1
|
Habib N, Khan IU, Saqib M, Hejazi MS, Tarhriz V, Jan SA, Meza C, Banerjee A, Narsing Rao MP, Li WJ. Tabrizicola caldifontis sp. nov., Isolated from Hot Spring Sediment Sample. Curr Microbiol 2025; 82:172. [PMID: 40050427 DOI: 10.1007/s00284-025-04156-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
A Gram-stain-negative, ovoid to rod-shaped, aerobic, non-motile bacterial strain, designated YIM 73028T, was isolated from a sediment sample collected from a hot spring in Tibet, China. Phylogenetic analysis (based on the 16S rRNA gene sequences) indicated that strain YIM 73028T belongs to the genus Tabrizicola and showed the highest sequence similarity to the type strain of Tabrizicola aquatica (97.0%). Growth occurred at 30-50 °C (optimum, 37-45 °C) and pH 6.5-8.5 (optimum, pH 7.0-7.5). The respiratory isoprenoid quinone was ubiquinone Q-10. The polar lipids consisted of phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, unidentified amino lipid and unidentified lipid. The major cellular fatty acids (> 10%) were C18:1 ω7c, C18:1 ω7c 11-methyl, C16:0 and C18:0. The genomic DNA G + C content was 65.7%. The average nucleotide identity value between strain YIM 73028T and type species of Tabrizicola aquatica was lower than 95-96% threshold recommended for distinguishing novel prokaryotic species. Based on the phenotypic, physiological, chemotaxonomic, genotypic, and phylogenetic data, strain YIM 73028T represents a novel species of the genus Tabrizicola, for which the name Tabrizicola caldifontis sp. nov. is proposed. The type strain is YIM 73028T (= KCTC 52713T = CGMCC 1.16151T).
Collapse
Affiliation(s)
- Neeli Habib
- Department of Microbiology, Shahid Benazir Bhutto Woman University Peshawar, Peshawar, Pakistan
| | - Inam Ullah Khan
- Institute of Microbiology, Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Saqib
- Department of Zoology, Government Post Graduate College No1, Bannu, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sohail Ahmad Jan
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Cynthia Meza
- Doctorado en Biotecnología Traslacional (DBT), Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Aparna Banerjee
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Sede Talca, 3460000, Talca, Chile
| | - Manik Prabhu Narsing Rao
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Sede Talca, 3460000, Talca, Chile.
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
2
|
Cho ES, An CW, Bae SS, Chung D, Yu WJ, Kim JYH, Choi G, Kwon YM. Falsirhodobacter algicola sp. nov., a member of the Rhodobacteraceae isolated from the marine red algae Grateloupia sp. Int J Syst Evol Microbiol 2023; 73. [PMID: 37750753 DOI: 10.1099/ijsem.0.006056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
A Gram-negative, pale yellow-pigmented, non-flagellated, motile, rod-shaped and aerobic bacterium, designated strain PG104T, was isolated from red algae Grateloupia sp. collected from the coastal area of Pohang, Republic of Korea. Growth of strain PG104T was observed at 15-35 °C (optimum, 30 °C), pH 6.0-10.0 (optimum, pH 7.5-8.0) and in the presence of 0-8.0 % (w/v) NaCl (optimum, 5.0 %). The predominant fatty acids included C17 : 0, C18 : 0, 11-methyl C18 : 1 ω7c and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and the major respiratory quinone was Q-10. Polar lipids included phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified lipid and one unidentified aminolipid. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain PG104T formed a phylogenetic lineage with members of the genus Falsirhodobacter and exhibited 16S rRNA gene sequence similarities of 97.1 and 96.6 % to Falsirhodobacter deserti W402T and Falsirhodobacter halotolerans JA744T, respectively. The complete genome of strain PG104T consisted of a single circular chromosome of approximately 2.8 Mbp with five plasmids. Based on polyphasic taxonomic data, strain PG104T represents a novel species in the genus Falsirhodobacter, for which the name Falsirhodobacter algicola sp. nov. is proposed. The type strain of Falsirhodobacter algicola is PG104T (=KCTC 82230T=JCM 34380T).
