1
|
Liu X, Ye L, Yang J, Yang C, Huang Y, Pu J, Liu L, Zhou H, Ning S, Cao L, Xu J. Adlercreutzia wanghongyangiae sp. nov., and Adlercreutzia shanghongiae sp. nov., two new members of the genus Adlercreutzia isolated from plateau pika ( Ochotona curzoniae). Int J Syst Evol Microbiol 2024; 74. [PMID: 39361517 DOI: 10.1099/ijsem.0.006531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Four anaerobic, Gram-stain-positive, non-motile, non-sporulating rod-shaped bacterial strains (R7T, R21, R22 and R25T) were isolated from the intestinal contents of plateau pika (Ochotona curzoniae) collected from the Qinghai-Tibet Plateau, PR China. The four isolates grew at between 25 and 42 °C (optimally at 35-37 °C), and with 0.3-3.3% NaCl (w/v) [optimum, 1.3% (w/v)]. Adding l-arginine to the medium could promote their growth. Strains R7T and R21 were most closely related to Adlercreutzia caecimuris B7T (97.48% 16S rRNA gene sequence similarity). Strains R25T and R22 were most closely related to Adlercreutzia equolifaciens DSM 19450T (98.25% 16S rRNA gene sequence similarity). The genome sequences of R7T and R25T were 2.89 and 2.90 Mb in size with 63.6 and 62.8 mol% DNA G+C contents, respectively. Phylogenetic analysis based on 16S rRNA gene sequences and core genes revealed that R7T and R21 were most closely related to A. caecimuris B7T and Adlercreutzia mucosicola DSM 19490T, whereas R25T and R22 were most closely related to A. equolifaciens DSM 19450T and Adlercreutzia rubneri ResAG-91T. R7T, R25T and the closely related species had average nucleotide identity (ANI) values of 81.9-83.2% as well as digital DNA-DNA hybridisation (dDDH) values between 27.3 and 27.9%, which clearly indicated that they represent two novel species within the genus Adlercreutzia. For R7T and R25T, meso-diaminopimelic acid was the diagnostic diamino acid in the cell-wall peptidoglycan, and the whole cell sugars included galactose, glucose and ribose. On the basis of these results, we propose that strains R7T and R25T represent two novel species of the genus Adlercreutzia, namely Adlercreutzia wanghongyangiae sp. nov. and Adlercreutzia shanghongiae sp. nov., respectively. The type strains are R7T (=GDMCC 1.4459T=KCTC 25860T) and R25T (=GDMCC 1.4458T=KCTC 25861T).
Collapse
Affiliation(s)
- Xiaorui Liu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Lin Ye
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Jing Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
- Hebei Key Laboratory of Intractable Pathogens, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, Hebei, 050011, PR China
| | - Caixin Yang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Yuyuan Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Ji Pu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Liyun Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
- Hebei Key Laboratory of Intractable Pathogens, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, Hebei, 050011, PR China
| | - Huimin Zhou
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Shuo Ning
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Linglin Cao
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Jianguo Xu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
| |
Collapse
|
2
|
Stoll DA, Grimmler C, Hetzer B, Masoura A, Kulling SE, Huch M. Bosea rubneri sp. nov. Isolated from Organically Grown Allium cepa. Curr Microbiol 2024; 81:212. [PMID: 38839619 PMCID: PMC11153308 DOI: 10.1007/s00284-024-03717-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/25/2024] [Indexed: 06/07/2024]
Abstract
Strain ZW T0_25T was isolated from an onion sample (Allium cepa var. Hytech F1) within a storage trial and proofed to be a novel, aerobic, Gram-stain negative, rod-shaped bacterial strain. Analyses of the 16S rRNA gene sequence and of the whole draft genome sequences, i.e., digital DNA-DNA hybridization (dDDH), Average Nucleotide Identity (ANI) and Average Amino Acid Identity (AAI) showed that this strain represents a new species of the genus Bosea. The genome size of strain ZW T0_25T is 6.19 Mbp, and the GC content is 66.9%. As whole cell sugars, rhamnose, ribose and glucose were identified. Ubiquinone Q-10 is the major respiratory quinone with 97.8%. Polar lipids in strain ZW T0_25T are composed of one phosphatidylethanolamine, one phosphatidylglycerol, one aminophospholipid, two aminolipids, one glycolipid and two phospholipids whereas the fatty acid profile predominantly consists of C18:1 w7c (63.3%), C16:1 w7c (19.5%) and C16:0 (7.1%). Phenotypic traits were tested in the wet lab as well as predicted in silico from genome data. Therefore, according to this polyphasic approach, the new name Bosea rubneri sp. nov. with the type strain ZW T0_25T (= DSM 116094 T = LMG 33093 T) is proposed.
