1
|
Alloun W, Berkani M, Shavandi A, Beddiar A, Pellegrini M, Garzia M, Lakhdari D, Ganachari SV, Aminabhavi TM, Vasseghian Y, Muddapur U, Chaouche NK. Harnessing artificial intelligence-driven approach for enhanced indole-3-acetic acid from the newly isolated Streptomyces rutgersensis AW08. ENVIRONMENTAL RESEARCH 2024; 252:118933. [PMID: 38642645 DOI: 10.1016/j.envres.2024.118933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
Indole-3-acetic acid (IAA) derived from Actinobacteria fermentations on agro-wastes constitutes a safer and low-cost alternative to synthetic IAA. This study aims to select a high IAA-producing Streptomyces-like strain isolated from Lake Oubeira sediments (El Kala, Algeria) for further investigations (i.e., 16S rRNA gene barcoding and process optimization). Subsequently, artificial intelligence-based approaches were employed to maximize IAA bioproduction on spent coffee grounds as high-value-added feedstock. The specificity was the novel application of the Limited-Memory Broyden-Fletcher-Goldfarb-Shanno Box (L-BFGS-B) optimization algorithm. The new strain AW08 was a significant producer of IAA (26.116 ± 0.61 μg/mL) and was identified as Streptomyces rutgersensis by 16S rRNA gene barcoding and phylogenetic inquiry. The empirical data involved the inoculation of AW08 in various cultural conditions according to a four-factor Box Behnken Design matrix (BBD) of Response surface methodology (RSM). The input parameters and regression equation extracted from the RSM-BBD were the basis for implementing and training the L-BFGS-B algorithm. Upon training the model, the optimal conditions suggested by the BBD and L-BFGS-B algorithm were, respectively, L-Trp (X1) = 0.58 %; 0.57 %; T° (X2) = 26.37 °C; 28.19 °C; pH (X3) = 7.75; 8.59; and carbon source (X4) = 30 %; 33.29 %, with the predicted response IAA (Y) = 152.8; 169.18 μg/mL). Our findings emphasize the potential of the multifunctional S. rutgersensis AW08, isolated and reported for the first time in Algeria, as a robust producer of IAA. Validation investigations using the bioprocess parameters provided by the L-BFGS-B and the BBD-RSM models demonstrate the effectiveness of AI-driven optimization in maximizing IAA output by 5.43-fold and 4.2-fold, respectively. This study constitutes the first paper reporting a novel interdisciplinary approach and providing insights into biotechnological advancements. These results support for the first time a reasonable approach for valorizing spent coffee grounds as feedstock for sustainable and economic IAA production from S. rutgersensis AW08.
Collapse
Affiliation(s)
- Wiem Alloun
- Laboratory of Mycology, Biotechnology and Microbial Activity, Department of Applied Biology, BP, 325 Aïn El Bey Road, Constantine 25017, Algeria; The BioMatter Lab, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, 67100 L'Aquila, Italy
| | - Mohammed Berkani
- Biotechnology Laboratory, Higher National School of Biotechnology Taoufik KHAZNADAR, Nouveau Pôle universitaire Ali Mendjeli, BP. E66, Constantine, 25100, Algeria.
| | - Amin Shavandi
- The BioMatter Lab, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Adlène Beddiar
- Department of Web Development and Artificial Intelligence, University of Mohammed Cherif Messaadia, Souk-Ahras, Algeria
| | - Marika Pellegrini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, 67100 L'Aquila, Italy
| | - Matteo Garzia
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, 67100 L'Aquila, Italy
| | - Delloula Lakhdari
- Biotechnology Laboratory, Higher National School of Biotechnology Taoufik KHAZNADAR, Nouveau Pôle universitaire Ali Mendjeli, BP. E66, Constantine, 25100, Algeria; Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga 16014, Algiers, Algeria
| | - Sharanabasava V Ganachari
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India; School of Engineering, University of Petroleum and Energy Studies (UPES) Uttarakhand, Dehradun, 248 007, India; Korea University, Seoul, South Korea.