Collapse
Affiliation(s)
- Eun-Seo Cho
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 Beon-gil, Seocheon-gun, Chungcheongnam-do, 33662, Republic of Korea
| | - Chang Woo An
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 Beon-gil, Seocheon-gun, Chungcheongnam-do, 33662, Republic of Korea
| | - Seung Seob Bae
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 Beon-gil, Seocheon-gun, Chungcheongnam-do, 33662, Republic of Korea
| | - Dawoon Chung
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 Beon-gil, Seocheon-gun, Chungcheongnam-do, 33662, Republic of Korea
| | - Woon-Jong Yu
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 Beon-gil, Seocheon-gun, Chungcheongnam-do, 33662, Republic of Korea
| | - Jaoon Young Hwan Kim
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 Beon-gil, Seocheon-gun, Chungcheongnam-do, 33662, Republic of Korea
| | - Grace Choi
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 Beon-gil, Seocheon-gun, Chungcheongnam-do, 33662, Republic of Korea
| | - Yong Min Kwon
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 Beon-gil, Seocheon-gun, Chungcheongnam-do, 33662, Republic of Korea
| |
Collapse
|
3
|
Xu J, Deng T, Huang Y, Dong M, Yang S, Xu M. Tabrizicola rongguiensis sp. nov., isolated from the sediment of a river in Ronggui, Foshan city, China. Int J Syst Evol Microbiol 2022; 72. [PMID: 36260499 DOI: 10.1099/ijsem.0.005539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
A novel Gram-negative, aerobic, non-spore-forming, non-motile and rod-shaped bacterium, designated J26T, was isolated from the sediment of a river in Ronggui, Foshan city, China. Strain J26T grew optimally at 0 % (w/v) NaCl, pH 6.5-7.5, and 30 °C, and it formed milky white irregular colonies on Reasoner's 2A agar medium. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain J26T had the highest similarity to Tabrizicola aquatica RCRI19T (97.1 %) and formed a distinct clade in the genus Tabrizicola. Cellular components of J26T supported this strain as a member of the genus Tabrizicola. The predominant fatty acids were C18 : 1 ω7c, C18 : 1 ω7c-11 methyl and C16 : 0. Polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphorylethanolamine. Ubiquinone Q-10 was the major respiratory quinone, and the DNA G+C content was 64.2 mol%. However, low 16S rRNA gene sequence similarity and average nucleotide identity (73.56 % for ANIb between strain J26T with RCRI19T) demonstrated that strain J26T should be assigned to a novel species. Moreover, the differences between J26T and RCRI19T in terms of physiological and biochemical properties, such as carbon, nitrogen and sulphur metabolism, further supported that J26T represents a novel species, for which the name Tabrizicola rongguiensis sp. nov. is proposed. The type strain is J26T (=GDMCC 1.2843T=KCTC 92112T).
Collapse
Affiliation(s)
- Jiarou Xu
- College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, PR China
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Tongchu Deng
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Youda Huang
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Meijun Dong
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Shan Yang
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Meiying Xu
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| |
Collapse
|
4
|
Genome Sequence and Characterization of a Xanthorhodopsin-Containing, Aerobic Anoxygenic Phototrophic Rhodobacter Species, Isolated from Mesophilic Conditions at Yellowstone National Park. Microorganisms 2022; 10:microorganisms10061169. [PMID: 35744687 PMCID: PMC9231093 DOI: 10.3390/microorganisms10061169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/17/2022] Open
Abstract
The genus Rhodobacter consists of purple nonsulfur photosynthetic alphaproteobacteria known for their diverse metabolic capabilities. Here, we report the genome sequence and initial characterization of a novel Rhodobacter species, strain M37P, isolated from Mushroom hot spring runoff in Yellowstone National Park at 37 °C. Genome-based analyses and initial growth characteristics helped to define the differentiating characteristics of this species and identified it as an aerobic anoxygenic phototroph (AAP). This is the first AAP identified in the genus Rhodobacter. Strain M37P has a pinkish-red pigmentation that is present under aerobic dark conditions but disappears under light incubation. Whole genome-based analysis and average nucleotide identity (ANI) comparison indicate that strain M37P belongs to a specific clade of recently identified species that are genetically and physiologically unique from other representative Rhodobacter species. The genome encodes a unique xanthorhodopsin, not found in any other Rhodobacter species, which may be responsible for the pinkish-red pigmentation. These analyses indicates that strain M37P is a unique species that is well-adapted to optimized growth in the Yellowstone hot spring runoff, for which we propose the name Rhodobacter calidifons sp. nov.
