1
|
Kim J, Yun H, Tahmasebi A, Nam J, Pham H, Kim YH, Min HJ, Lee CW. Paramixta manurensis gen. nov., sp. nov., a novel member of the family Erwiniaceae producing indole-3-acetic acid isolated from mushroom compost. Sci Rep 2024; 14:15542. [PMID: 38969698 PMCID: PMC11226699 DOI: 10.1038/s41598-024-65803-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 06/24/2024] [Indexed: 07/07/2024] Open
Abstract
There are numerous species in the Erwiniaceae family that are important for agricultural and clinical purposes. Here we described the Erwiniaceae bacterium PD-1 isolated from mushroom (Pleurotus eryngii) compost. Comparative genomic and phylogenetic analyses showed that the strain PD-1 was assigned to a new genus and species, Paramixta manurensis gen. nov., sp. nov. in the family Erwiniaceae. From the average amino acid index, we identified the five AroBEKAC proteins in the shikimate pathway as a minimal set of molecular markers to reconstruct the phylogenetic tree of the Erwiniaceae species. The strain PD-1 containing annotated genes for ubiquinone and menaquinone produced a higher level of ubiquinone (Q8) than demethylmenaquinone (DMK8) and menaquinone (MK8) in anaerobic condition compared to aerobic condition, as similarly did the reference strains from the genera Mixta and Erwinia. Results from fatty acid methyl ester and numerical analyses of strain PD-1 showed a similarity to species of the genera Mixta and Winslowiella. This study revealed that the strain's ability to utilize polyols, such as glycerol, erythritol, and D-arabitol, distinguished the strain PD-1 from the nearest relative and other type strains. The analyzed genetic markers and biochemical properties of the strain PD-1 suggest its potential role in the process of mushroom compost through the degradation of carbohydrates and polysaccharides derived from fungi and plants. Additionally, it can produce a high concentration of indole-3-acetic acid as a plant growth-promoting agent.
Collapse
Affiliation(s)
- Jueun Kim
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
- Research Center, DAESANG InnoPark, Gangseo-gu, Seoul, 07789, Republic of Korea
| | - Hyosuk Yun
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Aminallah Tahmasebi
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, Iran
| | - Jiyoung Nam
- Institute of Well-Aging Medicare & CSU G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea
| | - Ha Pham
- Department of Microbiology, Daegu Catholic University School of Medicine, Daegu, 42472, Republic of Korea
| | - Yong-Hak Kim
- Department of Microbiology, Daegu Catholic University School of Medicine, Daegu, 42472, Republic of Korea.
| | - Hye Jung Min
- Department of Cosmetic Science, Gwangju Women's University, Gwangju, 62396, Republic of Korea.
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
2
|
Quinn MW, Daisley BA, Vancuren SJ, Bouchema A, Niño E, Reid G, Thompson GJ, Allen-Vercoe E. Apirhabdus apintestini gen. nov., sp. nov., a member of a novel genus of the family Enterobacteriaceae, isolated from the gut of the western honey bee Apis mellifera. Int J Syst Evol Microbiol 2024; 74. [PMID: 38652096 DOI: 10.1099/ijsem.0.006346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
A Gram-negative, motile, rod-shaped bacterial strain, CA-0114T, was isolated from the midgut of a western honey bee, Apis mellifera. The isolate exhibited ≤96.43 % 16S rRNA gene sequence identity (1540 bp) to members of the families Enterobacteriaceae and Erwiniaceae. Phylogenetic trees based on genome blast distance phylogeny and concatenated protein sequences encoded by conserved genes atpD, fusA, gyrB, infB, leuS, pyrG and rpoB separated the isolate from other genera forming a distinct lineage in the Enterobacteriaceae. In both trees, the closest relatives were Tenebrionicola larvae YMB-R21T and Tenebrionibacter intestinalis BIT-L3T, which were isolated previously from Tenebrio molitor L., a plastic-eating mealworm. Digital DNA-DNA hybridization, orthologous average nucleotide identity and average amino acid identity values between strain CA-0114T and the closest related members within the Enterobacteriaceae were ≤23.1, 75.45 and 76.04 %, respectively. The complete genome of strain CA-0114T was 4 451669 bp with a G+C content of 52.12 mol%. Notably, the apparent inability of strain CA-0114T to ferment d-glucose, inositol and l-rhamnose in the API 20E system is unique among closely related members of the Enterobacteriaceae. Based on the results obtained through genotypic and phenotypic analysis, we propose that strain CA-0114T represents a novel species and genus within the family Enterobacteriaceae, for which we propose the name Apirhabdus apintestini gen. nov., sp. nov. (type strain CA-0114T=ATCC TSD-396T=DSM 116385T).