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Gharuan, Mohali, Punjab 140413, India; The University of Johannesburg, Department of Chemical Engineering, P.O. Box 17011, Doornfontein, 2088, South Africa.
| | - Uday Muddapur
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka, 580 031, India
| | - Noreddine Kacem Chaouche
- Laboratory of Mycology, Biotechnology and Microbial Activity, Department of Applied Biology, BP, 325 Aïn El Bey Road, Constantine 25017, Algeria
| |
Collapse
|
2
|
van der Meij A, Elsayed SS, Du C, Willemse J, Wood TM, Martin NI, Raaijmakers JM, van Wezel GP. The plant stress hormone jasmonic acid evokes defensive responses in streptomycetes. Appl Environ Microbiol 2023; 89:e0123923. [PMID: 37902333 PMCID: PMC10686085 DOI: 10.1128/aem.01239-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE Microorganisms that live on or inside plants can influence plant growth and health. Among the plant-associated bacteria, streptomycetes play an important role in defense against plant diseases, but the underlying mechanisms are not well understood. Here, we demonstrate that the plant hormones jasmonic acid (JA) and methyl jasmonate directly affect the life cycle of streptomycetes by modulating antibiotic synthesis and promoting faster development. Moreover, the plant hormones specifically stimulate the synthesis of the polyketide antibiotic actinorhodin in Streptomyces coelicolor. JA is then modified in the cell by amino acid conjugation, thereby quenching toxicity. Collectively, these results provide new insight into the impact of a key plant hormone on diverse phenotypic responses of streptomycetes.
Collapse
Affiliation(s)
- Anne van der Meij
- Molecular Biotechnology, Institute of Biology, Leiden University, the Netherlands, Leiden
| | - Somayah S. Elsayed
- Molecular Biotechnology, Institute of Biology, Leiden University, the Netherlands, Leiden
| | - Chao Du
- Molecular Biotechnology, Institute of Biology, Leiden University, the Netherlands, Leiden
| | - Joost Willemse
- Molecular Biotechnology, Institute of Biology, Leiden University, the Netherlands, Leiden
| | - Thomas M. Wood
- Molecular Biotechnology, Institute of Biology, Leiden University, the Netherlands, Leiden
| | - Nathaniel I. Martin
- Molecular Biotechnology, Institute of Biology, Leiden University, the Netherlands, Leiden
| | - Jos M. Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Gilles P. van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University, the Netherlands, Leiden
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| |
Collapse
|
3
|
Bai C, van Wezel GP. CUBIC: A Versatile Cumate-Based Inducible CRISPRi System in Streptomyces. ACS Synth Biol 2023; 12:3143-3147. [PMID: 37801665 PMCID: PMC10594651 DOI: 10.1021/acssynbio.3c00464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 10/08/2023]
Abstract
Streptomyces, a genus of Gram-positive bacteria, is known as nature's medicine maker, producing a plethora of natural products that have huge benefits for human health, agriculture, and biotechnology. To take full advantage of this treasure trove of bioactive molecules, better genetic tools are required for the genetic engineering and synthetic biology of Streptomyces. We therefore developed CUBIC, a novel CUmate-Based Inducible CRISPR interference (CRISPRi) system that allows highly efficient and inducible gene knockdown in Streptomyces. Its broad application is shown by the specific and nondisruptive knockdown of genes involved in growth, development and antibiotic production in various Streptomyces species. To facilitate hyper-efficient plasmid construction, we adapted the Golden Gate assembly to achieve 100% cloning efficiency of the protospacers. We expect that the versatile plug-and-play CUBIC system will create new opportunities for research and innovation in the field of Streptomyces.
