1
|
Chhetri G, Kim HJ, Jeon JM, Yoon JJ. Isolation of Massilia species capable of degrading Poly(3-hydroxybutyrate) isolated from eggplant (Solanum melongena L.) field. CHEMOSPHERE 2024; 368:143776. [PMID: 39566202 DOI: 10.1016/j.chemosphere.2024.143776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/22/2024]
Abstract
Poly(3-hydroxybutyrate) (PHB) is crucial for replacing petroleum-based plastics, an essential step towards fostering a bio-based economy. This shift is urgently needed to safeguard human health and preserve natural ecosystems. PHB is one of the most extremely commercialized bio-plastics. Although. significant progress has been made in identifying bacteria that produce PHB, fewer bacteria capable of degrading it have been discovered. Four newly isolated Massilia strains capable of degrading PHB were discovered in eggplant (Solanum melongena L.) field soil. Their PHB-degrading abilities were investigated under different temperatures and media using emulsified solid-media based cultures. The strains belong to the genus Massilia, were evaluated for their effectiveness. Among them, Massilia sp. JJY02, was selected for its exceptional PHB degradation. PHB degradation was confirmed by monitoring changes in the physical and chemical properties of PHB films using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). After 20 days of cultivation with PHB film, Massilia sp. JJY02 achieved approximately 90% PHB degradation at 28 °C. All the novel strains were capable of producing carotenoid-type pigments and indole-acetic acid (IAA). Among them, Massilia sp. JJY03 and JJY04 showed phosphate solubilization activity. This study demonstrated that soil bacteria from eggplant have both PHB-degrading and plant growth promoting capabilities, marking the first instance of showing that species of Massilia can degrade PHB.
Collapse
Affiliation(s)
- Geeta Chhetri
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, 31056, Republic of Korea
| | - Hyun-Joong Kim
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, 31056, Republic of Korea
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, 31056, Republic of Korea
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, 31056, Republic of Korea.
| |
Collapse
|
2
|
Huang X, Qi S, Song W, Yu X, Zhang H, Xiang W, Zhao J, Wang X. Massilia luteola sp. nov., a novel indole-producing and cellulose-degrading bacterium isolated from soil. Int J Syst Evol Microbiol 2024; 74. [PMID: 38619981 DOI: 10.1099/ijsem.0.006331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
A Gram-stain-negative, rod-shaped, indole-producing, and cellulose-degrading bacterial strain, designated NEAU-G-C5T, was isolated from soil collected from a forest in Dali city, Yunnan province, south China. 16S rRNA gene sequence analysis showed that strain NEAU-G-C5T was assigned to the genus Massilia and showed high sequence similarities to Massilia phosphatilytica 12-OD1T (98.32 %) and Massilia putida 6 NM-7T (98.41 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NEAU-G-C5T formed a lineage related to M. phosphatilytica 12-OD1T and M. putida 6 NM-7T. The major fatty acids of the strain were C16 : 0, C16 : 1 ω7c, and C17 : 0 cyclo. The respiratory quinone was Q-8. The polar lipid profile of the strain showed the presence of diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. In addition, the average nucleotide identity values between strain NEAU-G-C5T and its reference strains M. phosphatilytica 12-OD1T, M. putida 6 NM-7T, M. norwichensis NS9T, and M. kyonggiensis TSA1T were 89.7, 88.2, 81.3, and 88.0 %, respectively, and the levels of digital DNA-DNA hybridization between them were found to be 58.5 % (54.9-62.0 %), 53.2 % (49.8-56.7 %), 31.9 % (28.6-35.5 %), and 57.7 % (54.1-61.2 %), respectively, which were lower than the accepted threshold values of 95-96 % and 70 %, respectively. The DNA G+C content of strain NEAU-G-C5T was 66.5 mol%. The strain could produce indoleacetic acid and cellulase. On the basis of the phenotypic, genotypic, and chemotaxonomic characteristics, we conclude that strain NEAU-G-C5T represents a novel species of the genus Massilia, for which the name Massilia luteola sp. nov. is proposed. The type strain is NEAU-G-C5T (=MCCC 1K08668T=KCTC 8080T).
