1
|
Luo HM, Feng JH, Li LH, Li MM, Liu RQ, Chen F, Lin Y, Li WJ, Qu PH, Xiao M. Cysteiniphilum marinum sp. nov., isolated from coastal seawater. Antonie van Leeuwenhoek 2021; 114:1079-1089. [PMID: 33895906 DOI: 10.1007/s10482-021-01579-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
Six aerobic Gram-negative bacteria were isolated from seawater in Guangdong Province, P.R. China. Cells were observed to be Gram-negative, aerobic, non-motile and non-spore forming. Growth of the designated type strain 19X3-30T occurred at a temperature range of 14-37 °C (optimum, 28 °C), a pH range of 6.0-8.0 (optimum, pH 7) and up to 7.5% NaCl (optimum, 1.5%; w/v), and was enhanced by CO2 and L-cysteine supplementation. The major polar lipids identified in strain 19X3-30T were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The principal cellular fatty acids profile showed the presence of anteiso-C15:0, anteiso-C17:0 and C18:0 (> 8% of total fatty acids), and the respiratory quinone was ubiquinone 8 (UQ-8). According to the analysis of 16S rRNA gene sequences, these strains represented a novel species within the family Fastidiosibacteraceae, sharing maximum similarities with Cysteiniphilum litorale DSM 101832T (96.6%) and Cysteiniphilum halobium DSM 103992T (95.3%). Phylogenetic dendrograms based on 16S rRNA gene and protein marker genes from the genomic sequences both indicated that the strains formed a monophyletic lineage closely linked to the genus Cysteiniphilum, which was also supported by the UPGMA dendrogram based on the MALDI-TOF MS profile. The genomic DNA G + C contents of six strains ranged from 38.0% to 38.1%. Based on different taxonomic genomic metrics, phylogeny and phenotypic features, we propose that the strains warrant the assignment to a novel species, for which the name Cysteiniphilum marinum sp. nov. is proposed. The type strain is 19X3-30T (= KCTC 82154T = CGMCC 1.18585T).
Collapse
Affiliation(s)
- Hai-Min Luo
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China
| | - Jun-Hui Feng
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China
| | - Liang-Hui Li
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China
| | - Meng-Meng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ru-Qin Liu
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Fu Chen
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Ying Lin
- Department of Dermatology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ping-Hua Qu
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| | - Min Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
2
|
Pirritano M, Zaburannyi N, Grosser K, Gasparoni G, Müller R, Simon M, Schrallhammer M. Dual-Seq reveals genome and transcriptome of Caedibacter taeniospiralis, obligate endosymbiont of Paramecium. Sci Rep 2020; 10:9727. [PMID: 32546745 PMCID: PMC7297999 DOI: 10.1038/s41598-020-65894-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
Interest in host-symbiont interactions is continuously increasing, not only due to the growing recognition of the importance of microbiomes. Starting with the detection and description of novel symbionts, attention moves to the molecular consequences and innovations of symbioses. However, molecular analysis requires genomic data which is difficult to obtain from obligate intracellular and uncultivated bacteria. We report the identification of the Caedibacter genome, an obligate symbiont of the ciliate Paramecium. The infection does not only confer the host with the ability to kill other cells but also renders them immune against this effect. We obtained the C. taeniospiralis genome and transcriptome by dual-Seq of DNA and RNA from infected paramecia. Comparison of codon usage and expression level indicates that genes necessary for a specific trait of this symbiosis, i.e. the delivery of an unknown toxin, result from horizontal gene transfer hinting to the relevance of DNA transfer for acquiring new characters. Prediction of secreted proteins of Caedibacter as major agents of contact with the host implies, next to several toxin candidates, a rather uncharacterized secretome which appears to be highly adapted to this symbiosis. Our data provides new insights into the molecular establishment and evolution of this obligate symbiosis and for the pathway characterization of toxicity and immunity.
Collapse
Affiliation(s)
- Marcello Pirritano
- Molecular Cell Biology and Microbiology, University of Wuppertal, Wuppertal, Germany.,Molecular Cell Dynamics Saarland University, Saarbrücken, Germany
| | - Nestor Zaburannyi
- Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmacy, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbrücken and German Centre for Infection Research (DZIF), Hannover, Germany
| | - Katrin Grosser
- Microbiology, Institute of Biology II, Albert Ludwig University of Freiburg, Freiburg, Germany.,Deep Sequencing Unit, Max-Planck-Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Gilles Gasparoni
- Genetics, Centre for Human and Molecular Biology, Saarland University, Saarbruecken, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmacy, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbrücken and German Centre for Infection Research (DZIF), Hannover, Germany
| | - Martin Simon
- Molecular Cell Biology and Microbiology, University of Wuppertal, Wuppertal, Germany. .,Molecular Cell Dynamics Saarland University, Saarbrücken, Germany.
| | - Martina Schrallhammer
- Microbiology, Institute of Biology II, Albert Ludwig University of Freiburg, Freiburg, Germany.
| |
Collapse
|