Collapse
Affiliation(s)
- Dominic A Stoll
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Christina Grimmler
- Department of Safety and Quality of Meat, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, E.-C.-Baumann-Straße 20, 95326, Kulmbach, Germany
| | - Birgit Hetzer
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Alexandra Masoura
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Melanie Huch
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany.
| |
Collapse
|
3
|
Devarakonda SLS, Superdock DK, Ren J, Johnson LM, Loinard-González A(AP, Poole AC. Gut microbial features and dietary fiber intake predict gut microbiota response to resistant starch supplementation. Gut Microbes 2024; 16:2367301. [PMID: 38913541 PMCID: PMC11197919 DOI: 10.1080/19490976.2024.2367301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/07/2024] [Indexed: 06/26/2024] Open
Abstract
Resistant starch (RS) consumption can have beneficial effects on metabolic health, but the response, in terms of effects on the gut microbiota and host physiology, varies between individuals. Factors predicting the response to RS are not yet established and would be useful for developing precision nutrition approaches that maximize the benefits of dietary fiber intake. We sought to identify predictors of gut microbiota response to RS supplementation. We enrolled 76 healthy adults into a 7-week crossover study with 59 individuals completing the study. Participants consumed RS type 2 (RS2), RS type 4 (RS4), and digestible starch, for 10 d each with 5-d washout periods in between. We collected fecal and saliva samples and food records during each treatment period. We performed 16S rRNA gene sequencing and measured fecal short-chain fatty acids (SCFAs), salivary amylase (AMY1) gene copy number, and salivary amylase activity (SAA). Dietary fiber intake was predictive of the relative abundance of several amplicon sequence variants (ASVs) at the end of both RS treatments. AMY1-related metrics were not predictive of response to RS. SAA was only predictive of the relative abundance of one ASV after digestible starch supplementation. Interestingly, SCFA concentrations increased the most during digestible starch supplementation. Treatment order (the order of consumption of RS2 and RS4), alpha diversity, and a subset of ASVs were predictive of SCFA changes after RS supplementation. Based on our findings, dietary fiber intake and gut microbiome composition would be informative if assessed prior to recommending RS supplementation because these data can be used to predict changes in specific ASVs and fecal SCFA concentrations. These findings lay a foundation to support the premise that using a precision nutrition approach to optimize the benefits of dietary fibers such as RS could be an effective strategy to compensate for the low consumption of dietary fiber nationwide.