Collapse
Affiliation(s)
- Xinbing Huang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District,Harbin 150030, PR China
| | - Shengtao Qi
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District,Harbin 150030, PR China
| | - Wenshuai Song
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District,Harbin 150030, PR China
| | - Xiaoxin Yu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District,Harbin 150030, PR China
| | - Haifeng Zhang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District,Harbin 150030, PR China
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District,Harbin 150030, PR China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests,Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District,Harbin 150030, PR China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District,Harbin 150030, PR China
| |
Collapse
|
3
|
Bowman JP. Genome-wide and constrained ordination-based analyses of EC code data support reclassification of the species of Massilia La Scola et al. 2000 into Telluria Bowman et al. 1993, Mokoshia gen. nov. and Zemynaea gen. nov. Int J Syst Evol Microbiol 2023; 73. [PMID: 37589187 DOI: 10.1099/ijsem.0.005991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
Based on genome-wide data, Massilia species belonging to the clade including Telluria mixta LMG 11547T should be entirely transferred to the genus Telluria owing to the nomenclatural priority of the type species Telluria mixta. This results in the transfer of 35 Massilia species to the genus Telluria. The presented data also supports the creation of two new genera since peripherally branching Massilia species are distinct from Telluria and other related genera. It is proposed that 13 Massilia species are transferred to Mokoshia gen. nov. with the type species designated Mokoshia eurypsychrophila comb. nov. The species Massilia arenosa is proposed to belong to the genus Zemynaea gen. nov. as the type species Zemynaea arenosa comb. nov. The genome-wide analysis was well supported by canonical ordination analysis of Enzyme Commission (EC) codes annotated from genomes via pannzer2. This new approach was performed to assess the conclusions of the genome-based data and reduce possible ambiguity in the taxonomic decision making. Cross-validation of EC code data compared within canonical plots validated the reclassifications and correctly visualized the expected genus-level taxonomic relationships. The approach is complementary to genome-wide methodology and could be used for testing sequence alignment based data across genetically related genera. In addition to the proposed broader reclassifications, invalidly described species 'Massilia antibiotica', 'Massilia aromaticivorans', 'Massilia cellulosiltytica' and 'Massilia humi' are described as Telluria antibiotica sp. nov., Telluria aromaticivorans sp. nov., Telluria cellulosilytica sp. nov. and Pseudoduganella humi sp. nov., respectively. In addition, Telluria chitinolytica is reclassified as Pseudoduganella chitinolytica comb. nov. The use of combined genome-wide and annotation descriptors compared using canonical ordination clarifies the taxonomy of Telluria and its sibling genera and provides another way to evaluate complex taxonomic data.
Collapse
Affiliation(s)
- John P Bowman
- Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Hobart, Tasmania, 7005, Australia
| |
Collapse
|
4
|
Shaffer JMC, Giddings LA, Samples RM, Mikucki JA. Genomic and phenotypic characterization of a red-pigmented strain of Massilia frigida isolated from an Antarctic microbial mat. Front Microbiol 2023; 14:1156033. [PMID: 37250028 PMCID: PMC10213415 DOI: 10.3389/fmicb.2023.1156033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/20/2023] [Indexed: 05/31/2023] Open
Abstract
The McMurdo Dry Valleys of Antarctica experience a range of selective pressures, including extreme seasonal variation in temperature, water and nutrient availability, and UV radiation. Microbial mats in this ecosystem harbor dense concentrations of biomass in an otherwise desolate environment. Microbial inhabitants must mitigate these selective pressures via specialized enzymes, changes to the cellular envelope, and the production of secondary metabolites, such as pigments and osmoprotectants. Here, we describe the isolation and characterization of a Gram-negative, rod-shaped, motile, red-pigmented bacterium, strain DJPM01, from a microbial mat within the Don Juan Pond Basin of Wright Valley. Analysis of strain DJMP01's genome indicates it can be classified as a member of the Massilia frigida species. The genome contains several genes associated with cold and salt tolerance, including multiple RNA helicases, protein chaperones, and cation/proton antiporters. In addition, we identified 17 putative secondary metabolite gene clusters, including a number of nonribosomal peptides and ribosomally synthesized and post-translationally modified peptides (RiPPs), among others, and the biosynthesis pathway for the antimicrobial pigment prodigiosin. When cultivated on complex agar, multiple prodiginines, including the antibiotic prodigiosin, 2-methyl-3-propyl-prodiginine, 2-methyl-3-butyl-prodiginine, 2-methyl-3-heptyl-prodiginine, and cycloprodigiosin, were detected by LC-MS. Genome analyses of sequenced members of the Massilia genus indicates prodigiosin production is unique to Antarctic strains. UV-A radiation, an ecological stressor in the Antarctic, was found to significantly decrease the abundance of prodiginines produced by strain DJPM01. Genomic and phenotypic evidence indicates strain DJPM01 can respond to the ecological conditions of the DJP microbial mat, with prodiginines produced under a range of conditions, including extreme UV radiation.
