1
|
Zhu HX, Tang ZG, Cai SN, Cheng JH, Wang P, Sun ML. Complete genome sequence of Vreelandella sp. SM1641, a marine exopolysaccharide-producing bacterium isolated from deep-sea hydrothermal sediment of the Southwest Indian Ocean. Mar Genomics 2025; 79:101150. [PMID: 39855809 DOI: 10.1016/j.margen.2024.101150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 01/27/2025]
Abstract
Vreelandella sp. SM1641 was isolated from the hydrothermal vent sediment of the southwest Indian Ocean at a water depth of 2519 m. The complete genome sequence of strain SM1641 was analyzed to understand its metabolic capacities and biosynthesis potential of natural products in this study. The genome of strain SM1641 consists of a circular chromosome and two plasmids. The length of the circular chromosome was 4,731,121 bp with GC content of 54.46 mol%, and the length of plasmid A was 302,095 bp with GC content of 54.95 mol%, and the length of plasmid B was 8857 bp with GC content of 46.31 mol%. Genomic data showed that strain SM1641 had several gene clusters involved in the synthesis of exopolysaccharides (EPSs) and polyhydroxyalkanoates (PHAs) synthesis. SM1641 also has a variety of genes that respond to osmotic stress, heat shock, cold shock, oxidative stress, and heavy metal stress, which plays a critical role in bacterial adaptation to hydrothermal environments. Therefore, genome sequencing and data mining of strain SM1641 are helpful to further understand the molecular mechanism of Vreelandella adapting to the deep-sea hydrothermal environment, and provide a basis for further experimental exploration.
Collapse
Affiliation(s)
- Hai-Xia Zhu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
| | - Zhi-Gang Tang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
| | - Shi-Ning Cai
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Jun-Hui Cheng
- Institute of Biochemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Peng Wang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Mei-Ling Sun
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
2
|
Yook S, Kim I, Park S, Woo H, Lee H, Seo T. Halomonas pelophila sp. nov., isolated from mud and Halomonas aquatica sp. nov., isolated from marine water. Antonie Van Leeuwenhoek 2025; 118:60. [PMID: 40085395 DOI: 10.1007/s10482-025-02069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/22/2025] [Indexed: 03/16/2025]
Abstract
Two Gram-negative, catalase- and oxidase-positive, cream-coloured, short rod-shaped, and motile bacterial strains, designated CS7T and SSM6T, were isolated from mud and marine water collected in Incheon, Republic of Korea. Phylogenetic analysis based on 16S rRNA gene sequences showed that both strains belonged to the genus Halomonas. Strain CS7T exhibited the highest 16S rRNA similarity with Halomonas urmiana TBZ3T (99.0%), while strain SSM6T exhibited the highest 16S rRNA similarity with Halomonas saccharevitans AJ275T (98.4%). Strain CS7T was observed at temperatures ranging from 4 to 44 °C (optimum, 30 °C), at pH levels from 2.0 to 12.0 (optimum, pH 8-9), and in NaCl concentrations of 0-23% (w/v) (optimum, 9%). Strain SSM6T was observed at temperatures ranging from 4 to 37 °C (optimum, 30 °C), at pH levels from 2.0 to 10.0 (optimum, pH 8-9), and in NaCl concentrations of 0% to 23% (w/v) (optimum, 9%). The DNA G + C content of CS7T was 67.7 mol%, while that of SSM6T was 65.1 mol%. Strains CS7T and SSM6T were identified to possess phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and diphosphatidylglycerol (DPG) as the major polar lipids. Predominant fatty acids (> 10%) in strain CS7T were C16:0, C12:0 3-OH, summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c). Predominant fatty acids (> 10%) in strain SSM6T were C16:0, C12:0 3-OH, cyclo-C19:0 ω8c, and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c). Based on phylogenetic, physicochemical, and biochemical data, CS7T and SSM6T represent novel species within the genus Halomonas. They have been designated as Halomonas pelophila sp. nov. (= KACC 23728T = TBRC 19017T) and Halomonas aquatica sp. nov. (= KACC 23729T = TBRC 19018T).