Collapse
Affiliation(s)
- Chaoxian Bai
- Institute of Biology, Leiden University, Sylviusweg 72, 2333
BE, Leiden, Netherlands
| | - Gilles P. van Wezel
- Institute of Biology, Leiden University, Sylviusweg 72, 2333
BE, Leiden, Netherlands
| |
Collapse
|
4
|
Alloun W, Berkani M, Benaissa A, Shavandi A, Gares M, Danesh C, Lakhdari D, Ghfar AA, Chaouche NK. Waste valorization as low-cost media engineering for auxin production from the newly isolated Streptomyces rubrogriseus AW22: Model development. CHEMOSPHERE 2023; 326:138394. [PMID: 36925000 DOI: 10.1016/j.chemosphere.2023.138394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/26/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Indole-3-acetic acid (IAA) represents a crucial phytohormone regulating specific tropic responses in plants and functions as a chemical signal between plant hosts and their symbionts. The Actinobacteria strain of AW22 with high IAA production ability was isolated in Algeria for the first time and was characterized as Streptomyces rubrogriseus through chemotaxonomic analysis and 16 S rDNA sequence alignment. The suitable medium for a maximum IAA yield was engineered in vitro and in silico using machine learning-assisted modeling. The primary low-cost feedstocks comprised various concentrations of spent coffee grounds (SCGs) and carob bean grounds (CBGs) extracts. Further, we combined the Box-Behnken design from response surface methodology (BBD-RSM) with artificial neural networks (ANNs) coupled with the genetic algorithm (GA). The critical process parameters screened via Plackett-Burman design (PBD) served as BBD and ANN-GA inputs, with IAA yield as the output variable. Analysis of the putative IAA using thin-layer chromatography (TLC) and (HPLC) revealed Rf values equal to 0.69 and a retention time of 3.711 min, equivalent to the authentic IAA. AW 22 achieved a maximum IAA yield of 188.290 ± 0.38 μg/mL using the process parameters generated by the ANN-GA model, consisting of L-Trp, 0.6%; SCG, 30%; T°, 25.8 °C; and pH 9, after eight days of incubation. An R2 of 99.98%, adding to an MSE of 1.86 × 10-5 at 129 epochs, postulated higher reliability of ANN-GA-approach in predicting responses, compared with BBD-RSM modeling exhibiting an R2 of 76.28%. The validation experiments resulted in a 4.55-fold and 4.46-fold increase in IAA secretion, corresponding to ANN-GA and BBD-RSM models, respectively, confirming the validity of both models.
Collapse
Affiliation(s)
- Wiem Alloun
- Laboratory of Mycology, Biotechnology and Microbial Activity (LaMyBAM), Department of Applied Biology, Constantine 1 University, BP, 325, Aïn El Bey, Constantine, 25017, Algeria.
| | - Mohammed Berkani
- Biotechnology Laboratory, National Higher School of Biotechnology, Ali Mendjeli University City, BP E66, 25100, Constantine, Algeria.
| | - Akila Benaissa
- Pharmaceutical Research and Sustainable Development Laboratory (ReMeDD), Department of Pharmaceutical Engineering, Faculty of Process Engineering, Constantine 3 University, Constantine, 25000, Algeria
| | - Amin Shavandi
- 3BIO-BioMatter Unit, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050, Brussels, Belgium
| | - Maroua Gares
- Laboratory of Mycology, Biotechnology and Microbial Activity (LaMyBAM), Department of Applied Biology, Constantine 1 University, BP, 325, Aïn El Bey, Constantine, 25017, Algeria
| | - Camellia Danesh
- The University of Johannesburg, Department of Chemical Engineering, P.O. Box 17011, Doornfontein, 2088, South Africa.