Collapse
Affiliation(s)
- Matthew W Quinn
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Brendan A Daisley
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
- Department of Biology, Western University, London, ON, N6A 5C1, Canada
| | - Sarah J Vancuren
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Amira Bouchema
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Elina Niño
- Department of Entomology and Nematology, University of California, Davis, CA, 95616, USA
- University of California Agriculture and Natural Resources, Oakland, CA, 95618, USA
| | - Gregor Reid
- Department of Microbiology & Immunology, Western University, London, ON, N6A 5B7, Canada
| | - Graham J Thompson
- Department of Biology, Western University, London, ON, N6A 5C1, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
3
|
Gupta RS, Kanter-Eivin DA. AppIndels.com server: a web-based tool for the identification of known taxon-specific conserved signature indels in genome sequences. Validation of its usefulness by predicting the taxonomic affiliation of >700 unclassified strains of Bacillus species. Int J Syst Evol Microbiol 2023; 73. [PMID: 37159410 DOI: 10.1099/ijsem.0.005844] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Taxon-specific conserved signature indels (CSIs) in genes/proteins provide reliable molecular markers (synapomorphies) for unambiguous demarcation of taxa of different ranks in molecular terms and for genetic, biochemical and diagnostic studies. Because of their predictive abilities, the shared presence of known taxon-specific CSIs in genome sequences has proven useful for taxonomic purposes. However, the lack of a convenient method for identifying the presence of known CSIs in genome sequences has limited their utility for taxonomic and other studies. We describe here a web-based tool/server (AppIndels.com) that identifies the presence of known and validated CSIs in genome sequences and uses this information for predicting taxonomic affiliation. The utility of this server was tested by using a database of 585 validated CSIs, which included 350 CSIs specific for ≈45 Bacillales genera, with the remaining CSIs being specific for members of the orders Neisseriales, Legionellales and Chlorobiales, family Borreliaceae, and some Pseudomonadaceae species/genera. Using this server, genome sequences were analysed for 721 Bacillus strains of unknown taxonomic affiliation. Results obtained showed that 651 of these genomes contained significant numbers of CSIs specific for the following Bacillales genera/families: Alkalicoccus, 'Alkalihalobacillaceae', Alteribacter, Bacillus Cereus clade, Bacillus Subtilis clade, Caldalkalibacillus, Caldibacillus, Cytobacillus, Ferdinandcohnia, Gottfriedia, Heyndrickxia, Lederbergia, Litchfieldia, Margalitia, Mesobacillus, Metabacillus, Neobacillus, Niallia, Peribacillus, Priestia, Pseudalkalibacillus, Robertmurraya, Rossellomorea, Schinkia, Siminovitchia, Sporosarcina, Sutcliffiella, Weizmannia and Caryophanaceae. Validity of the taxon assignment made by the server was examined by reconstructing phylogenomic trees. In these trees, all Bacillus strains for which taxonomic predictions were made correctly branched with the indicated taxa. The unassigned strains likely correspond to taxa for which CSIs are lacking in our database. Results presented here show that the AppIndels server provides a useful new tool for predicting taxonomic affiliation based on shared presence of the taxon-specific CSIs. Some caveats in using this server are discussed.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario CA L8N 3Z5, Canada
| | - David A Kanter-Eivin
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario CA L8N 3Z5, Canada
| |
Collapse
|
4
|