Collapse
Affiliation(s)
- Subin Yook
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, South Korea
| | - Inhyup Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, South Korea
| | - Sunho Park
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, South Korea
| | - Haejin Woo
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, South Korea
| | - Hyunji Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, South Korea
| | - Taegun Seo
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, South Korea.
| |
Collapse
|
3
|
Zhang L, Chen Q, Zeng S, Deng Z, Liu Z, Li X, Hou Q, Zhou R, Bao S, Hou D, Weng S, He J, Huang Z. Succeed to culture a novel lineage symbiotic bacterium of Mollicutes which widely found in arthropods intestine uncovers the potential double-edged sword ecological function. Front Microbiol 2024; 15:1458382. [PMID: 39493855 PMCID: PMC11527720 DOI: 10.3389/fmicb.2024.1458382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/20/2024] [Indexed: 11/05/2024] Open
Abstract
Symbiotic gut bacteria play crucial role in host health. Symbionts are widely distributed in arthropod intestines, but their ecological functions are poorly understood due to the inability to cultivate them. Members of Candidatus Bacilliplasma (CB) are widely distributed in crustacean intestine and maybe commensals with hosts, but the paucity of pure cultures has limited further insights into their physiologies and functions. Here, four strains of representative CB bacteria in shrimp intestine were successfully isolated and identified as members of a novel Order in the Phylum Mycoplasmatota. Through genome assembly, the circular genome maps of the four strains were obtained, and the number of coding genes ranged from 1,886 to 1,980. Genomic analysis suggested that the bacteria were missing genes for many critical pathways including the TCA cycle and biosynthesis pathways for amino acids and coenzyme factors. The analysis of 16S amplification data showed that Shewanella, Pseudomonas and CB were the dominant at the genera level in the intestine of Penaeus vannamei. Ecological functional experiments revealed that the strains were symbionts and colonized shrimp intestines. Our valued findings can greatly enhance our understanding and provides new insights into the potentially significant role of uncultured symbiotic bacteria in modulating host health.
Collapse
Affiliation(s)
- Lingyu Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Qi Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Shenzheng Zeng
- State Key Laboratory of Biocontrol, School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Zhixuan Deng
- State Key Laboratory of Biocontrol, School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Zhongcheng Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Xuanting Li
- State Key Laboratory of Biocontrol, School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Qilu Hou
- State Key Laboratory of Biocontrol, School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Renjun Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Shicheng Bao
- State Key Laboratory of Biocontrol, School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Dongwei Hou
- State Key Laboratory of Biocontrol, School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Zhijian Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
4
|
de la Haba RR, Arahal DR, Sánchez-Porro C, Chuvochina M, Wittouck S, Hugenholtz P, Ventosa A. A long-awaited taxogenomic investigation of the family Halomonadaceae. Front Microbiol 2023; 14:1293707. [PMID: 38045027 PMCID: PMC10690426 DOI: 10.3389/fmicb.2023.1293707] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 12/05/2023] Open
Abstract
The family Halomonadaceae is the largest family composed of halophilic bacteria, with more than 160 species with validly published names as of July 2023. Several classifications to circumscribe this family are available in major resources, such as those provided by the List of Prokaryotic names with Standing in Nomenclature (LPSN), NCBI Taxonomy, Genome Taxonomy Database (GTDB), and Bergey's Manual of Systematics of Archaea and Bacteria (BMSAB), with some degree of disagreement between them. Moreover, regardless of the classification adopted, the genus Halomonas is not phylogenetically consistent, likely because it has been used as a catch-all for newly described species within the family Halomonadaceae that could not be clearly accommodated in other Halomonadaceae genera. In the past decade, some taxonomic rearrangements have been conducted on the Halomonadaceae based on ribosomal and alternative single-copy housekeeping gene sequence analysis. High-throughput technologies have enabled access to the genome sequences of many type strains belonging to the family Halomonadaceae; however, genome-based studies specifically addressing its taxonomic status have not been performed to date. In this study, we accomplished the genome sequencing of 17 missing type strains of Halomonadaceae species that, together with other publicly available genome sequences, allowed us to re-evaluate the genetic relationship, phylogeny, and taxonomy of the species and genera within this family. The approach followed included the estimate of the Overall Genome Relatedness Indexes (OGRIs) such as the average amino acid identity (AAI), phylogenomic reconstructions using amino acid substitution matrices customized for the family Halomonadaceae, and the analysis of clade-specific signature genes. Based on our results, we conclude that the genus Halovibrio is obviously out of place within the family Halomonadaceae, and, on the other hand, we propose a division of the genus Halomonas into seven separate genera and the transfer of seven species from Halomonas to the genus Modicisalibacter, together with the emendation of the latter. Additionally, data from this study demonstrate the existence of various synonym species names in this family.