| | - Delloula Lakhdari
- Biotechnology Laboratory, National Higher School of Biotechnology, Ali Mendjeli University City, BP E66, 25100, Constantine, Algeria; Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga 16014, Algiers, Algeria
| | - Ayman A Ghfar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Noreddine Kacem Chaouche
- Laboratory of Mycology, Biotechnology and Microbial Activity (LaMyBAM), Department of Applied Biology, Constantine 1 University, BP, 325, Aïn El Bey, Constantine, 25017, Algeria
| |
Collapse
|
5
|
Thayanuwadtanawong O, Duangupama T, Bunbamrung N, Pittayakhajonwut P, Intaraudom C, Tadtong S, Suriyachadkun C, He YW, Tanasupawat S, Thawai C. Streptomyces telluris sp. nov., a promising terrestrial actinobacterium with antioxidative potentials. Arch Microbiol 2023; 205:247. [PMID: 37212915 DOI: 10.1007/s00203-023-03585-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/01/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
An actinomycete strain, AA8T, which produced a long straight chain of spores (verticillati type), was isolated from the rhizosphere soil of Mangifera indica in Bangkok, Thailand. A polyphasic taxonomic study was carried out to establish the taxonomic position of the strain. Strain AA8T formed a tight taxonomic position in the 16S rRNA gene tree with Streptomyces roseifaciens MBT76T. In contrast, the genome-based taxonomic analysis showed that strain AA8T shared low average nucleotide identity-BLAST (94.1%), the digital DNA-DNA hybridization (58.2%), and the average amino acid identity (93.6%) values with S. roseifaciens MBT76T. Moreover, a combination of physiological and biochemical properties indicated that strain AA8T was distinguished from all Streptomyces species with effectively published names. Strain AA8T, therefore, represents a novel species of Streptomyces, and the name Streptomyces telluris is proposed for the strain. The type strain is AA8T (= TBRC 8483T = NBRC 113461T). The chemical investigation led to the isolation of nine known compounds (compounds 1-9). Among these compounds, compound 7 (3,4-dihydroxybenzaldehyde) possesses strong antioxidant activity equal to ascorbic acid, a powerful antioxidative agent.
Collapse
Affiliation(s)
- Onnicha Thayanuwadtanawong
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Thitikorn Duangupama
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Nantiya Bunbamrung
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phaholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Pattama Pittayakhajonwut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phaholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Chakapong Intaraudom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phaholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Sarin Tadtong
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok, 26120, Thailand
| | - Chanwit Suriyachadkun
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phaholyothin Road, Khlong Nueng, Khlong Luang, Khlong Song, 12120, Pathum Thani, Thailand
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chitti Thawai
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
- Actinobacterial Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
| |
Collapse
|
6
|
Kusuma AB, Putra KE, Vanggy LR, Loh J, Nouioui I, Goodfellow M. Actinospica acidithermotolerans sp. nov., a novel actinomycete isolated from sediment from an Indonesian hot spring. Arch Microbiol 2022; 204:518. [PMID: 35871242 PMCID: PMC9308616 DOI: 10.1007/s00203-022-03058-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/07/2022] [Indexed: 11/27/2022]
Abstract
A polyphasic study was designed to resolve the taxonomic position of isolate MGRD01-02T which was recovered from an acidic hot spring in Indonesia and assigned to the genus Actinospica. Phylogenetic analyses based on 16S rRNA gene sequences show that the isolate is most closely related to the type strains of Actinospica acidiphila (98.5%), Actinospica robiniae (97.8%) and Actinospica durhamensis (96.8%). Morphological and chemotaxonomic data underpin the assignment of the isolate to the genus Actinospica as it forms an extensively branched substrate mycelium which carries tufts of white aerial hyphae that differentiate into straight to flexuous chains of cylindrical spores with faint rugose surfaces, contains 2,6-diamino-3-hydroxydiaminopimelic acid in the peptidoglycan, mixtures of hydrogenated menaquinones with nine isoprene units, iso-C 15:O and iso-C 16:O as major fatty acids and phosphatidylethanolamine as the diagnostic phospholipid. Whole-genome sequence analyses show that the isolate, A. durhamensis CSCA 57T and Actinocrinis puniceicyclus DSM 45168T have genome sizes of 7.9, 9.6 and 6.7 Mbp, respectively. A phylogenomic tree shows that they form distinct branches in a well-supported clade, a result supported by associated phenotypic data. Average nucleotide identity and digital DNA:DNA hybridization similarities are below the recommended thresholds for assigning strains to the same species; they also indicate that isolate MGRD01-02T is most closely related to the A. durhamensis and A. robiniae strains. Corresponding amino acid identity and conserved protein data not only support these relationships but also confirm the taxonomic integrity of the genus Actinocrinis. Based on these results, it is proposed that isolate MGRD01-02T (= CCMM B1308T = ICEBB-09T = NCIMB 15218T) be classified in the genus Actinospica as Actinospica acidithermotolerans sp. nov. The draft genome of the isolate and its closest phylogenomic neighbours contain biosynthetic gene clusters with the potential to produce new natural products, notably antibiotics.