Phylogenomic Analyses and Molecular Signatures Elucidating the Evolutionary Relationships amongst the Chlorobia and Ignavibacteria Species: Robust Demarcation of Two Family-Level Clades within the Order Chlorobiales and Proposal for the Family Chloroherpetonaceae fam. nov. Microorganisms 2022; 10:microorganisms10071312. [PMID: 35889031 PMCID: PMC9318685 DOI: 10.3390/microorganisms10071312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023] Open
Abstract
Evolutionary relationships amongst Chlorobia and Ignavibacteria species/strains were examined using phylogenomic and comparative analyses of genome sequences. In a phylogenomic tree based on 282 conserved proteins, the named Chlorobia species formed a monophyletic clade containing two distinct subclades. One clade, encompassing the genera Chlorobaculum, Chlorobium, Pelodictyon, and Prosthecochloris, corresponds to the family Chlorobiaceae, whereas another clade, harboring Chloroherpeton thalassium, Candidatus Thermochlorobacter aerophilum, Candidatus Thermochlorobacteriaceae bacterium GBChlB, and Chlorobium sp. 445, is now proposed as a new family (Chloroherpetonaceae fam. nov). In parallel, our comparative genomic analyses have identified 47 conserved signature indels (CSIs) in diverse proteins that are exclusively present in members of the class Chlorobia or its two families, providing reliable means for identification. Two known Ignavibacteria species in our phylogenomic tree are found to group within a larger clade containing several Candidatus species and uncultured Chlorobi strains. A CSI in the SecY protein is uniquely shared by the species/strains from this “larger Ignavibacteria clade”. Two additional CSIs, which are commonly shared by Chlorobia species and the “larger Ignavibacteria clade”, support a specific relationship between these two groups. The newly identified molecular markers provide novel tools for genetic and biochemical studies and identification of these organisms.
Collapse
|
5
|
Phylogenomic analysis of the Erwiniaceae supports reclassification of Kalamiella piersonii to Pantoea piersonii comb. nov. and Erwinia gerundensis to the new genus Duffyella gen. nov. as Duffyella gerundensis comb. nov. Mol Genet Genomics 2022; 297:213-225. [PMID: 34988605 DOI: 10.1007/s00438-021-01829-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/27/2021] [Indexed: 01/20/2023]
Abstract
To better understand the taxonomy of Erwinia in the context of the Erwiniaceae family, we carried out a taxogenomic analysis of the Erwiniaceae, a family that was created following the taxonomic revision of the family, Enterobacteriaceae. There has been no systematic analysis of this family, including the agriculturally relevant genus, Erwinia. Our analyses focused on 80 strains of Erwinia along with 37 strains representing 7 other genera in the family. We identified 308 common proteins, generated a genome-level phylogeny and carried out Average Nucleotide Identity, Average Amino Acid Identity and Percentage of Conserved Protein analyses. We show that multiple strains of Erwinia cannot be assigned to established species groups and that both Erwinia gerundensis and "Erwinia mediterraneensis" are not members of Erwinia. We propose the creation of the genus Duffyella gen. nov. and the reclassification of Erwinia gerundensis to this genus as the type species, Duffyella gerundensis comb. nov. Furthermore, divergence between other species within Erwinia as measured by Average Amino Acid Identity is greater than the divergence between Erwinia and other genera, supporting the possible subdivision of the genus Erwinia into at least two genera. Our analyses also suggest that there is no basis for the establishment of the genus Kalamiella within the Erwiniaceae or the taxonomic revision of the Pantoea septica lineage. Therefore, we propose reclassifying Kalamiella piersonii as Pantoea piersonii comb. nov. Our study provides new insight into the diversity of the Erwiniaceae and provides a solid foundation for advancing taxonomic revision of this broadly relevant family.