Collapse
Affiliation(s)
- Rafael R. de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - David R. Arahal
- Departament of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Maria Chuvochina
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, Australia
| | - Stijn Wittouck
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, Australia
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| |
Collapse
|
5
|
Liu W, Cong B, Lin J, Zhao L, Liu S. Complete genome sequencing and comparison of two nitrogen-metabolizing bacteria isolated from Antarctic deep-sea sediment. BMC Genomics 2022; 23:713. [PMID: 36261793 PMCID: PMC9580203 DOI: 10.1186/s12864-022-08942-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacteria are an essential component of the earth`s biota and affect circulation of matters through their metabolic activity. They also play an important role in the carbon and nitrogen cycle in the deep-sea environment. In this paper, two strains from deep-sea sediments were investigated in order to understand nitrogen cycling involved in the deep-sea environment. RESULTS In this paper, the basic genomic information of two strains was obtained by whole genome sequencing. The Cobetia amphilecti N-80 and Halomonas profundus 13 genome sizes are 4,160,095 bp with a GC content of 62.5% and 5,251,450 bp with a GC content of 54.84%. Through a comparison of functional analyses, we predicted the possible C and N metabolic pathways of the two strains and determined that Halomonas profundus 13 could use more carbon sources than Cobetia amphilecti N-80. The main genes associated with N metabolism in Halomonas profundus 13 are narG, narY, narI, nirS, norB, norC, nosZ, and nirD. On the contrast, nirD, using NH4+ for energy, plays a main role in Cobetia amphilecti N-80. Both of them have the same genes for fixing inorganic carbon: icd, ppc, fdhA, accC, accB, accD, and accA. CONCLUSION In this study, the whole genomes of two strains were sequenced to clarify the basic characteristics of their genomes, laying the foundation for further studying nitrogen-metabolizing bacteria. Halomonas profundus 13 can utilize more carbon sources than Cobetia amphilecti N-80, as indicated by API as well as COG and KEGG prediction results. Finally, through the analysis of the nitrification and denitrification abilities as well as the inorganic carbon fixation ability of the two strains, the related genes were identified, and the possible metabolic pathways were predicted. Together, these results provide molecular markers and theoretical support for the mechanisms of inorganic carbon fixation by deep-sea microorganisms.
Collapse
Affiliation(s)
- Wenqi Liu
- School of Advanced Manufacturing, Fuzhou University, Fuzhou, 350108, China
| | - Bailin Cong
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China.
| | - Jing Lin
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Linlin Zhao
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Shenghao Liu
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| |
Collapse
|
6
|
Zeng F, Zhu Y, Zhang D, Zhao Z, Li Q, Ma P, Zhang G, Wang Y, Wu S, Guo S, Sun G. Metagenomic analysis of the soil microbial composition and salt tolerance mechanism in Yuncheng Salt Lake, Shanxi Province. Front Microbiol 2022; 13:1004556. [PMID: 36225369 PMCID: PMC9549588 DOI: 10.3389/fmicb.2022.1004556] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/08/2020] [Indexed: 11/13/2022] Open
Abstract
The soil in Yuncheng Salt Lake has serious salinization and the biogeographic environment affects the composition and distribution of special halophilic and salt-tolerant microbial communities in this area. Therefore, this study collected soils at distances of 15, 30, and 45 m from the Salt Lake and used non-saline soil (60 m) as a control to explore the microbial composition and salt tolerance mechanisms using metagenomics technology. The results showed that the dominant species and abundance of salt-tolerant microorganisms changed gradually with distance from Salt Lake. The salt-tolerant microorganisms can increase the expression of the Na+/H+ antiporter by upregulating the Na+/H+ antiporter subunit mnhA-G to respond to salt stress, simultaneously upregulating the genes in the betaine/proline transport system to promote the conversion of choline into betaine, while also upregulating the trehalose/maltose transport system encode genes to promote the synthesis of trehalose to resist a high salt environment.