Collapse
Affiliation(s)
- Jacob M. C. Shaffer
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | | | - Robert M. Samples
- Department of Chemistry, Smith College, Northampton, MA, United States
| | - Jill A. Mikucki
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
5
|
Oh S, Cho K, Park S, Kwon MJ, Chung J, Lee S. Denitrification dynamics in unsaturated soils with different porous structures and water saturation degrees: A focus on the shift in microbial community structures. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130413. [PMID: 36436452 DOI: 10.1016/j.jhazmat.2022.130413] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Despite its environmental significance, little is known about denitrification in vadose zones owing to the complexity of such environments. Here, we investigated denitrification in unsaturated soils with different pore distributions. To this end, we performed batch-type denitrification experiments and analyzed microbial community shifts before and after possible reactions with nitrates to clarify the relevant denitrifying mechanism in the microcosms. For quantitative comparison, pore distribution in the test soil samples was characterized based on the uniformity coefficient (Cu) and water saturation degree (SD). Micro-CT analysis of the soil pore distribution confirmed that the proportion of bigger-sized pores increased with decreasing Cu. However, oxygen diffusion into the system was controlled by SD rather than Cu. Within a certain SD range (51-67%), the pore condition changed abruptly from an oxic to an anoxic state. Consequently, denitrification occurred even under unsaturated soil conditions when the SD increased beyond 51-67%. High throughput sequencing revealed that the same microbial species were potentially responsible for denitrification under both partially (SD 67%), and fully saturated (SD of 100%) conditions, implying that the mechanism of denitrification in a vadose zone, if it exists, might be possibly similar under varying conditions.
Collapse
Affiliation(s)
- Sungjik Oh
- Water Cycle Research Center, Climate and Environment Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea; Division of Energy & Environment Technology, Korea University of Science & Technology (UST), Daejeon 34113, South Korea
| | - Kyungjin Cho
- Water Cycle Research Center, Climate and Environment Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea; Division of Energy & Environment Technology, Korea University of Science & Technology (UST), Daejeon 34113, South Korea
| | - Saerom Park
- Urban Water Circulation Research Center, Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Gyeonggi-do 10223, South Korea
| | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea
| | - Jaeshik Chung
- Water Cycle Research Center, Climate and Environment Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea; Division of Energy & Environment Technology, Korea University of Science & Technology (UST), Daejeon 34113, South Korea.
| | - Seunghak Lee
- Water Cycle Research Center, Climate and Environment Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea; Division of Energy & Environment Technology, Korea University of Science & Technology (UST), Daejeon 34113, South Korea; Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul 02841, South Korea.
| |
Collapse
|
6
|
Heo J, Won M, Lee D, Han BH, Hong SB, Kwon SW. Duganella dendranthematis sp. nov. and Massilia forsythiae sp. nov., isolated from flowers. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two aerobic, Gram-stain-negative, motile, mesophilic, rod-shaped and catalase-positive bacterial strains designated AF9R3T and GN2-R2T were isolated from flowers collected in the Republic of Korea. Strain AF9R3T grew at 4–33 °C, pH 4.0–9.0 and with 0–1 % NaCl (w/v), and strain GN2-R2T grew at 10–33 °C, pH 4.0–9.0 and with 0–1 % NaCl (w/v). Phylogenetic analysis on the basis of 16S rRNA gene sequences indicated that strains AF9R3T and GN2-R2T belonged to the genera
Duganella
and
Massilia
, respectively, showing high sequence similarity to
Duganella levis
CY42WT (99.4 %) and
Massilia putida
6 NM-7T (98.0 %), respectively. Both strains contained summed feature 3 (C16 : 1
ω7c and/or C16 : 1
ω6c) and C16 : 0 as the major fatty acids, and ubiquinone Q-8 as the predominant quinone. Strain AF9R3T had diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine, and strain GN2-R2T comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid as the major polar lipids. Orthologous average nucleotide identity and digital DNA–DNA hybridization values of strain AF9R3T to its closest relative
D. levis
CY42WT were 92.6 and 56.5 %, and those of strain GN2-R2T to its closest relative
M. putida
6 NM-7T were 81.4 and 24.8 %. Based on genotypic and phenotypic data, strains AF9R3T and GN2-R2T are considered to represent novel species of the genus
Duganella
and
Massilia
, respectively, for which the names Duganella dendranthematis sp. nov. (type strain AF9R3T=KACC 21258T=NBRC 114510T) and Massilia forsythiae sp. nov. (type strain GN2-R2T=KACC 21261T=NBRC 114511T) have been proposed.
