1
|
Dong XY, Mao YL, Zhang QK, Zhu LR, Hou J, Cui HL. Genome‑based classification of the family Natrialbaceae and description of four novel halophilic archaea from three saline lakes and a saline-alkaline land. Extremophiles 2024; 28:47. [PMID: 39436425 DOI: 10.1007/s00792-024-01366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
The current representatives of the family Natrialbaceae within the class Halobacteria were subjected to phylogenetic, phylogenomic, and comparative genomic analyses. The current species of Halobiforma and Halomontanus were found to be related to those of Natronobacterium and Natronoglomus, respectively. According to the cutoff value of average amino acid identity (AAI) (≤ 76%) proposed to differentiate genera within the family Natrialbaceae, Halobiforma, and Natronoglomus should be merged with Natronobacterium and Halomontanus, respectively. Beyond these, four novel halophilic archaeal strains, CCL63T, AD-5T, CG52T, and KLK7T, isolated from three saline lakes and a saline-alkaline land in China, were simultaneously subjected to polyphasic classification. The phenotypic, phylogenetic, phylogenomic, and comparative genomic analyses indicated that strain CCL63T (= CGMCC 1.18663T = JCM 35096T) represents a novel genus of the family Natrialbaceae, strains AD-5T (= CGMCC 1.13783T = JCM 33734T) and CG52T (= CGMCC 1.17139T = JCM 34160T) represent two novel species of the genus Natronococcus, and strain KLK7T (= MCCC 4K00128T = KCTC 4307T) represents a novel species of Haloterrigena. Halovalidus salilacus gen. nov., sp. nov., Natronococcus wangiae sp. nov., Natronococcus zhouii sp. nov., and Haloterrigena salinisoli sp. nov. are further proposed based on these type strains accordingly.
Collapse
Affiliation(s)
- Xin-Yue Dong
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, 212013, Zhenjiang, People's Republic of China
| | - Ya-Ling Mao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, 212013, Zhenjiang, People's Republic of China
| | - Qing-Ke Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, 212013, Zhenjiang, People's Republic of China
| | - Ling-Rui Zhu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, 212013, Zhenjiang, People's Republic of China
| | - Jing Hou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, 212013, Zhenjiang, People's Republic of China
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, 212013, Zhenjiang, People's Republic of China.
| |
Collapse
|
2
|
Cui C, Han D, Hou J, Cui HL. Genome-based classification of the class Halobacteria and description of Haladaptataceae fam. nov. and Halorubellaceae fam. nov. Int J Syst Evol Microbiol 2023; 73. [PMID: 37486319 DOI: 10.1099/ijsem.0.005984] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
Currently, there are four mainstream taxonomic opinions on the classification of the class Halobacteria at the family and order levels. The International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Halobacteria (ICSP), List of Prokaryotic names with Standing in Nomenclature (LPSN) and National Centre for Biotechnology Information (NCBI) adopted taxonomies have three to four orders and up to eight families, while the Genome Taxonomy Database (GTDB) taxonomy proposes only one order with nine families. To resolve the taxonomic inconsistency, phylogenomic analyses based on concatenated single-copy orthologous proteins and 122 concatenated conserved single-copy marker proteins were conducted to infer the taxonomic status of the current representatives of the class Halobacteria at the family and order levels. The current 76 genera with validly published names of the class Halobacteria were able to be assigned into eight families in one order. On the basis of these results, it is proposed that the current species with validly published names of the class Halobacteria should be remerged into the order Halobacteriales, then assigned to eight families, Haladaptataceae, Haloarculaceae, Halobacteriaceae, Halococcaceae, Haloferacaceae, Natronoarchaeaceae, Natrialbaceae and Halorubellaceae. Thus, Haladaptataceae fam. nov. is described based on Haladaptatus, Halomicrococcus and Halorussus and Halorubellaceae fam. nov. is proposed incorporating Haloarchaeobius and Halorubellus, respectively.