Collapse
Affiliation(s)
- Feifeng Zeng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yonghong Zhu
- Cotton Research Institute, Shanxi Agricultural University, Shanxi, China
| | - Dongling Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zengqiang Zhao
- Xinjiang Academy of Agricultural and Reclamation, Xinjiang, China
| | - Quansheng Li
- Xinjiang Academy of Agricultural and Reclamation, Xinjiang, China
| | - Panpan Ma
- Xinjiang Academy of Agricultural and Reclamation, Xinjiang, China
| | - Guoli Zhang
- Xinjiang Academy of Agricultural and Reclamation, Xinjiang, China
| | - Yuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shenjie Wu
- Cotton Research Institute, Shanxi Agricultural University, Shanxi, China
| | - Sandui Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guoqing Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Guoqing Sun,
| |
Collapse
|
7
|
Innovative Coating-Etching Method of Biocarrier Fabrication for Treating Wastewater with a Low C/N Ratio. Polymers (Basel) 2022; 14:polym14153010. [PMID: 35893972 PMCID: PMC9330803 DOI: 10.3390/polym14153010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
A novel method was used to fabricate the bio-carrier with both a high specific surface area and good compatibility. The results of monitoring the growth of biofilms at a low C/N ratio (0.83) showed that resulting carrier-PLA-cavity offered certain advantages for biofilm growth by providing an appropriate microenvironment for bacterial growth in wastewater treatment. The biofilm on carrier-PLA-cavity grew and updated faster than the naked-carrier. The biomass and thickness of biofilms growing on carrier-PLA-cavity were 10 kg/m3 and 500 μm, respectively. From the wastewater tests, 90% of the total nitrogen was removed via simultaneous nitrification and denitrification (SND) by the biofilm biomass attached to carrier-PLA-cavity, compared to 68% for the naked-carrier. The COD removal efficiency values of the carrier-PLA-cavity and naked-carrier were 94% and 86%, respectively. The microbial community analysis of carrier biofilms showed that Halomonas was the most abundant genus, and heterotrophic nitrification and denitrification were responsible for nitrogen removal in both reactors. Notably, this method does not require any complicated equipment or structural design. This novel method might be a promising strategy for fabricating biocarriers for treating wastewater with a low C/N ratio.
Collapse
|
8
|
So Y, Chhetri G, Kim I, Kang M, Kim J, Lee B, Jang W, Seo T. Halomonas antri sp. nov., a carotenoid-producing bacterium isolated from surface seawater. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, moderately halophilic bacterium, designated as strain Y3S6T, was isolated from a surface seawater sample collected from Dongangyoeng cave, Udo-myeon, Jeju-si, Jeju-do, Repulic of Korea. Cells of strain Y3S6T were aerobic, rod-shaped, non-sporulated, yellow, catalase- negative, oxidase-negative and motile with one polar flagellum. Growth of strain Y3S6T occurred at 15–40 °C (optimum: 25–30 °C), at pH 6.0–9.0 (optimum: pH 7.0) and in the presence of 0–13% NaCl (optimum: 1–6 %, w/v). The novel strain was able to produce carotenoids. Its chemotaxonomic and morphological characteristics were consistent with those of members of the genus
Halomonas
. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain Y3S6T formed a clade with
Halomonas pellis
L5T (98.97 %) and
Halomonas saliphila
LCB169T(98.90%). The average nucleotide identity and digital DNA–DNA hybridization values of strain Y3S6T with the most closely related strains for which whole genomes are publicly available were 82.3–85.2% and 62.8–66.1 %, respectively. The major fatty acids in strain Y3S6T were C16 : 0, C19 : 0 cyclo ω8c and summed feature 8 (composed of C18 : 1 ω7c and/or C18 : 1 ω6c), and the predominant quinone was Q-9. Its polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two unidentified phosphoglycolipid, one unidentified phosphoaminoglycolipid and one unidentified phospholipid. The genomic DNA G+C content based on the draft genome sequence was 64.2 mol%. The results of physiological and biochemical tests and 16S rRNA sequence analysis clearly revealed that strain Y3S6T represents a novel species in the genus
Halomonas
, for which the name Halomonas antri sp. nov. has been proposed. The type strain is Y3S6T (=KACC 21536T=NBRC 114315=TBRC 15164T).