Collapse
Affiliation(s)
- Jun Heo
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Miyoung Won
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Daseul Lee
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Byeong-Hak Han
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Seung-Beom Hong
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | | |
Collapse
|
7
|
Sedláček I, Holochová P, Busse HJ, Koublová V, Králová S, Švec P, Sobotka R, Staňková E, Pilný J, Šedo O, Smolíková J, Sedlář K. Characterisation of Waterborne Psychrophilic Massilia Isolates with Violacein Production and Description of Massilia antarctica sp. nov. Microorganisms 2022; 10:microorganisms10040704. [PMID: 35456753 PMCID: PMC9028926 DOI: 10.3390/microorganisms10040704] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
A group of seven bacterial strains producing blue-purple pigmented colonies on R2A agar was isolated from freshwater samples collected in a deglaciated part of James Ross Island and Eagle Island, Antarctica, from 2017–2019. The isolates were psychrophilic, oligotrophic, resistant to chloramphenicol, and exhibited strong hydrolytic activities. To clarify the taxonomic position of these isolates, a polyphasic taxonomic approach was applied based on sequencing of the 16S rRNA, gyrB and lepA genes, whole-genome sequencing, rep-PCR, MALDI-TOF MS, chemotaxonomy analyses and biotyping. Phylogenetic analysis of the 16S rRNA gene sequences revealed that the entire group are representatives of the genus Massilia. The closest relatives of the reference strain P8398T were Massilia atriviolacea, Massilia violaceinigra, Massilia rubra, Massilia mucilaginosa, Massilia aquatica, Massilia frigida, Massilia glaciei and Massilia eurypsychrophila with a pairwise similarity of 98.6–100% in the 16S rRNA. The subsequent gyrB and lepA sequencing results showed the novelty of the analysed group, and the average nucleotide identity and digital DNA–DNA hybridisation values clearly proved that P8398T represents a distinct Massilia species. After all these results, we nominate a new species with the proposed name Massilia antarctica sp. nov. The type strain is P8398T (= CCM 8941T = LMG 32108T).
Collapse
Affiliation(s)
- Ivo Sedláček
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (P.H.); (V.K.); (S.K.); (P.Š.); (E.S.)
- Correspondence: ; Tel.: +420-549-496-922
| | - Pavla Holochová
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (P.H.); (V.K.); (S.K.); (P.Š.); (E.S.)
| | - Hans-Jürgen Busse
- Institut für Mikrobiologie, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210 Wien, Austria;
| | - Vendula Koublová
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (P.H.); (V.K.); (S.K.); (P.Š.); (E.S.)
| | - Stanislava Králová
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (P.H.); (V.K.); (S.K.); (P.Š.); (E.S.)
| | - Pavel Švec
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (P.H.); (V.K.); (S.K.); (P.Š.); (E.S.)
| | - Roman Sobotka
- Centrum Algatech, Institute of Microbiology, Czech Academy of Sciences, Opatovický mlýn, 379 01 Třeboň, Czech Republic; (R.S.); (J.P.)
| | - Eva Staňková
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (P.H.); (V.K.); (S.K.); (P.Š.); (E.S.)
| | - Jan Pilný
- Centrum Algatech, Institute of Microbiology, Czech Academy of Sciences, Opatovický mlýn, 379 01 Třeboň, Czech Republic; (R.S.); (J.P.)
| | - Ondrej Šedo
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic;
| | - Jana Smolíková
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Albertov 6, 128 00 Praha, Czech Republic;
| | - Karel Sedlář
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 12, 616 00 Brno, Czech Republic;
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München, Amalienstraße 17, 803 33 Munich, Germany
| |
Collapse
|
8
|
Huq MA, Akter S. Biosynthesis, Characterization and Antibacterial Application of Novel Silver Nanoparticles against Drug Resistant Pathogenic Klebsiella pneumoniae and Salmonella Enteritidis. Molecules 2021; 26:5996. [PMID: 34641540 PMCID: PMC8512087 DOI: 10.3390/molecules26195996] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
The present study highlights the biosynthesis of silver nanoparticles (AgNPs) using culture supernatant of Massilia sp. MAHUQ-52 as well as the antimicrobial application of synthesized AgNPs against multi-drug resistant pathogenic Klebsiella pneumoniae and Salmonella Enteritidis. Well-defined AgNPs formation occurred from the reaction mixture of cell-free supernatant and silver nitrate (AgNO3) solution within 48 h of incubation. UV-visible spectroscopy analysis showed a strong peak at 435 nm, which corresponds to the surface plasmon resonance of AgNPs. The synthesized AgNPs were characterized by FE-TEM, EDX, XRD, DLS and FT-IR. From FE-TEM analysis, it was found that most of the particles were spherical shape, and the size of synthesized nanoparticles (NPs) was 15-55 nm. EDX spectrum revealed a strong silver signal at 3 keV. XRD analysis determined the crystalline, pure, face-centered cubic AgNPs. FT-IR analysis identified various functional molecules that may be involved with the synthesis and stabilization of AgNPs. The antimicrobial activity of Massilia sp. MAHUQ-52 mediated synthesized AgNPs was determined using the disk diffusion method against K. pneumoniae and S. Enteritidis. Biosynthesized AgNPs showed strong antimicrobial activity against both K. pneumoniae and S. Enteritidis. The MICs of synthesized AgNPs against K. pneumoniae and S. Enteritidis were 12.5 and 25.0 μg/mL, respectively. The MBC of biosynthesized AgNPs against both pathogens was 50.0 μg/mL. From FE-SEM analysis, it was found that the AgNPs-treated cells showed morphological changes with irregular and damaged cell walls that culminated in cell death.