Collapse
Affiliation(s)
| | | | - Jennifer Ren
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Lynn M. Johnson
- Cornell Statistical Consulting Unit, Cornell University, Ithaca, NY, USA
| | | | - Angela C. Poole
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
4
|
Zhu Y, Zhu J, Song G. The impact of aerobic exercise training on cognitive function and gut microbiota in methamphetamine-dependent individuals in the community. Physiol Behav 2023; 270:114302. [PMID: 37474085 DOI: 10.1016/j.physbeh.2023.114302] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVE This study aimed to investigate the impact and mechanism of gut microbiota on the enhancement of cognitive function in methamphetamine (MA)-dependent individuals during aerobic exercise training. METHODS A total of sixty-four MA-dependent individuals were randomly assigned to either an aerobic exercise training group (DK, n = 32) or a conventional rehabilitation group (CK, n = 32). After an eight-week intervention, the participants' working memory and inhibition ability were assessed using the Stroop paradigm and Go/NoGo paradigm, respectively. Gut microbiota composition was analyzed using high-throughput sequencing. RESULTS 1) Eight weeks of aerobic exercise training significantly improved the working memory and inhibition ability of MA-dependent individuals (P < 0.05). 2) Following the intervention, the DK group exhibited significantly higher levels of Lactobacillus, Lactococcus lactis, Prevotellaceae, and Ruminococcaceae compared to the CK group. Conversely, the DK group demonstrated significantly lower levels of Desulfovibrio and Akkermansia compared to the CK group. Furthermore, the DK group showed significantly increased metabolic pathways associated with d-Glutaralate and d-Galactate Degradation, as well as the Alanine, aspartate, and glutamate metabolism pathway, compared to the control group. 3) Cognitive function related to MA addiction positively correlated with Bifidobacterium, Dialister, and Adlercreutzia, while negatively correlated with Enterobacteria, Bacillus cereus, Catabacter, and Akkermansia. CONCLUSION Aerobic exercise training enhances working memory and inhibition ability in MA-dependent individuals, thereby mitigating the detrimental effects of MA addiction on cognitive function. Additionally, analysis of gut microbiota suggests that the modulation of gut microbiota and associated metabolic pathways play a role in regulating the improvement of cognitive function in MA-dependent individuals through exercise.
Collapse
Affiliation(s)
- Yuping Zhu
- Key Lab of Physical Fitness Evaluation and Motor Function Monitoring, College of Physical Education, Southwest University, Chongqing, 400715, China
| | - Jiang Zhu
- Key Lab of Physical Fitness Evaluation and Motor Function Monitoring, College of Physical Education, Southwest University, Chongqing, 400715, China
| | - Gang Song
- Key Lab of Physical Fitness Evaluation and Motor Function Monitoring, College of Physical Education, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
5
|
Oñate FP, Chamignon C, Burz SD, Lapaque N, Monnoye M, Philippe C, Bredel M, Chêne L, Farin W, Paillarse JM, Boursier J, Ratziu V, Mousset PY, Doré J, Gérard P, Blottière HM. Adlercreutzia equolifaciens Is an Anti-Inflammatory Commensal Bacterium with Decreased Abundance in Gut Microbiota of Patients with Metabolic Liver Disease. Int J Mol Sci 2023; 24:12232. [PMID: 37569608 PMCID: PMC10418321 DOI: 10.3390/ijms241512232] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 08/13/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects about 20-40% of the adult population in high-income countries and is now a leading indication for liver transplantation and can lead to hepatocellular carcinoma. The link between gut microbiota dysbiosis and NAFLD is now clearly established. Through analyses of the gut microbiota with shotgun metagenomics, we observe that compared to healthy controls, Adlercreutzia equolifaciens is depleted in patients with liver diseases such as NAFLD. Its abundance also decreases as the disease progresses and eventually disappears in the last stages indicating a strong association with disease severity. Moreover, we show that A. equolifaciens possesses anti-inflammatory properties, both in vitro and in vivo in a humanized mouse model of NAFLD. Therefore, our results demonstrate a link between NAFLD and the severity of liver disease and the presence of A. equolifaciens and its anti-inflammatory actions. Counterbalancing dysbiosis with this bacterium may be a promising live biotherapeutic strategy for liver diseases.
Collapse
Affiliation(s)
- Florian Plaza Oñate
- Université Paris-Saclay, INRAE, MGP, MetaGenoPolis, 78350 Jouy-en-Josas, France; (F.P.O.); (J.D.)
| | - Célia Chamignon
- NovoBiome, 33360 Latresne, France; (C.C.); (M.B.); (P.-Y.M.)
| | - Sebastian D. Burz
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (S.D.B.); (N.L.); (M.M.); (P.G.)
| | - Nicolas Lapaque
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (S.D.B.); (N.L.); (M.M.); (P.G.)
| | - Magali Monnoye
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (S.D.B.); (N.L.); (M.M.); (P.G.)
| | - Catherine Philippe
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (S.D.B.); (N.L.); (M.M.); (P.G.)
| | - Maxime Bredel
- NovoBiome, 33360 Latresne, France; (C.C.); (M.B.); (P.-Y.M.)
| | - Laurent Chêne
- Enterome, 75011 Paris, France; (L.C.); (W.F.); (J.-M.P.)