Collapse
Affiliation(s)
- Yoonseop So
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Geeta Chhetri
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Inhyup Kim
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Minchung Kang
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Jiyoun Kim
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Byungjo Lee
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Wonhee Jang
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Taegun Seo
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| |
Collapse
|
9
|
Wang F, Wan JJ, Zhang XY, Xin Y, Sun ML, Wang P, Zhang WP, Tian JW, Zhang YZ, Li CY, Fu HH. Halomonas profundi sp. nov., isolated from deep-sea sediment of the Mariana Trench. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two novel Gram-stain-negative, facultative anaerobic, non-flagellated, rod-shaped bacterial strains, designated MT13T and MT32, were isolated from sediment samples collected from the Mariana Trench at a depth of 8300 m. The two strains grew at −2–30 °C (optimum, 25 °C), at pH 5.5–10.0 (optimum, pH 7.5–8.0) and with 0–15 % (w/v) NaCl (optimum, 3–6 %). They did not reduce nitrate to nitrite nor hydrolyse Tweens 40 and 80, aesculin, casein, starch and DNA. The genomic G+C contents of draft genomes of strain MT13T and MT32 were 52.2 and 54.1 m ol%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains MT13T and MT32 were affiliated with the genus
Halomonas
, with the highest similarity to the type strain of
Halomonas olivaria
. The values of average nucleotide identity and in silico DNA–DNA hybridization between strain MT13T and MT32, and between strain MT13T and five closely related type strains of
Halomonas
species indicated that strains MT13T and MT32 belonged to the same species, but represented a novel species in the genus of
Halomonas
. The major cellular fatty acids of strains MT13T and MT32 were C16 : 0, summed feature 3(C16 : 1
ω7c/ω6c) and summed feature 8 (C18 : 1
ω7c/ω6c). Major polar lipids of strains MT13T and MT32 included phosphatidylglycerol, phosphatidylethanolamine and diphosphatidylglycerol. Ubiquinone-9 was the predominant respiratory quinone. Based on data from the present polyphasic study, strains MT13T and MT32 represent a novel species of the genus
Halomonas
, for which the name Halomonas profundi sp. nov. is proposed. The type strain is MT13T (=MCCC 1K06389T=KCTC 82923T).