Collapse
Affiliation(s)
- Md. Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong 17546, Korea
| | - Shahina Akter
- Department of Food Science and Biotechnology, Gachon University, Seongnam 461-701, Korea
| |
Collapse
|
9
|
Sedláček I, Holochová P, Sobotka R, Busse HJ, Švec P, Králová S, Šedo O, Pilný J, Staňková E, Koublová V, Sedlář K. Classification of a Violacein-Producing Psychrophilic Group of Isolates Associated with Freshwater in Antarctica and Description of Rugamonas violacea sp. nov. Microbiol Spectr 2021; 9:e0045221. [PMID: 34378950 PMCID: PMC8552646 DOI: 10.1128/spectrum.00452-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 11/20/2022] Open
Abstract
A group of 11 bacterial strains was isolated from streams and lakes located in a deglaciated northern part of James Ross Island, Antarctica. They were rod-shaped, Gram-stain-negative, motile, and catalase-positive and produced blue-violet-pigmented colonies on R2A agar. A polyphasic taxonomic approach based on 16S rRNA gene sequencing, whole-genome sequencing, automated ribotyping, repetitive element sequence-based PCR (rep-PCR), MALDI-TOF MS, fatty acid profile, chemotaxonomy analyses, and extensive biotyping was applied in order to clarify the taxonomic position of these isolates. Phylogenetic analysis based on the 16S rRNA gene indicated that all the isolates constituted a coherent group belonging to the genus Rugamonas. The closest relatives to the representative isolate P5900T were Rugamonas rubra CCM 3730T, Rugamonas rivuli FT103WT, and Rugamonas aquatica FT29WT, exhibiting 99.2%, 99.1%, and 98.6% 16S rRNA pairwise similarity, respectively. The average nucleotide identity and digital DNA-DNA hybridization values calculated from the whole-genome sequencing data clearly proved that P5900T represents a distinct Rugamonas species. The G+C content of genomic DNAs was 66.1 mol%. The major components in fatty acid profiles were summed feature 3 (C16:1ω7c/C16:1ω6c), C 16:0, and C12:0. The cellular quinone content contained exclusively ubiquinone Q-8. The predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. The polyamine pattern was composed of putrescine, 2-hydroxputrescine, and spermidine. IMPORTANCE Our polyphasic approach provides a new understanding of the taxonomy of novel pigmented Rugamonas species isolated from freshwater samples in Antarctica. The isolates showed considerable extracellular bactericidal secretions. The antagonistic activity of studied isolates against selected pathogens was proved by this study and implied the importance of such compounds' production among aquatic bacteria. The psychrophilic and violacein-producing species Roseomonas violacea may play a role in the diverse consortium among pigmented bacteria in the Antarctic water environment. Based on all the obtained results, we propose a novel species for which the name Rugamonas violacea sp. nov. is suggested, with the type strain P5900T (CCM 8940T; LMG 32105T). Isolates of R. violacea were obtained from different aquatic localities, and they represent the autochthonous part of the water microbiome in Antarctica.