| | - William Farin
- Enterome, 75011 Paris, France; (L.C.); (W.F.); (J.-M.P.)
| | | | - Jérome Boursier
- Université d’Angers, SFR ICAT4208, Laboratoire HIFIH & Centre Hospitalier d’Angers, 49100 Angers, France;
| | - Vlad Ratziu
- Sorbonne-Université, Hôpital Pitié-Salpêtrière, INSERM UMRS 1138, Centre de Recherche des Cordeliers, 75006 Paris, France;
| | | | - Joël Doré
- Université Paris-Saclay, INRAE, MGP, MetaGenoPolis, 78350 Jouy-en-Josas, France; (F.P.O.); (J.D.)
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (S.D.B.); (N.L.); (M.M.); (P.G.)
| | - Philippe Gérard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (S.D.B.); (N.L.); (M.M.); (P.G.)
| | - Hervé M. Blottière
- Université Paris-Saclay, INRAE, MGP, MetaGenoPolis, 78350 Jouy-en-Josas, France; (F.P.O.); (J.D.)
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (S.D.B.); (N.L.); (M.M.); (P.G.)
- Nantes-Université, INRAE, UMR 1280, PhAN, 44000 Nantes, France
| |
Collapse
|
6
|
Wilkens D, Simon J. Biosynthesis and function of microbial methylmenaquinones. Adv Microb Physiol 2023; 83:1-58. [PMID: 37507157 DOI: 10.1016/bs.ampbs.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The membranous quinone/quinol pool is essential for the majority of life forms and its composition has been widely used as a biomarker in microbial taxonomy. The most abundant quinone is menaquinone (MK), which serves as an essential redox mediator in various electron transport chains of aerobic and anaerobic respiration. Several methylated derivatives of MK, designated methylmenaquinones (MMKs), have been reported to be present in members of various microbial phyla possessing either the classical MK biosynthesis pathway (Men) or the futalosine pathway (Mqn). Due to their low redox midpoint potentials, MMKs have been proposed to be specifically involved in appropriate electron transport chains of anaerobic respiration. The class C radical SAM methyltransferases MqnK, MenK and MenK2 have recently been shown to catalyse specific MK methylation reactions at position C-8 (MqnK/MenK) or C-7 (MenK2) to synthesise 8-MMK, 7-MMK and 7,8-dimethylmenaquinone (DMMK). MqnK, MenK and MenK2 from organisms such as Wolinella succinogenes, Adlercreutzia equolifaciens, Collinsella tanakaei, Ferrimonas marina and Syntrophus aciditrophicus have been functionally produced in Escherichia coli, enabling extensive quinone/quinol pool engineering of the native MK and 2-demethylmenaquinone (DMK). Cluster and phylogenetic analyses of available MK and MMK methyltransferase sequences revealed signature motifs that allowed the discrimination of MenK/MqnK/MenK2 family enzymes from other radical SAM enzymes and the identification of C-7-specific menaquinone methyltransferases of the MenK2 subfamily. It is envisaged that this knowledge will help to predict the methylation status of the menaquinone/menaquinol pool of any microbial species (or even a microbial community) from its (meta)genome.
Collapse
Affiliation(s)
- Dennis Wilkens
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt, Germany
| | - Jörg Simon
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt, Germany; Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany.
| |
Collapse
|
7
|
Fu H, Liu H, Ge Y, Chen Y, Tan P, Bai J, Dai Z, Yang Y, Wu Z. Chitosan oligosaccharide alleviates and removes the toxicological effects of organophosphorus pesticide chlorpyrifos residues. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130669. [PMID: 36586336 DOI: 10.1016/j.jhazmat.2022.130669] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/04/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The abuse of chlorpyrifos (CHP), a commonly used organophosphorus pesticide, has caused many environmental pollution problems, especially its toxicological effects on non-target organisms. First, CHP enriched on the surface of plants enters ecosystem circulation along the food chain. Second, direct inflow of CHP into the water environment under the action of rainwater runoff inevitably causes toxicity to non-target organisms. Therefore, we used rats as a model to establish a CHP exposure toxicity model and studied the effects of CHP in rats. In addition, to alleviate and remove the injuries caused by residual chlorpyrifos in vivo, we explored the alleviation effect of chitosan oligosaccharide (COS) on CHP toxicity in rats by exploiting its high water solubility and natural biological activity. The results showed that CHP can induce the toxicological effects of intestinal antioxidant changes, inflammation, apoptosis, intestinal barrier damage, and metabolic dysfunction in rats, and COS has excellent removal and mitigation effects on the toxic damage caused by residual CHP in the environment. In summary, COS showed significant biological effects in removing and mitigating blood biochemistry, antioxidants, inflammation, apoptosis, gut barrier structure, and metabolic function changes induced by residual CHP in the environment.