Collapse
Affiliation(s)
- Fan Wang
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, PR China
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, PR China
| | - Jin-Jian Wan
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, PR China
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, PR China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, PR China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Yu Xin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and Institute for Advanced Ocean Study, Ocean University of China, Qingdao, Shandong, PR China
| | - Mei-Ling Sun
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, PR China
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, PR China
| | - Peng Wang
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, PR China
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, PR China
| | - Wei-Peng Zhang
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, PR China
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, PR China
| | - Ji-Wei Tian
- MOE Key Laboratory of Physical Oceanography and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, PR China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, PR China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, PR China
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, PR China
| | - Chun-Yang Li
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, PR China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Hui-Hui Fu
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, PR China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, PR China
| |
Collapse
|
10
|
Wang L, Liu X, Lai Q, Gu L, Shao Z. Halomonas diversa sp. nov., isolated from deep-sea sediment of the Pacific Ocean. Int J Syst Evol Microbiol 2021; 71. [PMID: 33906704 DOI: 10.1099/ijsem.0.004790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-negative, facultatively anaerobic, rod-shaped bacterium, designated as D167-6-1T, was isolated from deep-sea sediment collected from the Pacific Ocean. The cells were catalase- and oxidase-positive, and motile by means of peritrichous flagella. Growth occurred at NaCl concentrations ranging from 0 to 19 % (optimum, 2-8 %, w/v), from pH 6 to 11 (optimum, 7-8) and at temperatures between 4 and 45 °C (optimum, 33 °C). Phylogenetic analysis based on 16S rRNA, gyrB and rpoD gene sequences and its genome sequence revealed that strain D167-6-1T formed a monophyletic branch within the genus Halomonas and was most closely related to Halomonas saliphila, Halomonas pellis, Halomonas kenyensis, Halomonas daqingensis, Halomonas desiderata and Halomonas lactosivorans (with 98.5, 98.5, 98.4, 98.1, 97.5 and 97.8 % 16S rRNA sequence similarity, respectively). The complete genome size of strain D167-6-1T was 4.49 Mb, with a DNA G+C content of 62.8 mol%. The estimated averagenucleotide identity and DNA-DNA hybridization values between strain D167-6-1T and other closely related species were 77.59-85.35 % and 22.0-30.6 %, respectively. The principal cellular fatty acids (>5 %) were C18 : 1 ω7c, C16 : 0, C19 : 0 cyclo ω8c, summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c) and C17 : 0 cyclo. The polar lipids were identified as diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, an unidentified aminolipid, aminophospholipid and two unidentified phospholipids. The predominant respiratory quinones were Q-9 and Q-8. The combined genotypic and phenotypic data show that strain D167-6-1T represents a novel species of the genus Halomonas, for which the name Halomonas diversa sp. nov. is proposed, with the type strain D167-6-1T (=MCCC 1A13316T=KCTC 72441T).
Collapse
Affiliation(s)
- Liping Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China.,School of Environment, Harbin Institute of Technology, Harbin, PR China
| | - Xiupian Liu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Li Gu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Zongze Shao
- School of Environment, Harbin Institute of Technology, Harbin, PR China.,Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| |
Collapse
|
11
|
Qiu X, Cao X, Xu G, Wu H, Tang X. Halomonas maris sp. nov., a moderately halophilic bacterium isolated from sediment in the southwest Indian Ocean. Arch Microbiol 2021; 203:3279-3285. [PMID: 33860341 DOI: 10.1007/s00203-021-02317-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/14/2021] [Accepted: 03/30/2021] [Indexed: 11/30/2022]
Abstract
A halophilic, Gram-staining-negative, rod-shaped, flagellated and motile bacterium, strain QX-1 T, was isolated from deep-sea sediment at a depth of 3332 m in the southwestern Indian Ocean. Strain QX-1 T growth was observed at 4-50 °C (optimum 37 °C), pH 5.0-11.0 (optimum pH 7.0), 3-25% NaCl (w/v; optimum 7%), and it did not grow without NaCl. A phylogenetic analysis based on the 16S rRNA gene placed strain QX-1 T in the genus Halomonas and most closely related to Halomonas sulfidaeris (97.9%), Halomonas zhaodongensis (97.8%), Halomonas songnenensis (97.6%), Halomonas hydrothermalis (97.4%), Halomonas subterranea (97.3%), Halomonas salicampi (97.1%), and Halomonas arcis (97.0%). DNA-DNA hybridization (< 26.5%) and average nucleotide identity values (< 83.5%) between strain QX-1 T and the related type strains meet the accepted criteria for a new species. The principal fatty acids (> 10%) of strain QX-1 T are C16:0 (25.5%), C17:0 cyclo (14.0%), C19:0 cyclo ω8c (18.7%), and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c, 18.1%). The polar lipids of strain QX-1 T are mainly diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, unidentified phospholipid, unidentified aminophospholipid, and five unidentified lipids. The main respiratory quinone is Q-9. The G + C content of its chromosomal DNA is 54.4 mol%. Its fatty acid profile, respiratory quinones, and G + C content also support the placement of QX-1 T in the genus Halomonas. These phylogenetic, phenotypic, and chemotaxonomic analyses indicate that QX-1 T is a novel species, for which the name Halomonas maris is proposed. The type strain is QX-1 T (= MCCC 1A17875T = KCTC 82198 T = NBRC 114670 T).