Collapse
|
7
|
Abdelrahman O, Yagi S, El Siddig M, El Hussein A, Germanier F, De Vrieze M, L’Haridon F, Weisskopf L. Evaluating the Antagonistic Potential of Actinomycete Strains Isolated From Sudan's Soils Against Phytophthora infestans. Front Microbiol 2022; 13:827824. [PMID: 35847058 PMCID: PMC9277107 DOI: 10.3389/fmicb.2022.827824] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Soil microorganisms play crucial roles in soil fertility, e.g., through decomposing organic matter, cycling nutrients or through beneficial interactions with plants. Actinomycetes are a major component of soil inhabitants; they are prolific producers of specialized metabolites, among which many antibiotics. Here we report the isolation and characterization of 175 Actinomycetes from rhizosphere and bulk soil samples collected in 18 locations in Sudan. We evaluated the strains' metabolic potential for plant protection by testing their ability to inhibit the mycelial growth of the oomycete Phytophthora infestans, which is one of the most devastating plant pathogens worldwide. Most strains significantly reduced the oomycete's growth in direct confrontational in vitro assays. A significant proportion of the tested strains (15%) were able to inhibit P. infestans to more than 80%, 23% to 50%-80%, while the remaining 62% had inhibition percentages lesser than 50%. Different morphologies of P. infestans mycelial growth and sporangia formation were observed upon co-inoculation with some of the Actinomycetes isolates, such as the production of fewer, thinner hyphae without sporangia leading to a faint growth morphology, or on the contrary, of clusters of thick-walled hyphae leading to a bushy, or "frozen" morphology. These morphologies were caused by strains differing in activity levels but phylogenetically closely related with each other. To evaluate whether the isolated Actinomycetes could also inhibit the pathogen's growth in planta, the most active strains were tested for their ability to restrict disease progress in leaf disc and full plant assays. Five of the active strains showed highly significant protection of potato leaves against the pathogen in leaf disc assays, as well as substantial reduction of disease progress in full plants assays. Using cell-free filtrates instead of the bacterial spores also led to full protection against disease on leaf discs, which highlights the strong crop protective potential of the secreted metabolites that could be applied as leaf spray. This study demonstrates the strong anti-oomycete activity of soil- and rhizosphere-borne Actinomycetes and highlights their significant potential for the development of sustainable solutions based on either cell suspensions or cell-free filtrates to safeguard potatoes from their most damaging pathogen.
Collapse
Affiliation(s)
- Ola Abdelrahman
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Botany, University of Khartoum, Khartoum, Sudan
| | - Sakina Yagi
- Department of Botany, University of Khartoum, Khartoum, Sudan
| | | | - Adil El Hussein
- Department of Botany, University of Khartoum, Khartoum, Sudan
| | - Fanny Germanier
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Mout De Vrieze
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Laure Weisskopf
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
8
|
The ubiquitous catechol moiety elicits siderophore and angucycline production in Streptomyces. Commun Chem 2022; 5:14. [PMID: 36697563 PMCID: PMC9814775 DOI: 10.1038/s42004-022-00632-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/18/2022] [Indexed: 01/28/2023] Open
Abstract
Actinobacteria are a rich source of bioactive molecules, and genome sequencing has shown that the vast majority of their biosynthetic potential has yet to be explored. However, many of their biosynthetic gene clusters (BGCs) are poorly expressed in the laboratory, which prevents discovery of their cognate natural products. To exploit their full biosynthetic potential, better understanding of the signals that promote the expression of BGCs is needed. Here, we show that the human stress hormone epinephrine (adrenaline) elicits siderophore production by Actinobacteria. Catechol was established as the likely eliciting moiety, since similar responses were seen for catechol and for the catechol-containing molecules dopamine and catechin but not for related molecules. Exploration of the catechol-responsive strain Streptomyces sp. MBT84 using mass spectral networking revealed elicitation of a BGC that produces the angucycline glycosides aquayamycin, urdamycinone B and galtamycin C. Heterologous expression of the catechol-cleaving enzymes catechol 1,2-dioxygenase or catechol 2,3-dioxygenase counteracted the eliciting effect of catechol. Thus, our work identifies the ubiquitous catechol moiety as a novel elicitor of the expression of BGCs for specialized metabolites.