Collapse
Affiliation(s)
- Can Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Dong Han
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, PR China
| | - Jing Hou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
3
|
Natranaeroarchaeum sulfidigenes gen. nov., sp. nov., carbohydrate-utilizing sulfur-respiring haloarchaeon from hypersaline soda lakes, a member of a new family Natronoarchaeaceae fam. nov. in the order Halobacteriales. Syst Appl Microbiol 2022; 45:126356. [DOI: 10.1016/j.syapm.2022.126356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022]
|
4
|
Sorokin DY, Merkel AY, Messina E, Tugui C, Pabst M, Golyshin PN, Yakimov MM. Anaerobic carboxydotrophy in sulfur-respiring haloarchaea from hypersaline lakes. THE ISME JOURNAL 2022; 16:1534-1546. [PMID: 35132120 PMCID: PMC9123189 DOI: 10.1038/s41396-022-01206-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/03/2022] [Accepted: 01/27/2022] [Indexed: 05/24/2023]
Abstract
Anaerobic carboxydotrophy is a widespread catabolic trait in bacteria, with two dominant pathways: hydrogenogenic and acetogenic. The marginal mode by direct oxidation to CO2 using an external e-acceptor has only a few examples. Use of sulfidic sediments from two types of hypersaline lakes in anaerobic enrichments with CO as an e-donor and elemental sulfur as an e-acceptor led to isolation of two pure cultures of anaerobic carboxydotrophs belonging to two genera of sulfur-reducing haloarchaea: Halanaeroarchaeum sp. HSR-CO from salt lakes and Halalkaliarchaeum sp. AArc-CO from soda lakes. Anaerobic growth of extremely halophilic archaea with CO was obligatory depended on the presence of elemental sulfur as the electron acceptor and yeast extract as the carbon source. CO served as a direct electron donor and H2 was not generated from CO when cells were incubated with or without sulfur. The genomes of the isolates encode a catalytic Ni,Fe-CODH subunit CooS (distantly related to bacterial homologs) and its Ni-incorporating chaperone CooC (related to methanogenic homologs) within a single genomic locus. Similar loci were also present in a genome of the type species of Halalkaliarchaeum closely related to AArc-CO, and the ability for anaerobic sulfur-dependent carboxydotrophy was confirmed for three different strains of this genus. Moreover, similar proteins are encoded in three of the four genomes of recently described carbohydrate-utilizing sulfur-reducing haloarchaea belonging to the genus Halapricum and in two yet undescribed haloarchaeal species. Overall, this work demonstrated for the first time the potential for anaerobic sulfur-dependent carboxydotrophy in extremely halophilic archaea.
Collapse
Affiliation(s)
- Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Federal Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia.
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.
| | - Alexander Y Merkel
- Winogradsky Institute of Microbiology, Federal Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Enzo Messina
- IRBIM-CNR, Spianata S.Raineri 86, 98122, Messina, Italy
| | - Claudia Tugui
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Peter N Golyshin
- School of Natural Sciences, Bangor University, Gwynedd, LL57 2UW, UK
| | | |
Collapse
|
5
|
Boya BR, Kumar P, Lee JH, Lee J. Diversity of the Tryptophanase Gene and Its Evolutionary Implications in Living Organisms. Microorganisms 2021; 9:microorganisms9102156. [PMID: 34683477 PMCID: PMC8537960 DOI: 10.3390/microorganisms9102156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
Tryptophanase encoded by the gene tnaA is a pyridoxal phosphate-dependent enzyme that catalyses the conversion of tryptophan to indole, which is commonly used as an intra- and interspecies signalling molecule, particularly by microbes. However, the production of indole is rare in eukaryotic organisms. A nucleotide and protein database search revealed tnaA is commonly reported in various Gram-negative bacteria, but that only a few Gram-positive bacteria and archaea possess the gene. The presence of tnaA in eukaryotes, particularly protozoans and marine organisms, demonstrates the importance of this gene in the animal kingdom. Here, we document the distribution of tnaA and its acquisition and expansion among different taxonomic groups, many of which are usually categorized as non-indole producers. This study provides an opportunity to understand the intriguing role played by tnaA, and its distribution among various types of organisms.
Collapse
|
6
|
Cui HL, Dyall-Smith ML. Cultivation of halophilic archaea (class Halobacteria) from thalassohaline and athalassohaline environments. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:243-251. [PMID: 37073340 PMCID: PMC10077297 DOI: 10.1007/s42995-020-00087-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/25/2020] [Indexed: 05/03/2023]
Abstract
As a group, the halophilic archaea (class Halobacteria) are the most salt-requiring and salt-resistant microorganisms within the domain Archaea. Halophilic archaea flourish in thalassohaline and athalassohaline environments and require over 100-150 g/L NaCl for growth and structural stability. Natural hypersaline environments vary in salt concentration, chemical composition and pH, and occur in climates ranging from tropical to polar and even under-sea. Accordingly, their resident haloarchaeal species vary enormously, as do their individual population compositions and community structures. These diverse halophilic archaeal strains are precious resources for theoretical and applied research but assessing their taxonomic and metabolic novelty and diversity in natural environments has been technically difficult up until recently. Environmental DNA-based high-throughput sequencing technology has now matured sufficiently to allow inexpensive recovery of massive amounts of sequence data, revealing the distribution and community composition of halophilic archaea in different hypersaline environments. While cultivation of haloarchaea is slow and tedious, and only recovers a fraction of the natural diversity, it is the conventional means of describing new species, and provides strains for detailed study. As of the end of May 2020, the class Halobacteria contains 71 genera and 275 species, 49.8% of which were first isolated from the marine salt environment and 50.2% from the inland salt environment, indicating that both thalassohaline and athalassohaline environments contain diverse halophilic archaea. However, there remain taxa that have not yet been isolated in pure culture, such as the nanohaloarchaea, which are widespread in the salt environment and may be one of the hot spots in the field of halophilic archaea research in the future. In this review, we focus on the cultivation strategies that have been used to isolate extremely halophilic archaea and point out some of the pitfalls and challenges. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-020-00087-3.