Collapse
Affiliation(s)
- Xu Qiu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.,School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Xiaorong Cao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Guangxin Xu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Huangming Wu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Xixiang Tang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| |
Collapse
|
12
|
Wang L, Shao Z. Aerobic Denitrification and Heterotrophic Sulfur Oxidation in the Genus Halomonas Revealed by Six Novel Species Characterizations and Genome-Based Analysis. Front Microbiol 2021; 12:652766. [PMID: 33815342 PMCID: PMC8014003 DOI: 10.3389/fmicb.2021.652766] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
Bacteria of Halomonas are widely distributed in various environments and play a substantial role in the nutrient cycle. In this report, 14 strains capable of aerobic denitrification and heterotrophic sulfur oxidation were isolated from different habitats. Based on the phenotypic, genotypic, and chemotaxonomic analyses, these strains were considered to represent six novel species of the genus Halomonas, for which the names Halomonas zhangzhouensis sp. nov. type strain CXT3-11T ( = MCCC 1A11036T = KCTC 72087T), Halomonas aerodenitrificans sp. nov. CYD-9T ( = MCCC 1A11058T = KCTC 72088T), Halomonas sulfidoxydans sp. nov. CYN-1-2T ( = MCCC 1A11059T = KCTC 72089T), Halomonas ethanolica sp. nov. CYT3-1-1T ( = MCCC 1A11081T = KCTC 72090T), Halomonas sulfidivorans sp. nov. NLG_F1ET ( = MCCC 1A13718T = KCTC 72091T), and Halomonas tianxiuensis sp. nov. BC-M4-5T ( = MCCC 1A14433T = KCTC 72092T) are proposed. Intriguingly, they formed a unique group with 11 other species designated as the "H. desiderata group." To better understand their featured metabolisms, genes involved in denitrification and sulfur oxidation were analyzed, along with 193 other available genomes of the whole genus. Consistently, complete denitrification pathways were confirmed in the "H. desiderata group," in which napA, narG, nirS, norB, and nosZ genes coexist. Their nitrite reductase NirS formed a unique evolutionary lineage, distinguished from other denitrifiers in Halomonas. In addition, diverse occurrence patterns of denitrification genes were also observed in different phylogenetic clades of Halomonas. With respect to sulfur oxidation, fccAB genes involved in sulfide oxidation commonly exist in the "H. desiderata group," while sqr genes are diverse and can be found in more species; sqr genes co-occurred with fccAB in eight strains of this study, contributing to more active sulfide oxidation. Besides, the tsdA gene, which encodes an enzyme that oxidizes thiosulfate to tetrathionate, is ubiquitous in the genus Halomonas. The widespread presence of sqr/fccAB, pdo, and tsdA in Halomonas suggests that many Halomonas spp. can act as heterotrophic sulfur oxidizers. These results provide comprehensive insights into the potential of denitrification and sulfur oxidation in the whole genus of Halomonas. With regard to the global distribution of Halomonas, this report implies their unneglectable role in the biogeochemical cycle.