Collapse
Affiliation(s)
- Huiyang Fu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China; Beijing Jingwa Agricultural Science and Technology Innovation Center, #1, Yuda Road, Pinggu, Beijing 101200, China
| | - Haozhen Liu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Yao Ge
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Yinfeng Chen
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Jun Bai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China; Beijing Jingwa Agricultural Science and Technology Innovation Center, #1, Yuda Road, Pinggu, Beijing 101200, China.
| |
Collapse
|
8
|
Munson E, Carroll KC. Update on Accepted Novel Bacterial Isolates Derived from Human Clinical Specimens and Taxonomic Revisions Published in 2020 and 2021. J Clin Microbiol 2023; 61:e0028222. [PMID: 36533910 PMCID: PMC9879126 DOI: 10.1128/jcm.00282-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A number of factors, including microbiome analyses and the increased utilization of whole-genome sequencing in the clinical microbiology laboratory, has contributed to the explosion of novel prokaryotic species discovery, as well as bacterial taxonomy revision. This review attempts to summarize such changes relative to human clinical specimens that occurred in 2020 and 2021, per primary publication in the International Journal of Systematic and Evolutionary Microbiology or acceptance on Validation Lists published by the International Journal of Systematic and Evolutionary Microbiology. Of particular significance among valid and effectively published taxa within the past 2 years were novel Corynebacterium spp., coagulase-positive staphylococci, Pandoraea spp., and members of family Yersiniaceae. Noteworthy taxonomic revisions include those within the Bacillus and Lactobacillus genera, family Staphylococcaceae (including unifications of subspecies designations to species level taxa), Elizabethkingia spp., and former members of Clostridium spp. and Bacteroides spp. Revisions within the Brucella genus have the potential to cause deleterious effects unless the relevance of such changes is properly communicated by microbiologists to stakeholders in clinical practice, infection prevention, and public health.
Collapse
Affiliation(s)
- Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Karen C. Carroll
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Zhang G, Lv X, Cheng Y, Lai XH, Yang J, Jin D, Lu S, Pu J, Liu L, Xu J. New members of the family Eggerthellaceae isolated from Marmota himalayana: Xiamenia xianingshaonis gen. nov., sp. nov., from intestinal contents, and Berryella wangjianweii sp. nov., from trachea. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Four strictly anaerobic, Gram-stain-positive, urease-, oxidase- and catalase-negative, rod-shaped strains (zg-886T/zg-887 and zg-1050T/zg-1084) were isolated from Marmota himalayana. Comparison analysis of 16S rRNA genes showed that the two strain pairs belong to the family
Eggerthellaceae
: zg-1050T and zg-1084 were most closely related to
Berryella intestinalis
68-1-3T (97.2 %), while zg-886T/zg-887 had the highest similarity to
Slackia piriformis
YIT 12062T (91.6 %), followed by
Paraeggerthella hongkongensis
DSM 16106T (91.4 %) and
Gordonibacter urolithinfaciens
DSM 27213T (91.4 %). Phylogenetic analyses based on 16S rRNA genes and genomes showed that the two strain pairs represent two different lineages within the family
Eggerthellaceae
. The genomic G+C contents of strains zg-886T and zg-1050T were 63.0 and 66.3 mol%, respectively. The values of digital DNA–DNA hybridization, average nucleotide identity, average amino acid identity and the percentage of conserved proteins between the two new type strains and members of the family
Eggerthellaceae
were lower than the respective thresholds for delineation of a species or genus. In contrast to the absence of any known quinones in strain zg-1050T, strain zg-886T contained MK-6 (42.5 %), MMK-6 (25.0 %) and DMMK-6 (32.5 %). The four strains grew optimally at pH 7.0, 37 ºC and 0.5 % NaCl (w/v). According to these polyphasic analyses, two new members within the family
Eggerthellaceae
are proposed, Xiamenia xianingshaonis gen. nov., sp. nov. (zg-886T=JCM 34097T=GDMCC 1.1710T) and Berryella wangjianweii sp. nov. (zg-1050T=GDMCC 1.2426T=JCM 34748T).