Collapse
|
5
|
Ma T, Xue H, Piao C, Liu C, Yang M, Bian D, Li Y. Reclassification of 11 Members of the Family Rhodobacteraceae at Genus and Species Levels and Proposal of Pseudogemmobacter hezensis sp. nov. Front Microbiol 2022; 13:849695. [PMID: 35495672 PMCID: PMC9044078 DOI: 10.3389/fmicb.2022.849695] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
A novel Gram-stain-negative, aerobic, motile bacterial strain, D13-10-4-6T, was isolated from the bark sample of Populus × euramericana. The strain could grow at 15-35°C, at pH 6-10 and in 0-4% (w/v) NaCl, and the strain tested positive for oxidase and catalase activities. The main polar lipids were phosphatidylmonomethylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. The main respiratory quinone was Q-10, and the predominant fatty acid was C18:1 ω7c. The phylogenetic analyses showed that the strain belonged to the genus Pseudogemmobacter of the family Rhodobacteraceae. The family Rhodobacteraceae is an ecologically diverse group that includes bacteria from aquatic to terrestrial ecosystems. As a consequence, the classification of the family Rhodobacteraceae is difficult, not least when the early taxonomy work relied heavily on 16S rRNA gene analysis. Recently, the taxonomic status of many members of the family has been revised based on the genome analysis; however, there are still some classification conflicts due to the lack of genome sequences and parallel publication time. In this study, phylogenetic trees based on 16S rRNA gene, gyrB gene, and 120 concatenated proteins, the average amino acid identity (AAI) and percentage of conserved proteins (POCP) have been used for the analysis of strain D13-10-4-6T and other members of 15 genera within the family to further clarify their taxonomic relationships. For the data of phylogeny, AAI, and POCP, the taxonomic proposals are (1) reclassification of Rhodobacter tardus as the type species of a novel genus, Stagnihabitans gen. nov., as Stagnihabitans tardus comb. nov.; (2) reclassification of Tabrizicola alkalilacus, Tabrizicola sediminis, Tabrizicola algicola into a novel genus, Pseudotabrizicola gen. nov., as Pseudotabrizicola alkalilacus comb. nov., Pseudotabrizicola sediminis comb. nov., Pseudotabrizicola algicola comb. nov.; (3) reclassification of Rhodobacter sediminicola into the genus Cereibacter as Cereibacter sediminicola comb. nov.; (4) reclassification of Rhodobacter flagellatus, Rhodobacter thermarum, and Xinfangfangia soli into the genus Tabrizicola as Tabrizicola flagellatus comb. nov., Tabrizicola thermarum comb. Nov., and Tabrizicola soli comb. nov.; (5) reclassification of Xinfangfangia humi into the genus Pseudogemmobacter as Pseudogemmobacter humicola comb. nov.; (6) classification of strain D13-10-4-6T as a novel species of the genus Pseudogemmobacter, for which the name P. hezensis sp. nov. is proposed, the type strain is D13-10-4-6T (= CFCC 12033T = KCTC 82215T).
Collapse
Affiliation(s)
- Tengfei Ma
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Han Xue
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Chungen Piao
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Chengyi Liu
- Panzhihua City Academy of Agricultural and Forest Sciences, Panzhihua, China
| | - Mei Yang
- Panzhihua City Academy of Agricultural and Forest Sciences, Panzhihua, China
| | - Danran Bian
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Yong Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
6
|
Muramatsu S, Hirose S, Iino T, Ohkuma M, Hanada S, Haruta S. Neotabrizicola shimadae gen. nov., sp. nov., an aerobic anoxygenic phototrophic bacterium harbouring photosynthetic genes in the family Rhodobacteraceae, isolated from a terrestrial hot spring. Antonie van Leeuwenhoek 2022; 115:731-740. [PMID: 35380297 DOI: 10.1007/s10482-022-01728-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 03/06/2022] [Indexed: 11/27/2022]
Abstract