Collapse
Affiliation(s)
- Liping Wang
- School of Environment, Harbin Institute of Technology, Harbin, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Zongze Shao
- School of Environment, Harbin Institute of Technology, Harbin, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
13
|
Qiu X, Yu L, Cao X, Wu H, Xu G, Tang X. Halomonas sedimenti sp. nov., a Halotolerant Bacterium Isolated from Deep-Sea Sediment of the Southwest Indian Ocean. Curr Microbiol 2021; 78:1662-1669. [PMID: 33651187 DOI: 10.1007/s00284-021-02425-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
A Gram-staining-negative, aerobic, flagellated, motile, rod-shaped, halophilic bacterium QX-2T was isolated from the deep-sea sediment of the Southwest Indian Ocean at a depth of 2699 m. Growth of the QX-2T bacteria was observed at 4-50 °C (optimum 30 °C), pH 5.0-12.0 (optimum pH 6.0) and 0%-30% NaCl (w/v) [optimum 4% (w/v)]. 16S rRNA gene sequencing revealed that strain QX-2T has the closest relationship with Halomonas titanicae DSM 22872T (98.2%). Phylogeny analysis classified the strain QX-2T into the genus Halomonas. The average nucleotide identity and DNA-DNA hybridization values between strain QX-2T and related type strains were lower than the currently accepted new species definition standards. Principal fatty acids (> 10%) determined were C16:0 (12.41%), C12:0-3OH (25.15%), summed feature 3 (C16:1 ω7c and/or C16:1 ω6c, 11.55%) and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c, 16.06%). Identified polar lipids in strain QX-2T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, unidentified phospholipid, unidentified aminophospholipid and five unidentified lipids (L1-L5). The main respiratory quinone was Q-9. The content of DNA G+C was determined to be 54.34 mol%. The results of phylogenetic analysis, phenotypic analysis and chemotaxonomic studies showed that strain QX-2T represents a novel species within the genus Halomonas, for which the name Halomonas sedimenti sp. nov. is proposed, with the type strain QX-2T (MCCC 1A17876T = KCTC 82199T).
Collapse
Affiliation(s)
- Xu Qiu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.,School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Libo Yu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Xiaorong Cao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Huangming Wu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Guangxin Xu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Xixiang Tang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| |
Collapse
|
14
|
Li X, Gan L, Hu M, Wang S, Tian Y, Shi B. Halomonas pellis sp. nov., a moderately halophilic bacterium isolated from wetsalted hides. Int J Syst Evol Microbiol 2020; 70:5417-5424. [DOI: 10.1099/ijsem.0.004426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A Gram-stain-negative, moderately halophilic strain, designated strain L5T, was isolated from wetsalted hides collected from Chengdu, south-west PR China. The cells were motile, facultative aerobic, short rod-shaped and non-endospore-forming. Growth of strain L5T occurred at pH 6–10 (optimum, pH 8), 10–45 °C (optimum, 30 °C) and in the presence of 1–17 % (w/v) NaCl (optimum, 10 %). Results of phylogenetic analyses based on 16S rRNA, gyrB and rpoD gene sequences and its genome revealed that strain L5T belonged to the genus
Halomonas
. Strain L5T was found to be most closely related to the type strains of
Halomonas saliphila
,
Halomonas lactosivorans
,
Halomonas kenyensis
,
Halomonas daqingensis
and
Halomonas desiderata
(98.8, 98.6, 98.3, 97.9 and 97.4 % 16S rRNA gene sequence similarity, respectively). The draft genome was approximately 4.2 Mb in size with a G+C content of 63.5 mol%. The average nucleotide identity (ANI) and digital DNA–DNA hybridization values among strain L5T and the selected
Halomonas
species were 83.3–88.9 % (ANIm), 71.1–87.3 % (ANIb) and 20.2–34.6 %, which are below the recommended cutoff values. Major fatty acids were C16 : 0, C16 : 1
ω7c, C18 : 1
ω7c and C19 : 0 cyclo ω8c and the predominant ubiquinone was Q-9, with minor ubiquinone Q-8 also present. The phospholipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, four unidentified aminophospholipids and three unidentified phospholipids. Based on the mentioned polyphasic taxonomic evidence, strain L5T represents a novel species within the genus
Halomonas
, for which Halomonas pellis sp. nov. is proposed. The type strain is L5T (=CGMCC 1.17335T=KCTC 72573T).
Collapse
Affiliation(s)
- Xiaoguang Li
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, PR China
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Longzhan Gan
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, PR China
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Mengyao Hu
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, PR China
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Shiting Wang
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, PR China
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yongqiang Tian
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, PR China
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Bi Shi
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, PR China
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|