Collapse
Affiliation(s)
- Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Mike L. Dyall-Smith
- Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, 3010 Australia
- Computational Biology Group, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
7
|
Halo(natrono)archaea from hypersaline lakes can utilize sulfoxides other than DMSO as electron acceptors for anaerobic respiration. Extremophiles 2021; 25:173-180. [PMID: 33620581 DOI: 10.1007/s00792-021-01219-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/11/2021] [Indexed: 01/19/2023]
Abstract
Dimethylsulfoxide (DMSO) has long been known to support anaerobic respiration in a few species of basically aerobic extremely halophilic euryarchaea living in hypersaline lakes. Recently, it has also been shown to be utilized as an additional electron acceptor in basically anaerobic sulfur-reducing haloarchaea. Here we investigated whether haloarchaea would be capable of anaerobic respiration with other two sulfoxides, methionine sulfoxide (MSO) and tetramethylene sulfoxide (TMSO). For this, anaerobic enrichment cultures were inoculated with sediments from hypersaline salt and soda lakes in southwestern Siberia and southern Russia. Positive enrichments were obtained for both MSO and TMSO with yeast extract but not with formate or acetate as the electron donor. Two pure cultures obtained from salt lakes, either with MSO or TMSO, were obligate anaerobes closely related to sulfur-reducing Halanaeroarchaeum sulfurireducens, although the type strain of this genus was unable to utilize any sulfoxides. Two pure cultures isolated from soda lakes were facultatively anaerobic alkaliphilic haloarchaea using O2, sulfur and sulfoxides as the electron acceptors. One isolate was identical to the previously described sulfur-reducing Natrarchaeobaculum sulfurireducens, while another one, enriched at lower alkalinity, is forming a new species in the genus Halobiforma. Since all isolates enriched with either MSO or TMSO were able to respire all three sulfoxides including DMSO and the corresponding activities were cross-induced, it suggest that a single enzyme of the DMSO-reductase family with a broad substrate specificity is responsible for various sulfoxide-dependent respiration in haloarchaea.
Collapse
|
8
|
Sorokin DY, Messina E, Smedile F, La Cono V, Hallsworth JE, Yakimov MM. Carbohydrate‐dependent sulfur respiration in halo(alkali)philic archaea. Environ Microbiol 2021; 23:3789-3808. [DOI: 10.1111/1462-2920.15421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/03/2021] [Accepted: 02/01/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Dimitry Y. Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology Russian Academy of Sciences Moscow Russia
- Department of Biotechnology Delft University of Technology Delft The Netherlands
| | - Enzo Messina
- Institute of Biological Resources and Marine Biotechnology, IRBIM‐CNR Messina Italy
| | - Francesco Smedile
- Institute of Biological Resources and Marine Biotechnology, IRBIM‐CNR Messina Italy
| | - Violetta La Cono
- Institute of Biological Resources and Marine Biotechnology, IRBIM‐CNR Messina Italy
| | - John E. Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast Belfast, Northern Ireland BT9 5DL UK
| | - Michail M. Yakimov
- Institute of Biological Resources and Marine Biotechnology, IRBIM‐CNR Messina Italy
| |
Collapse
|
9
|
Xue Q, Zuo Z, Zhou H, Zhou J, Zhang S, Han J, Zhao D, Xiang H. Salinadaptatus halalkaliphilus gen. nov., sp. nov., a haloalkaliphilic archaeon isolated from salt pond in Inner Mongolia Autonomous Region, China. Int J Syst Evol Microbiol 2020; 71. [PMID: 33275091 DOI: 10.1099/ijsem.0.004584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A haloalkaliphilic strain XQ-INN 246T was isolated from the sediment of a salt pond in Inner Mongolia Autonomous Region, China. Cells of the strain were rods, motile and strictly aerobic. The strain was able to grow in the presence of 2.6-5.3 M NaCl (optimum concentration is 4.4 M) at 30-50 °C (optimum temperature is 42 °C) and pH 7.0-10.0 (optimum pH is 8.0-8.5). The whole genome sequencing of strain XQ-INN 246T revealed a genome size of 4.52 Mbp and a DNA G+C content of 62.06 mol%. Phylogenetic tree based on 16S rRNA gene sequences and concatenated amino acid sequences of 122 single-copy conserved proteins revealed a robust lineage of the strain XQ-INN 246T with members of related genera of the family Natrialbaceae. The strain possessed the polar lipids of phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester. No glycolipids were detected. Based on phylogenetic analysis, phenotypic characteristics, chemotaxonomic properties and genome relatedness, the isolate was proposed as the type strain of a novel species of a new genus within the family Natrialbaceae, for which the name Salinadaptatus halalkaliphilus gen. nov., sp. nov. is proposed. The type strain is XQ-INN 246T (=CGMCC 1.16692T=JCM 33751T).
Collapse
Affiliation(s)
- Qiong Xue
- University of Chinese Academy of Sciences, 100049, Beijing, PR China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Zhenqiang Zuo
- University of Chinese Academy of Sciences, 100049, Beijing, PR China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Heng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Jian Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Shengjie Zhang
- University of Chinese Academy of Sciences, 100049, Beijing, PR China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Hua Xiang
- University of Chinese Academy of Sciences, 100049, Beijing, PR China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, PR China
| |
Collapse
|