Collapse
|
6
|
Chen S, Rudra B, Gupta RS. Phylogenomics and molecular signatures support division of the order Neisseriales into emended families Neisseriaceae and Chromobacteriaceae and three new families Aquaspirillaceae fam. nov., Chitinibacteraceae fam. nov., and Leeiaceae fam. nov. Syst Appl Microbiol 2021; 44:126251. [PMID: 34600238 DOI: 10.1016/j.syapm.2021.126251] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/22/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
The order Neisseriales contains 37 genera harboring 122 species with validly published names, which are placed into two families, Neisseriaceae and Chromobacteriaceae. Genome sequences are now available for 35 of the 37 Neisseriales genera for reliably determining their evolutionary relationships and taxonomy. We report here comprehensive phylogenomic and comparative analyses on protein sequences from 110 Neisseriales genomes plus 3 Chitinimonas genomes using multiple approaches. In a phylogenomic tree based on 596 core proteins, Neisseriales species formed 5 strongly supported clades. In addition to the clades for Neisseriaceae and Chromobacteriaceae families, three novel species clades designated as the "Chitinibacteraceae", "Aquaspirillaceae", and "Leeiaceae" were observed. The genus Chitinimonas grouped reliably with members of the "Chitinibacteraceae" clade. The major clades within the order Neisseriales can also be distinguished based on average amino acid identity analysis. In parallel, our comparative genomic studies have identified 30 conserved signature indels (CSIs) that are specific for members of the order Neisseriales or its five main clades. One of these CSIs is uniquely shared by all Neisseriales, whereas 8, 4, 9, 3 and 5 CSIs are distinctive characteristics of the Neisseriaceae, Chromobacteriaceae, "Chitinibacteraceae", "Aquaspirillaceae" and "Leeiaceae" clades, respectively. Based on the strong phylogenetic and molecular evidence presented here, we are proposing that the three newly identified clades should be recognized as novel families (Chitinibacteraceae fam. nov., Aquaspirillaceae fam. nov. and Leeiaceae fam. nov.) within the order Neisseriales. In addition, we are also emending descriptions of the families Neisseriaceae and Chromobacteriaceae regarding their constituent genera and other distinguishing characteristics.
Collapse
Affiliation(s)
- Shu Chen
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Bashudev Rudra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.
| |
Collapse
|
7
|
Saini N, Gupta RS. A robust phylogenetic framework for members of the order Legionellales and its main genera (Legionella, Aquicella, Coxiella and Rickettsiella) based on phylogenomic analyses and identification of molecular markers demarcating different clades. Antonie van Leeuwenhoek 2021; 114:957-982. [PMID: 33881638 DOI: 10.1007/s10482-021-01569-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/01/2021] [Indexed: 12/29/2022]
Abstract
The order Legionellales contains several clinically important microorganisms. Although members of this order are well-studied for their pathogenesis, there is a paucity of reliable characteristics distinguishing members of this order and its constituent genera. Genome sequences are now available for 73 Legionellales species encompassing ≈90% of known members from different genera. With the aim of understanding evolutionary relationships and identifying reliable molecular characteristics that are specific for this order and its constituent genera, detailed phylogenetic and comparative analyses were conducted on the protein sequences from these genomes. A phylogenomic tree was constructed based on 393 single copy proteins that are commonly shared by the members of this order to delineate the evolutionary relationships among its members. In parallel, comparative analyses were performed on protein sequences from Legionellales genomes to identify novel molecular markers consisting of conserved signature indels (CSIs) that are specific for different clades and genera. In the phylogenomic tree and in an amino acid identity matrix based on core proteins, members of the genera Aquicella, Coxiella, Legionella and Rickettsiella formed distinct clades confirming their monophyly. In these studies, Diplorickettsia massiliensis exhibited a close relationship to members of the genus Rickettsiella. The results of our comparative genomic analyses have identified 59 highly specific molecular markers consisting of CSIs in diverse proteins that are uniquely shared by different members of this order. Four of these CSIs are specific for all Legionellales species, except the two deeper-branching "Candidatus Berkiella" species, providing means for identifying members of this order in molecular terms. Twenty four, 7 and 6 CSIs are uniquely shared by members of the genera Legionella, Coxiella and Aquicella, respectively, identifying these groups in molecular terms. The descriptions of these three genera are emended to include information for their novel molecular characteristics. We also describe 12 CSIs that are uniquely shared by D. massiliensis and different members of the genus Rickettsiella. Based on these results, we are proposing an integration of the genus Diplorickettsia with Rickettsiella. Three other CSIs suggest that members of the genera Coxiella and Rickettsiella shared a common ancestor exclusive of other Legionellales. The described molecular markers, due to their exclusivity for the indicated taxa/genera, provide important means for the identification of these clinically important microorganisms and for discovering novel properties unique to them.