Collapse
|
9
|
Kusuma AB, Nouioui I, Goodfellow M. Genome-based classification of the Streptomyces violaceusniger clade and description of Streptomyces sabulosicollis sp. nov. from an Indonesian sand dune. Antonie Van Leeuwenhoek 2021; 114:859-873. [PMID: 33797685 PMCID: PMC8137480 DOI: 10.1007/s10482-021-01564-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/18/2021] [Indexed: 11/23/2022]
Abstract
A polyphasic study was designed to determine the taxonomic provenance of a strain, isolate PRKS01-29T, recovered from an Indonesian sand dune and provisionally assigned to the Streptomyces violaceusniger clade. Genomic, genotypic and phenotypic data confirmed this classification. The isolate formed an extensively branched substrate mycelium which carried aerial hyphae that differentiated into spiral chains of rugose ornamented spores, contained LL-as the wall diaminopimelic acid, MK-9 (H6, H8) as predominant isoprenologues, phosphatidylethanolamine as the diagnostic phospholipid and major proportions of saturated, iso- and anteiso- fatty acids. Whole-genome sequences generated for the isolate and Streptomyces albiflaviniger DSM 41598T and Streptomyces javensis DSM 41764T were compared with phylogenetically closely related strains, the isolate formed a branch within the S. violaceusniger clade in the resultant phylogenomic tree. Whole-genome sequences data showed that isolate PRKS01-29T was most closely related to the S. albiflaviniger strain but was distinguished from the latter and from other members of the clade using combinations of phenotypic properties and average nucleotide identity and digital DNA:DNA hybridization scores. Consequently, it is proposed that isolate PRKS01-29T (= CCMM B1303T = ICEBB-02T = NCIMB 15210T) should be classified in the genus Streptomyces as Streptomyces sabulosicollis sp. nov. It is also clear that streptomycetes which produce spiral chains of rugose ornamented spores form a well-defined monophyletic clade in the Streptomyces phylogenomic tree., the taxonomic status of which requires further study. The genome of the type strain of S. sabulosicollis contains biosynthetic gene clusters predicted to produce new natural products.
Collapse
Affiliation(s)
- Ali B Kusuma
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK.
- Indonesian Centre for Extremophile Bioresources and Biotechnology (ICEBB), Faculty of Biotechnology, Sumbawa University of Technology, Sumbawa Besar, 84371, Indonesia.
| | - Imen Nouioui
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
- Leibniz-Institut DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
10
|
Kloosterman AM, Cimermancic P, Elsayed SS, Du C, Hadjithomas M, Donia MS, Fischbach MA, van Wezel GP, Medema MH. Expansion of RiPP biosynthetic space through integration of pan-genomics and machine learning uncovers a novel class of lanthipeptides. PLoS Biol 2020; 18:e3001026. [PMID: 33351797 PMCID: PMC7794033 DOI: 10.1371/journal.pbio.3001026] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 01/08/2021] [Accepted: 12/07/2020] [Indexed: 12/22/2022] Open
Abstract
Microbial natural products constitute a wide variety of chemical compounds, many which can have antibiotic, antiviral, or anticancer properties that make them interesting for clinical purposes. Natural product classes include polyketides (PKs), nonribosomal peptides (NRPs), and ribosomally synthesized and post-translationally modified peptides (RiPPs). While variants of biosynthetic gene clusters (BGCs) for known classes of natural products are easy to identify in genome sequences, BGCs for new compound classes escape attention. In particular, evidence is accumulating that for RiPPs, subclasses known thus far may only represent the tip of an iceberg. Here, we present decRiPPter (Data-driven Exploratory Class-independent RiPP TrackER), a RiPP genome mining algorithm aimed at the discovery of novel RiPP classes. DecRiPPter combines a Support Vector Machine (SVM) that identifies candidate RiPP precursors with pan-genomic analyses to identify which of these are encoded within operon-like structures that are part of the accessory genome of a genus. Subsequently, it prioritizes such regions based on the presence of new enzymology and based on patterns of gene cluster and precursor peptide conservation across species. We then applied decRiPPter to mine 1,295 Streptomyces genomes, which led to the identification of 42 new candidate RiPP families that could not be found by existing programs. One of these was studied further and elucidated as a representative of a novel subfamily of lanthipeptides, which we designate class V. The 2D structure of the new RiPP, which we name pristinin A3 (1), was solved using nuclear magnetic resonance (NMR), tandem mass spectrometry (MS/MS) data, and chemical labeling. Two previously unidentified modifying enzymes are proposed to create the hallmark lanthionine bridges. Taken together, our work highlights how novel natural product families can be discovered by methods going beyond sequence similarity searches to integrate multiple pathway discovery criteria. This study shows that decRiPPter, an innovative algorithmic approach using pan-genomics and machine learning, can discover novel types of ribosomally synthesized peptide (RIPP) natural products, including a new class of lanthipeptides.