A bacteriochlorophyll-containing bacterium, designated as strain N10T, was isolated from a terrestrial hot spring in Nagano Prefecture, Japan. Gram-stain-negative, oxidase- and catalase-positive and ovoid to rod-shaped cells showed the features of aerobic anoxygenic phototrophic bacteria, i.e., strain N10T synthesised bacteriochlorophylls under aerobic conditions and could not grow anaerobically even under illumination. Genome analysis found genes for bacteriochlorophyll and carotenoid biosynthesis, light-harvesting complexes and type-2 photosynthetic reaction centre in the chromosome. Phylogenetic analyses based on the 16S rRNA gene sequence and 92 core proteins revealed that strain N10T was located in a distinct lineage near the type species of the genera Tabrizicola and Xinfangfangia and some species in the genus Rhodobacter (e.g., Rhodobacter blasticus). Strain N10T shared < 97.1% 16S rRNA gene sequence identity with those species in the family Rhodobacteraceae. The digital DNA-DNA hybridisation, average nucleotide identity and average amino acid identity values with the relatives, Tabrizicola aquatica RCRI19T (an aerobic anoxygenic phototrophic bacterium), Xinfangfangia soli ZQBWT and R. blasticus ATCC 33485T were 19.9-20.7%, 78.2-79.1% and 69.1-70.1%, respectively. Based on the phenotypic features, major fatty acid and polar lipid compositions, genome sequence and phylogenetic position, a novel genus and species are proposed for strain N10T, to be named Neotabrizicola shimadae (= JCM 34381T = DSM 112087T). Strain N10T which is phylogenetically located among aerobic anoxygenic phototrophic bacteria (Tabrizicola), bacteriochlorophyll-deficient bacteria (Xinfangfangia) and anaerobic anoxygenic phototrophic bacteria (Rhodobacter) has great potential to promote studies on the evolution of photosynthesis in Rhodobacteraceae.
Collapse
Affiliation(s)
- So Muramatsu
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Setsuko Hirose
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Takao Iino
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
- Japan Collection of Microorganisms, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Satoshi Hanada
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-0856, Japan
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
7
|
Szabonella alba gen. nov., sp. nov., a motile alkaliphilic bacterium of the family Rhodobacteraceae isolated from a soda lake. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, oxidase- and catalase-positive, rod-shaped, creamy white coloured bacterial strain, DMG-N-6T, was isolated from a water sample of Lake Fertő/Neusiedler See (Hungary). Phylogenetic analysis based on 16S rRNA gene sequences revealed that the strain forms a distinct linage within the family
Rhodobacteraceae
. Its closest relatives are
Tabrizicola alkalilacus
DJCT (96.76% similarity) and
Tabrizicola piscis
K13M18T (96.76%), followed by
Tabrizicola sediminis
DRYC-M-16T (96.69 %),
Rhodobacter sediminicola
JA983T (96.62 %),
Tabrizicola aquatica
RCRI19T (96.47 %) and
Cereibacter johrii
JA192T (96.18 %). The novel bacterial strain favours an alkaline environment (pH 8.0-12.0) and grows optimally at 18–28°C in the presence of 2–4 % (w/v) NaCl. Cells of DMG-N-6T were motile by a single subpolar flagellum. Bacteriochlorophyll a was not detected. The predominant respiratory quinone was ubiquinone Q-10. The major cellular fatty acid was C18:1
ω7c. The polar lipid profile comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylserine, phosphatidylcholine, an unidentified phospholipid and five unidentified lipids. The assembled draft genome of strain DMG-N-6T had 52 contigs with a total length of 4 219 778 bp and a G+C content of 64.3 mol%. Overall genome-related indices (ANI <77.8 %, AAI <69.0 %, dDDH <19.6 %) with respect to close relatives were all significantly below the corresponding threshold to demarcate bacterial genus and species. Strain DMG-N-6T (=DSM 108208T=NCAIM B.02645T) is strongly different from its closest relatives and is suggested as the type strain of a novel species of a new genus in the family
Rhodobacteraceae
, for which the name Szabonella alba gen. nov., sp. nov. is proposed.