Collapse
Affiliation(s)
- Gui Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Xianglian Lv
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Yanpeng Cheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518073, PR China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Xin-He Lai
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, PR China
| | - Jing Yang
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Dong Jin
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Shan Lu
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Liyun Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Jianguo Xu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
- Institute of Public Health, Nankai University, Tianjin 300071, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| |
Collapse
|
10
|
Iglesias-Aguirre C, Vallejo F, Beltrán D, Aguilar-Aguilar E, Puigcerver J, Alajarín M, Berná J, Selma MV, Espín JC. Lunularin Producers versus Non-producers: Novel Human Metabotypes Associated with the Metabolism of Resveratrol by the Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10521-10531. [PMID: 35981285 PMCID: PMC9449969 DOI: 10.1021/acs.jafc.2c04518] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We describe here for the first time the consistent observation of two metabotypes associated with resveratrol metabolism by the human gut microbiota, that is, lunularin (LUNU)-producers and LUNU non-producers. In healthy volunteers (n = 195), resveratrol was reduced to dihydroresveratrol, which only in the LUNU-producer metabotype was sequentially dehydroxylated at the 5-position to yield LUNU and the 3-position to produce 4-hydroxydibenzyl. These metabolites (also 3,4'-dihydroxy-trans-stilbene in some LUNU-producers) were detected in the urine and (or) feces of 74% of volunteers after consuming resveratrol, while 26% lacked these dehydroxylase activities. The LUNU non-producer metabotype was more prevalent in females (P < 0.05) but independent of individuals' BMI and age. A 4-styrylphenol reductase in both metabotypes converted stilbenes to their corresponding dibenzyls, while no 4-dehydroxylation in stilbenes or dibenzyls was observed. 4-Hydroxy-trans-stilbene, pinosylvin, dihydropinosylvin, 3-hydroxydibenzyl, and 3-hydroxy-trans-stilbene were not detected in vivo or in vitro. Further research on LUNU metabotypes, their associated gut microbiota, and their impact on health is worthwhile.
Collapse
Affiliation(s)
- Carlos
E. Iglesias-Aguirre
- Laboratory
of Food & Health, Research Group on Quality, Safety, and Bioactivity
of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia 30100, Spain
| | - Fernando Vallejo
- Laboratory
of Food & Health, Research Group on Quality, Safety, and Bioactivity
of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia 30100, Spain
| | - David Beltrán
- Laboratory
of Food & Health, Research Group on Quality, Safety, and Bioactivity
of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia 30100, Spain
| | - Elena Aguilar-Aguilar
- Nutrition
and Clinical Trials Unit, GENYAL Platform, IMDEA-Food Institute, CEI UAM + CSIC, Madrid 28049, Spain
| | - Julio Puigcerver
- Department
of Organic Chemistry, Faculty of Chemistry, University of Murcia, Murcia 30100, Spain
| | - Mateo Alajarín
- Department
of Organic Chemistry, Faculty of Chemistry, University of Murcia, Murcia 30100, Spain
| | - José Berná
- Department
of Organic Chemistry, Faculty of Chemistry, University of Murcia, Murcia 30100, Spain
| | - María V. Selma
- Laboratory
of Food & Health, Research Group on Quality, Safety, and Bioactivity
of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia 30100, Spain
| | - Juan Carlos Espín
- Laboratory
of Food & Health, Research Group on Quality, Safety, and Bioactivity
of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia 30100, Spain
| |
Collapse
|