Collapse
Affiliation(s)
- Ivo Sedláček
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavla Holochová
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Hans-Jürgen Busse
- Institut für Mikrobiologie, Veterinärmedizinische Universität Wien, Vienna, Austria
| | - Pavel Švec
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Stanislava Králová
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ondrej Šedo
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jan Pilný
- Centrum Algatech, MBÚ AV ČR, Třeboň, Czech Republic
| | - Eva Staňková
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vendula Koublová
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karel Sedlář
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
10
|
Du C, Li C, Cao P, Li T, Du D, Wang X, Zhao J, Xiang W. Massilia cellulosiltytica sp. nov., a novel cellulose-degrading bacterium isolated from rhizosphere soil of rice (Oryza sativa L.) and its whole genome analysis. Antonie van Leeuwenhoek 2021; 114:1529-1540. [PMID: 34324104 DOI: 10.1007/s10482-021-01618-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
A bacterial strain, Gram-stain negative, rod-shaped, aerobic and cellulose-degrading, designated NEAU-DD11T, was isolated from rhizosphere soil of rice collected from Northeast Agricultural University in Harbin, Heilongjiang Province, North-east China. Base on 16S rRNA gene sequence analysis, strain NEAU-DD11T belongs to the genus Massilia and shared high sequence similarities with Massilia phosphatilytica 12-OD1T (98.46%) and Massilia putida 6NM-7 T (98.41%). Phylogenetic analysis based on the 16S rRNA gene and whole genome sequences indicated that strain NEAU-DD11T formed lineage related to M. phosphatilytica 12-OD1T and M. putida 6NM-7 T. The major fatty acids of the strain were C16:0, C17:0-cyclo and C16:1ω7c. The respiratory quinone was Q-8. The polar lipids profile of the strain showed the presence of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified polar lipid and an unidentified phospholipid. In addition, the digital DNA-DNA hybridization values between strain NEAU-DD11T and M. phosphatilytica 12-OD1T and M. putida 6NM-7 T were 45.4 and 35.6%, respectively, which are lower than the accepted threshold value of 70%. The DNA G + C content of strain NEAU-DD11T was 66.2%. The whole genome analysis showed the strain contained carbohydrate enzymes such as glycoside hydrolase and polysaccharide lyase, which enabled the strain to have the function of degrading cellulose. On the basis of the phenotypic, genotypic and chemotaxonomic characteristics, we conclude that strain NEAU-DD11T represents a novel species of the genus Massilia, for which the name Massilia cellulosiltytica sp. nov. is proposed. The type strain is NEAU-DD11T (= CCTCC AB 2019141 T = DSM 109721 T).
Collapse
Affiliation(s)
- Chuanjiao Du
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, 150030, Harbin, People's Republic of China
| | - Chenxu Li
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, 150030, Harbin, People's Republic of China
| | - Peng Cao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, 150030, Harbin, People's Republic of China
| | - Tingting Li
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, 150030, Harbin, People's Republic of China
| | - Dandan Du
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, 150030, Harbin, People's Republic of China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, 150030, Harbin, People's Republic of China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, 150030, Harbin, People's Republic of China.
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, 150030, Harbin, People's Republic of China. .,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| |
Collapse
|
11
|
Massilia aromaticivorans sp. nov., a BTEX Degrading Bacterium Isolated from Arctic Soil. Curr Microbiol 2021; 78:2143-2150. [PMID: 33864512 DOI: 10.1007/s00284-021-02379-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 02/05/2021] [Indexed: 10/21/2022]
Abstract
A novel BTEX degrading bacterial strain, designated ML15P13T, was isolated from Arctic soil at the Svalbard Islands, Norway, using an enrichment culture technique. This isolate is Gram-negative, aerobic, motile with multiple flagella at one polar end, and rod-shaped. Growth was observed at 4-35 °C, pH 6.0-8.0, and 0-0.5% (w/v) NaCl. According to 16S rRNA gene analysis, strain ML15P13T was grouped with members of the genus Massilia and closely related to Massilia atriviolacea SODT (98.4%), Massilia violaceinigra B2T (98.3%), Massilia eurypsychrophila B528-3T (97.7%), Massilia glaciei B448-2T (97.7%), and Massilia psychrophila B115-1T (96.6%). Average nucleotide identity, digital DNA-DNA hybridization, and average amino acid identity between genome sequences of strain ML15P13T and the closely related species ranged from 75.8 to 84.3%, from 19.6 ± 1.0 to 21.6 ± 0.3%, and from 68.8 to 71.0%, respectively. The major fatty acids were C16:0, summed feature 3 (C16:1 ω6c and/or C16:1 ω7c), and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c). Q-8 was the major ubiquinone. The polar lipid profile showed the presence of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified phospholipid, and five unidentified polar lipids. The G + C content of the genomic DNA was 64.2 mol%. Based on the results for genotypic and phenotypic study, we conclude that strain ML15P13T represents a novel species of the genus Massilia, for which the name Massilia aromaticivorans sp. nov. is proposed. The type strain is ML15P13T (= KACC 21773T = JCM 34089T).
