and stable operation of WWTPs in cold regions.
Collapse
Affiliation(s)
- Yuanshuang Luo
- College of Resources and Environmental Science, Xinjiang University, Urumqi, Xinjiang, China
| | - Junqin Yao
- College of Resources and Environmental Science, Xinjiang University, Urumqi, Xinjiang, China.
| | - Xiyuan Wang
- College of Resources and Environmental Science, Xinjiang University, Urumqi, Xinjiang, China
| | - Meiying Zheng
- Altay Sewage Purification and Management Institute, Altay, Xinjiang, China
| | - Deyong Guo
- Altay Sewage Purification and Management Institute, Altay, Xinjiang, China
| | - Yinguang Chen
- College of Resources and Environmental Science, Xinjiang University, Urumqi, Xinjiang, China; College of Environmental Science and Engineering, Tongji University, Shanghai, China
| |
Collapse
|
15
|
Strepis N, Naranjo HD, Meier-Kolthoff J, Göker M, Shapiro N, Kyrpides N, Klenk HP, Schaap PJ, Stams AJM, Sousa DZ. Genome-guided analysis allows the identification of novel physiological traits in Trichococcus species. BMC Genomics 2020; 21:24. [PMID: 31914924 PMCID: PMC6950789 DOI: 10.1186/s12864-019-6410-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/18/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The genus Trichococcus currently contains nine species: T. flocculiformis, T. pasteurii, T. palustris, T. collinsii, T. patagoniensis, T. ilyis, T. paludicola, T. alkaliphilus, and T. shcherbakoviae. In general, Trichococcus species can degrade a wide range of carbohydrates. However, only T. pasteurii and a non-characterized strain of Trichococcus, strain ES5, have the capacity of converting glycerol to mainly 1,3-propanediol. Comparative genomic analysis of Trichococcus species provides the opportunity to further explore the physiological potential and uncover novel properties of this genus. RESULTS In this study, a genotype-phenotype comparative analysis of Trichococcus strains was performed. The genome of Trichococcus strain ES5 was sequenced and included in the comparison with the other nine type strains. Genes encoding functions related to e.g. the utilization of different carbon sources (glycerol, arabinan and alginate), antibiotic resistance, tolerance to low temperature and osmoregulation could be identified in all the sequences analysed. T. pasteurii and Trichococcus strain ES5 contain a operon with genes encoding necessary enzymes for 1,3-PDO production from glycerol. All the analysed genomes comprise genes encoding for cold shock domains, but only five of the Trichococcus species can grow at 0 °C. Protein domains associated to osmoregulation mechanisms are encoded in the genomes of all Trichococcus species, except in T. palustris, which had a lower resistance to salinity than the other nine studied Trichococcus strains. CONCLUSIONS Genome analysis and comparison of ten Trichococcus strains allowed the identification of physiological traits related to substrate utilization and environmental stress resistance (e.g. to cold and salinity). Some substrates were used by single species, e.g. alginate by T. collinsii and arabinan by T. alkaliphilus. Strain ES5 may represent a subspecies of Trichococcus flocculiformis and contrary to the type strain (DSM 2094T), is able to grow on glycerol with the production of 1,3-propanediol.
Collapse
Affiliation(s)
- Nikolaos Strepis
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Henry D. Naranjo
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Jan Meier-Kolthoff
- Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Markus Göker
- Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Nicole Shapiro
- DOE Joint Genome Institute, 2800 Mitchell Drive 100, CA, Walnut Creek, CA 94598 USA
| | - Nikos Kyrpides
- DOE Joint Genome Institute, 2800 Mitchell Drive 100, CA, Walnut Creek, CA 94598 USA
| | - Hans-Peter Klenk
- Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
- School of Biology, Newcastle University, Ridley Building 2, Newcastle, NE1 7RU UK
| | - Peter J. Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Alfons J. M. Stams
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Diana Z. Sousa
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
16
|
Zhang L, Long B, Wu J, Cheng Y, Zhang B, Zeng Y, Huang S, Zeng M. Evolution of microbial community during dry storage and recovery of aerobic granular sludge. Heliyon 2019; 5:e03023. [PMID: 31890963 PMCID: PMC6926229 DOI: 10.1016/j.heliyon.2019.e03023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/18/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022] Open
Abstract
Aerobic granular sludge (AGS) was imbedded in agar and stored at 4 °C for 30 days, and then the stored granules were recovered in a sequencing batch reactor fed real wastewater within 11 days. Variations in microbial community compositions were investigated during dry storage and recovery of AGS, aiming to elucidate the mechanism of granular stability loss and recovery. The storage and recovery of AGS involved microbial community evolution. The dominant bacterial genera of the mature AGS were Zoogloea (relative abundance of 22.39%), Thauera (16.03%) and Clostridium_sensu_stricto (11.17%), and those of the stored granules were Acidovorax (26.79%), Macellibacteroides (12.83%) and Pseudoxanthomonas (5.69%), respectively. However, the dominant genera were Streptococcus (43.64%), Clostridium_sensu_stricto (12.3.6%) and Lactococcus (11.47%) in the recovered AGS. Methanogens were always the dominant archaeal species in mature AGS (93.01%), stored granules (99.99%) and the recovered AGS (94.84%). Facultative anaerobes and anaerobes proliferated and dominated in the stored granules, and their metabolic activities gradually led to granular structure destruction and property deterioration. However, the stored granules served as carriers for the microbes originated from the real septic tank wastewater during recovery. They proliferated rapidly and secreted a large number of extracellular polymeric substances which helped to recover the granular structure in 11 days.
Collapse
Affiliation(s)
- Linan Zhang
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou, 341000, Jiangxi, China
| | - Bei Long
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou, 341000, Jiangxi, China
| | - Junfeng Wu
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Mingyue Road, Pingdingshan, 467036, Henan, China
| | - Yuanyuan Cheng
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou, 341000, Jiangxi, China
| | - Binchao Zhang
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou, 341000, Jiangxi, China
| | - Yu Zeng
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou, 341000, Jiangxi, China
| | - Sinong Huang
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou, 341000, Jiangxi, China
| | - Mingjing Zeng
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou, 341000, Jiangxi, China
| |
Collapse
|