Collapse
|
8
|
Chen WM, Chang TH, Yang CC, Sheu DS, Jheng LC, Sheu SY. Rhodobacter amnigenus sp. nov. and Rhodobacter ruber sp. nov., isolated from freshwater habitats. Int J Syst Evol Microbiol 2021; 71. [PMID: 34904946 DOI: 10.1099/ijsem.0.005150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two bacterial strains, designated HSP-20T and CCP-1T, isolated from freshwater habitats in Taiwan, were characterized by polyphasic taxonomy. Both strains were Gram-stain-negative, aerobic, non-motile and rod-shaped. Cells of strains HSP-20T and CCP-1T formed pink and dark red coloured colonies, respectively. Both strains contained bacteriochlorophyll a, and showed optimum growth under anaerobic conditions by photoheterotrophy, but no growth by photoautotrophy. Phylogenetic analyses based on 16S rRNA gene and whole-genome sequences indicated that both strains belonged to the genus Rhodobacter. Analysis of 16S rRNA gene sequences showed that strains HSP-20T and CCP-1T shared 98.3 % sequence similarity and were closely related to Rhodobacter tardus CYK-10T (96.0 %) and Rhodobacter flagellatus SYSU G03088T (96.0 %), respectively. Both strains shared common chemotaxonomic characteristics including Q-10 as the major isoprenoid quinone, C18 : 1 ω7c as the predominant fatty acid, and phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine as the main polar lipids. The DNA G+C content of both strains was 66.2 mol%. The average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization values between these two novel isolates and their closest relatives were below the cut-off values of 95-96, 90 and 70 %, respectively, used for species demarcation. On the basis of phenotypic and genotypic properties and phylogenetic inference, both strains should be classified as novel species within the genus Rhodobacter, for which the names Rhodobacter amnigenus sp. nov. (=BCRC 81193T=LMG 31334T) and Rhodobacter ruber sp. nov. (=BCRC 81189T=LMG 31335T) are proposed.
Collapse
Affiliation(s)
- Wen-Ming Chen
- Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City 811, Taiwan, ROC
| | - Ting-Hsuan Chang
- Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City 811, Taiwan, ROC
| | - Che-Chia Yang
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung City 811, Taiwan, ROC
| | - Der-Shyan Sheu
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung City 811, Taiwan, ROC
| | - Li-Cheng Jheng
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 807, Taiwan, ROC
| | - Shih-Yi Sheu
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung City 811, Taiwan, ROC
| |
Collapse
|
9
|
Galachyants AD, Krasnopeev AY, Podlesnaya GV, Potapov SA, Sukhanova EV, Tikhonova IV, Zimens EA, Kabilov MR, Zhuchenko NA, Gorshkova AS, Suslova MY, Belykh OI. Diversity of Aerobic Anoxygenic Phototrophs and Rhodopsin-Containing Bacteria in the Surface Microlayer, Water Column and Epilithic Biofilms of Lake Baikal. Microorganisms 2021; 9:842. [PMID: 33920057 PMCID: PMC8071047 DOI: 10.3390/microorganisms9040842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
Abstract
The diversity of aerobic anoxygenic phototrophs (AAPs) and rhodopsin-containing bacteria in the surface microlayer, water column, and epilithic biofilms of Lake Baikal was studied for the first time, employing pufM and rhodopsin genes, and compared to 16S rRNA diversity. We detected pufM-containing Alphaproteobacteria (orders Rhodobacterales, Rhizobiales, Rhodospirillales, and Sphingomonadales), Betaproteobacteria (order Burkholderiales), Gemmatimonadetes, and Planctomycetes. Rhodobacterales dominated all the studied biotopes. The diversity of rhodopsin-containing bacteria in neuston and plankton of Lake Baikal was comparable to other studied water bodies. Bacteroidetes along with Proteobacteria were the prevailing phyla, and Verrucomicrobia and Planctomycetes were also detected. The number of rhodopsin sequences unclassified to the phylum level was rather high: 29% in the water microbiomes and 22% in the epilithon. Diversity of rhodopsin-containing bacteria in epilithic biofilms was comparable with that in neuston and plankton at the phyla level. Unweighted pair group method with arithmetic mean (UPGMA) and non-metric multidimensional scaling (NMDS) analysis indicated a distinct discrepancy between epilithon and microbial communities of water (including neuston and plankton) in the 16S rRNA, pufM and rhodopsin genes.
Collapse
Affiliation(s)
- Agnia Dmitrievna Galachyants
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Andrey Yurjevich Krasnopeev
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Galina Vladimirovna Podlesnaya
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Sergey Anatoljevich Potapov
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Elena Viktorovna Sukhanova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Irina Vasiljevna Tikhonova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Ekaterina Andreevna Zimens
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Marsel Rasimovich Kabilov
- Chemical Biology and Fundamental Medicine Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, 630090 Novosibirsk, Russia;
| | - Natalia Albertovna Zhuchenko
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Anna Sergeevna Gorshkova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Maria Yurjevna Suslova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Olga Ivanovna Belykh
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| |
Collapse
|