Collapse
|
12
|
Lyakhovchenko NS, Abashina TN, Polivtseva VN, Senchenkov VY, Pribylov DA, Chepurina AA, Nikishin IA, Avakova AA, Goyanov MA, Gubina ED, Churikova DA, Sirotin AA, Suzina NE, Solyanikova IP. A Blue-Purple Pigment-Producing Bacterium Isolated from the Vezelka River in the City of Belgorod. Microorganisms 2021; 9:E102. [PMID: 33466248 PMCID: PMC7824796 DOI: 10.3390/microorganisms9010102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Violacein is a biotechnologically significant secondary metabolite due to its antibacterial, antifungal, and other properties. Isolation, research, and identification of violacein producing strains are of interest for the development of biotechnological processes, in order to enhance the biosynthesis of this compound. The purpose of the present work was to study the properties of a newly isolated bacterium capable of synthesizing blue-purple pigment. An aboriginal bacterium was isolated from the coastal zone of the Vezelka River in the city of Belgorod. Based on chemical and spectrophotometric studies of the crude ethanol extract, the pigment was identified as violacein, and the isolate was assigned to the group of violacein-forming bacteria, which includes bacteria of the genera Chromobacterium, Iodobacter, Janthinobacterium, Duganella, Collimonas, and Massilia. Based on cultural, morphological, tinctorial, physiological, and biochemical properties, as well as analysis of the 16S rRNA gene sequence, the new isolated strain was assigned to the genus Janthinobacterium. The isolated strain is capable of suppressing the growth of a number of fungal and bacterial phytopathogens. For representatives of the genus Janthinobacterium, their inhibitory influence on cyanobacteria was shown for the first time.
Collapse
Affiliation(s)
- Nikita S. Lyakhovchenko
- Federal State Autonomous Educational Institution of Higher Education, Belgorod National Research University, 308015 Belgorod, Russia; (N.S.L.); (V.Y.S.); (D.A.P.); (A.A.C.); (I.A.N.); (A.A.A.); (M.A.G.); (E.D.G.); (D.A.C.); (A.A.S.)
| | - Tatiana N. Abashina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (T.N.A.); (V.N.P.); (N.E.S.)
| | - Valentina N. Polivtseva
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (T.N.A.); (V.N.P.); (N.E.S.)
| | - Vladislav Yu. Senchenkov
- Federal State Autonomous Educational Institution of Higher Education, Belgorod National Research University, 308015 Belgorod, Russia; (N.S.L.); (V.Y.S.); (D.A.P.); (A.A.C.); (I.A.N.); (A.A.A.); (M.A.G.); (E.D.G.); (D.A.C.); (A.A.S.)
| | - Daniil A. Pribylov
- Federal State Autonomous Educational Institution of Higher Education, Belgorod National Research University, 308015 Belgorod, Russia; (N.S.L.); (V.Y.S.); (D.A.P.); (A.A.C.); (I.A.N.); (A.A.A.); (M.A.G.); (E.D.G.); (D.A.C.); (A.A.S.)
| | - Anna A. Chepurina
- Federal State Autonomous Educational Institution of Higher Education, Belgorod National Research University, 308015 Belgorod, Russia; (N.S.L.); (V.Y.S.); (D.A.P.); (A.A.C.); (I.A.N.); (A.A.A.); (M.A.G.); (E.D.G.); (D.A.C.); (A.A.S.)
| | - Ilja A. Nikishin
- Federal State Autonomous Educational Institution of Higher Education, Belgorod National Research University, 308015 Belgorod, Russia; (N.S.L.); (V.Y.S.); (D.A.P.); (A.A.C.); (I.A.N.); (A.A.A.); (M.A.G.); (E.D.G.); (D.A.C.); (A.A.S.)
| | - Alina A. Avakova
- Federal State Autonomous Educational Institution of Higher Education, Belgorod National Research University, 308015 Belgorod, Russia; (N.S.L.); (V.Y.S.); (D.A.P.); (A.A.C.); (I.A.N.); (A.A.A.); (M.A.G.); (E.D.G.); (D.A.C.); (A.A.S.)
| | - Michael A. Goyanov
- Federal State Autonomous Educational Institution of Higher Education, Belgorod National Research University, 308015 Belgorod, Russia; (N.S.L.); (V.Y.S.); (D.A.P.); (A.A.C.); (I.A.N.); (A.A.A.); (M.A.G.); (E.D.G.); (D.A.C.); (A.A.S.)