Collapse
Affiliation(s)
| | - Peter Cimermancic
- Verily Life Sciences, South San Francisco, CA, United States of America
| | | | - Chao Du
- Institute of Biology, Leiden University, the Netherlands
| | | | - Mohamed S. Donia
- Department of Molecular Biology, Princeton University, NJ, United States of America
| | | | - Gilles P. van Wezel
- Institute of Biology, Leiden University, the Netherlands
- Netherlands Institute for Ecology (NIOO-KNAW), Wageningen, the Netherlands
- * E-mail: (GPvW); (MHM)
| | - Marnix H. Medema
- Bioinformatics group, Wageningen University, the Netherlands
- * E-mail: (GPvW); (MHM)
| |
Collapse
|
11
|
Kusuma AB, Nouioui I, Klenk HP, Goodfellow M. Streptomyces harenosi sp. nov., a home for a gifted strain isolated from Indonesian sand dune soil. Int J Syst Evol Microbiol 2020; 70:4874-4882. [PMID: 32821037 PMCID: PMC7656270 DOI: 10.1099/ijsem.0.004346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/06/2020] [Indexed: 01/17/2023] Open
Abstract
A polyphasic study was undertaken to establish the position of a Streptomyces strain, isolate PRKS01-65T, recovered from sand dune soil collected at Parangkusumo, Yogyakarta Province, Java, Indonesia. A combination of chemotaxonomic, cultural and morphological properties confirmed its position in the genus of Streptomyces. Comparative 16S rRNA gene sequence analyses showed that the isolate was most closely related to Streptomyces leeuwenhoekii C34T (99.9 % similarity) and loosely associated with the type strains of Streptomyces chiangmaiensis (98.7 % similarity) and Streptomyces glomeratus (98.9 % similarity). Multilocus sequence analyses based on five conserved housekeeping gene alleles confirmed the close relationship between the isolate and S. leeuwenhoekii C34T, although both strains belonged to a well-supported clade that encompassed the type strains of S. glomeratus, Streptomyces griseomycini, Streptomyces griseostramineus, Streptomyces labedae, Streptomyces lomondensis and Streptomyces spinoverrucosus. A comparison of the draft genome sequence generated for the isolate with corresponding whole genome sequences of its closest phylogenomic neighbours showed that it formed a well-separated lineage with S. leeuwenhoekii C34T. These strains can also be distinguished using a combination of phenotypic properties and by average nucleotide identity and digital DNA-DNA hybridization similarities of 94.3 and 56 %, values consistent with their classification in different species. Based on this wealth of data it is proposed that isolate PRKS01-65T (=NCIMB 15211T=CCMM B1302T=ICEBB-03T) be classified as Streptomyces harenosi sp. nov. The genome of the isolate contains several biosynthetic gene clusters with the potential to produce new natural products.
Collapse
Affiliation(s)
- Ali Budhi Kusuma
- School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Indonesian Centre for Extremophile Bioresources and Biotechnology (ICEBB), Faculty of Biotechnology, Sumbawa University of Technology, Sumbawa Besar, 84371, Indonesia
| | - Imen Nouioui
- School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Leibniz-Institut DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|