Collapse
Affiliation(s)
- Navneet Saini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada.
| |
Collapse
|
8
|
The Changing Face of the Family Enterobacteriaceae (Order: " Enterobacterales"): New Members, Taxonomic Issues, Geographic Expansion, and New Diseases and Disease Syndromes. Clin Microbiol Rev 2021; 34:34/2/e00174-20. [PMID: 33627443 DOI: 10.1128/cmr.00174-20] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The family Enterobacteriaceae has undergone significant morphogenetic changes in its more than 85-year history, particularly during the past 2 decades (2000 to 2020). The development and introduction of new and novel molecular methods coupled with innovative laboratory techniques have led to many advances. We now know that the global range of enterobacteria is much more expansive than previously recognized, as they play important roles in the environment in vegetative processes and through widespread environmental distribution through insect vectors. In humans, many new species have been described, some associated with specific disease processes. Some established species are now observed in new infectious disease settings and syndromes. The results of molecular taxonomic and phylogenetics studies suggest that the current family Enterobacteriaceae should possibly be divided into seven or more separate families. The logarithmic explosion in the number of enterobacterial species described brings into question the relevancy, need, and mechanisms to potentially identify these taxa. This review covers the progression, transformation, and morphogenesis of the family from the seminal Centers for Disease Control and Prevention publication (J. J. Farmer III, B. R. Davis, F. W. Hickman-Brenner, A. McWhorter, et al., J Clin Microbiol 21:46-76, 1985, https://doi.org/10.1128/JCM.21.1.46-76.1985) to the present.
Collapse
|
9
|
Jiang L, Lee MH, Jeong JC, Kim DH, Kim CY, Kim SW, Lee J. Neobacillus endophyticus sp. nov., an endophytic bacterium isolated from Selaginella involvens roots. Int J Syst Evol Microbiol 2021; 71. [PMID: 33620309 DOI: 10.1099/ijsem.0.004581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, facultatively anaerobic, rod-shaped, endospore-forming, oxidase-positive, and catalase-negative strain designated as BRMEA1T was isolated from the surface-sterilized Selaginella involvens roots. Growth of strain BRMEA1T was found to occur at pH 6.0-8.0 (optimum, pH 7.0), 15-50 °C (optimum, 25-30 °C) and in the absence of NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain BRMEA1T formed a lineage within the genus Neobacillus (family Bacillaceae) and showed the highest sequence similarity to Neobacillus drentensis DSM 15600T (98.3 %) and Neobacillus fumarioli KCTC 13885T (98.2 %), and less than 98.2 % 16S rRNA gene sequence similarity to the other members of the genus Neobacillus. Whole-genome analysis of strain BRMEA1T comprised a circular chromosome (5 632 809 bp in size) with 38.5 mol% G+C content. Digital DNA-DNA hybridization analyses revealed that strain BRMEA1T showed 20.5 and 22.0% genomic DNA relatedness with the closest species, N. drentensis DSM 15600T and N. fumarioli KCTC 13885T, respectively. The whole-genome sequence of strain BRMEA1T showed the presence of 11 specific conserved signature indels for the genus Neobacillus. The major cellular fatty acids (>10 %) of strain BRMEA1T were found to be iso-C15 : 0 and anteiso-C15 : 0, while the major polar lipids were found to be diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. Polyphasic analysis results revealed that BRMEA1T represents a novel species of the genus Neobacillus, with the proposed name Neobacillus endophyticus sp. nov. The type strain is BRMEA1T (=KCTC 43208T=CCTCC AB 2020071T).