| | - Elizaveta D. Gubina
- Federal State Autonomous Educational Institution of Higher Education, Belgorod National Research University, 308015 Belgorod, Russia; (N.S.L.); (V.Y.S.); (D.A.P.); (A.A.C.); (I.A.N.); (A.A.A.); (M.A.G.); (E.D.G.); (D.A.C.); (A.A.S.)
| | - Daria A. Churikova
- Federal State Autonomous Educational Institution of Higher Education, Belgorod National Research University, 308015 Belgorod, Russia; (N.S.L.); (V.Y.S.); (D.A.P.); (A.A.C.); (I.A.N.); (A.A.A.); (M.A.G.); (E.D.G.); (D.A.C.); (A.A.S.)
| | - Alexander A. Sirotin
- Federal State Autonomous Educational Institution of Higher Education, Belgorod National Research University, 308015 Belgorod, Russia; (N.S.L.); (V.Y.S.); (D.A.P.); (A.A.C.); (I.A.N.); (A.A.A.); (M.A.G.); (E.D.G.); (D.A.C.); (A.A.S.)
| | - Nataliya E. Suzina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (T.N.A.); (V.N.P.); (N.E.S.)
| | - Inna P. Solyanikova
- Federal State Autonomous Educational Institution of Higher Education, Belgorod National Research University, 308015 Belgorod, Russia; (N.S.L.); (V.Y.S.); (D.A.P.); (A.A.C.); (I.A.N.); (A.A.A.); (M.A.G.); (E.D.G.); (D.A.C.); (A.A.S.)
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (T.N.A.); (V.N.P.); (N.E.S.)
| |
Collapse
|
13
|
Holochová P, Mašlaňová I, Sedláček I, Švec P, Králová S, Kovařovic V, Busse HJ, Staňková E, Barták M, Pantůček R. Description of Massilia rubra sp. nov., Massilia aquatica sp. nov., Massilia mucilaginosa sp. nov., Massilia frigida sp. nov., and one Massilia genomospecies isolated from Antarctic streams, lakes and regoliths. Syst Appl Microbiol 2020; 43:126112. [PMID: 32847787 DOI: 10.1016/j.syapm.2020.126112] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 11/24/2022]
Abstract
Bacteria of the genus Massilia often colonize extreme ecosystems, however, a detailed study of the massilias from the Antarctic environment has not yet been performed. Here, sixty-four Gram-stain-negative, aerobic, motile rods isolated from different environmental samples on James Ross Island (Antarctica) were subjected to a polyphasic taxonomic study. The psychrophilic isolates exhibited slowly growing, moderately slimy colonies revealing bold pink-red pigmentation on R2A agar. The set of strains exhibited the highest 16S rRNA gene sequence similarities (99.5-99.9%) to Massilia violaceinigra B2T and Massilia atriviolacea SODT and formed several phylogenetic groups based on the analysis of gyrB and lepA genes. Phenotypic characteristics allowed four of them to be distinguished from each other and from their closest relatives. Compared to the nearest phylogenetic neighbours the set of six genome-sequenced representatives exhibited considerable phylogenetic distance at the whole-genome level. Bioinformatic analysis of the genomic sequences revealed a high number of putative genes involved in oxidative stress response, heavy-metal resistance, bacteriocin production, the presence of putative genes involved in nitrogen metabolism and auxin biosynthesis. The identification of putative genes encoding aromatic dioxygenases suggests the biotechnology potential of the strains. Based on these results four novel species and one genomospecies of the genus Massilia are described and named Massilia rubra sp. nov. (P3094T=CCM 8692T=LMG 31213T), Massilia aquatica sp. nov. (P3165T=CCM 8693T=LMG 31211T), Massilia mucilaginosa sp. nov. (P5902T=CCM 8733T=LMG 31210T), and Massilia frigida sp. nov. (P5534T=CCM 8695T=LMG 31212T).
Collapse
Affiliation(s)
- Pavla Holochová
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Ivana Mašlaňová
- Department of Experimental Biology, Section of Genetics and Molecular Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
| | - Ivo Sedláček
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Pavel Švec
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Stanislava Králová
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Vojtěch Kovařovic
- Department of Experimental Biology, Section of Genetics and Molecular Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
| | - Hans-Jürgen Busse
- Institut für Mikrobiologie, Veterinärmedizinische Universität Wien, A-1210 Wien, Austria
| | - Eva Staňková
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Miloš Barták
- Department of Experimental Biology, Section of Experimental Plant Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Roman Pantůček
- Department of Experimental Biology, Section of Genetics and Molecular Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic.
| |
Collapse
|