Collapse
Affiliation(s)
- Lingmin Jiang
- Department of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea.,Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Myoung Hui Lee
- Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Jae Cheol Jeong
- Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Dae-Hyuk Kim
- Department of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Cha Young Kim
- Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Suk Weon Kim
- Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Jiyoung Lee
- Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| |
Collapse
|
10
|
Soutar CD, Stavrinides J. Phylogenetic analysis supporting the taxonomic revision of eight genera within the bacterial order Enterobacterales. Int J Syst Evol Microbiol 2020; 70:6524-6530. [DOI: 10.1099/ijsem.0.004542] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The diverse members of the
Enterobacterales
are agriculturally and medically relevant species that have continued to undergo taxonomic revision. To assess the current taxonomy of 64 genera of the
Enterobacterales
, we carried out a phylogenetic analysis using 32 single-copy core proteins. The resulting phylogeny was robust, and shows that eight genera –
Biostraticola
,
Enterobacillus
,
Gibbsiella
,
Limnobaculum
,
Izhakiella
, ‘Nissabacter’,
Rosenbergiella
and
Samsonia
– are currently assigned to incorrect families. Taxonomic reassignment of these genera was also supported by average amino acid identity comparisons. We propose taxonomic revision of these genera to reflect their phylogenetic position within the
Enterobacterales
.
Collapse
Affiliation(s)
- Craig D. Soutar
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada
| | - John Stavrinides
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada
| |
Collapse
|
11
|
Gupta RS, Patel S, Saini N, Chen S. Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. Int J Syst Evol Microbiol 2020; 70:5753-5798. [PMID: 33112222 DOI: 10.1099/ijsem.0.004475] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To clarify the evolutionary relationships and classification of Bacillus species, comprehensive phylogenomic and comparative analyses were performed on >300 Bacillus/Bacillaceae genomes. Multiple genomic-scale phylogenetic trees were initially reconstructed to identify different monophyletic clades of Bacillus species. In parallel, detailed analyses were performed on protein sequences of genomes to identify conserved signature indels (CSIs) that are specific for each of the identified clades. We show that in different reconstructed trees, most of the Bacillus species, in addition to the Subtilis and Cereus clades, consistently formed 17 novel distinct clades. Additionally, some Bacillus species reliably grouped with the genera Alkalicoccus, Caldalkalibacillus, Caldibacillus, Salibacterium and Salisediminibacterium. The distinctness of identified Bacillus species clades is independently strongly supported by 128 identified CSIs which are unique characteristics of these clades, providing reliable means for their demarcation. Based on the strong phylogenetic and molecular evidence, we are proposing that these 17 Bacillus species clades should be recognized as novel genera, with the names Alteribacter gen. nov., Ectobacillus gen. nov., Evansella gen. nov., Ferdinandcohnia gen. nov., Gottfriedia gen. nov., Heyndrickxia gen. nov., Lederbergia gen. nov., Litchfieldia gen. nov., Margalitia gen. nov., Niallia gen. nov., Priestia gen. nov., Robertmurraya gen. nov., Rossellomorea gen. nov., Schinkia gen. nov., Siminovitchia gen. nov., Sutcliffiella gen. nov. and Weizmannia gen. nov. We also propose to transfer 'Bacillus kyonggiensis' to Robertmurraya kyonggiensis sp. nov. (type strain: NB22=JCM 17569T=DSM 26768). Additionally, we report 31 CSIs that are unique characteristics of either the members of the Subtilis clade (containing the type species B. subtilis) or the Cereus clade (containing B. anthracis and B. cereus). As most Bacillus species which are not part of these two clades can now be assigned to other genera, we are proposing an emended description of the genus Bacillus to restrict it to only the members of the Subtilis and Cereus clades.
Collapse
Key Words
- classification of Bacillus species
- conserved signature indels
- emendation of genus Bacillus
- genus Bacillus and the family Bacillaceae
- novel Bacillaceae genera Alteribacter, Ectobacillus, Evansella, Ferdinandcohnia, Gottfriedia, Heyndrickxia, Lederbergia, Litchfieldia, Margalitia, Niallia, Priestia, Robertmurraya, Rossellomorea, Schinkia, Siminovitchia, Sutcliffiella and Weizmannia
- phylogenomic and comparative genomic analyses
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8N 3Z5, Ontario, Canada
| | - Sudip Patel
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8N 3Z5, Ontario, Canada
| | - Navneet Saini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8N 3Z5, Ontario, Canada
| | - Shu Chen
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8N 3Z5, Ontario, Canada
| |
Collapse
|