1
|
Gang G, Gao R, Zhao H, Xu Y, Xing Y, Jin X, Hong L, Yan S, Shi B. Effects of water extracts of Artemisia annua L. on rumen immune and antioxidative indexes, fermentation parameters and microbials diversity in lambs. Front Microbiol 2024; 15:1485882. [PMID: 39493850 PMCID: PMC11528157 DOI: 10.3389/fmicb.2024.1485882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
The present study investigated the effects of water extracts of Artemisia annua L. (WEAA) on rumen immune and antioxidative indexes, fermentation parameters and microbial diversity in lambs. A total of 32 3-month-old Dorper × Han female lambs having comparable body weights (24±0.09 kg) were selected and were randomly assigned to four treatments, with eight repetitions for each treatment. The basal diet, consisting of 45% concentrate and 55% forage, was solely provided to the control group. For the other treatment groups, the basal diet was supplemented with WEAA at dosages of 500, 1000, and 1500 mg/kg diet, respectively. Rumen tissue samples were collected for the analysis of immune and antioxidative parameters, as well as related gene expression. Rumen fluid samples were collected to assess rumen fermentation parameters on days 30 and 60 and to evaluate the microbiota on day 60. Results showed that WEAA supplementation linearly or quadratically increased the content of sIgA, IL-4, IL-2 and the gene expression level of MyD88, IκB-α, IL-4, COX-2, iNOS in rumen tissue (p < 0.05), as well as the bacteria negatively associated with IL-6 (g_ [Eubacterium] _cellulosolvens_group). Furthermore, the addition of WEAA linearly or quadratically increased rumen T-SOD, GSH-Px (p < 0.05) and the gene expression level of Nrf2, SOD2, GSH-Px, HO-1 (p < 0.05), and decreased the rumen concentration of malondialdehyde (MDA) and gene expression level of Keap1 (p < 0.05), as well as the bacteria positively associated with T-AOC, T-SOD and GSH-Px (g_Lachnospiraceae_NK3A20_group, g_Saccharofermentans, g__Marvinbryantia, g_unclassified_f_Eggerthellaceae). The supplementation of WEAA caused the concentration of microprotein (MCP), total volatile fatty acids (TVFA), propionate to increase either linearly or quadratically, while reducing the concentration of NH3-N and the acetate/propionate ratio (A:P) in rumen fluid (p < 0.05). The addition of WEAA linearly or quadratically increased the abundance of Actinobacteriota, Cyanobacteria and Lachnospiraceae_NK3A20_group (p < 0.10), and g__Lachnospiraceae_NK3A20_group, g_Saccharofermentans, g_Marvinbryantia, g_Bifidobacterium were significantly abundant as specific microflora in the 1000 mg/kg WEAA supplementation group. In conclusion, dietary inclusion of 1000 mg/kg WEAA improved the rumen immune function, antioxidant status, rumen fermentation, and composition of rumen microbes in lambs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Binlin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
2
|
Li S, Guo Y, Guo X, Shi B, Ma G, Yan S, Zhao Y. Effects of Artemisia ordosica Crude Polysaccharide on Antioxidant and Immunity Response, Nutrient Digestibility, Rumen Fermentation, and Microbiota in Cashmere Goats. Animals (Basel) 2023; 13:3575. [PMID: 38003192 PMCID: PMC10668836 DOI: 10.3390/ani13223575] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
The objective of this experiment was to investigate the effect of dietary supplementation with Artemisia ordosica crude polysaccharide (AOCP) on growth performance, nutrient digestibility, antioxidant and immunity capacity, rumen fermentation parameters, and the microbiota of cashmere goats. A total of 12 cashmere goats (2 years old) with similar weight (38.03 ± 2.42 kg of BW ± SD) were randomly divided into two dietary treatments with six replicates. The treatments were as follows: (1) control (CON, basal diet); and (2) AOCP treatment (AOCP, basal diet with 0.3% AOCP). Pre-feeding was conducted for 7 days, followed by an experimental period of 21 days. The results showed that the ADG; feed/gain (F/G); and the digestibility of DM, CP, and ADF of cashmere goats in the AOCP group were greater than in the CON group (p < 0.05). Still, there was no significant effect on the digestibility of EE, NDF, Ca, and P (p > 0.05). Compared to the CON group, AOCP increased BCP, propionate, butyrate, isobutyrate, valerate, isovalerate, and TVFA concentrations (p < 0.05), but it reduced the protozoa numbers of acetate and A/P (p < 0.05). The serum CAT, GSH-Px, T-SOD, 1L-6, and NO levels were higher in AOCP than in the CON group (p < 0.05). The addition of AOCP increased the Sobs and Ace estimators (p < 0.05) and reduced the Simpson estimator in the ruminal fluid compared to the CON group (p < 0.05). Additionally, the AOCP group increased the colonization of beneficial bacteria by positively influencing GSH-Px and IL-6 (norank_f__F082, unclassified_p__Firmicutes), as well as bacteria negatively associated with F/G (norank_f__norank_o__Bacteroidales, unclassified_p__Firmicutes, and norank_f__F082). It decreased the colonization of potential pathogenic bacteria (Aeromonas and Escherichia-Shigella) (p < 0.05) compared to the CON group. In conclusion, 0.3% AOCP improves the growth performance, nutrient digestibility, antioxidant status, immune function, rumen fermentation, and microflora of cashmere goats.
Collapse
Affiliation(s)
| | | | | | | | | | - Sumei Yan
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Huhhot 010018, China; (S.L.); (Y.G.); (X.G.); (B.S.); (G.M.)
| | - Yanli Zhao
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Huhhot 010018, China; (S.L.); (Y.G.); (X.G.); (B.S.); (G.M.)
| |
Collapse
|
3
|
Wu J, Tian C, Jiao J, Yan Q, Zhou C, Tan Z. The epithelial transcriptome and mucosal microbiota are altered for goats fed with a low-protein diet. Front Microbiol 2023; 14:1237955. [PMID: 37731924 PMCID: PMC10507412 DOI: 10.3389/fmicb.2023.1237955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Feeding low protein (LP) diet to animals impose severe challenge to animals' immune homeostasis. However, limited knowledge about the underlying adaption mechanism of host and ruminal microbiota responding to LP diet were well understood. Herein, this study was performed to examine the changes in relative abundance of ruminal microbiota and host ruminal mucosal transcriptome profiles in response to a LP diet. Methods A total of twenty-four female Xiangdong balck goats with similar weight (20.64 ± 2.40 kg) and age (8 ± 0.3 months) were randomly assigned into two groups, LP (5.52% crude protein containing diet) and CON (10.77% crude protein containing diet) groups. Upon completion of the trial, all goats were slaughtered after a 16-hour fasting period in LiuYang city (N 28°15', E 113°63') in China. HE staining, free amino acids measurement, transcriptome analysis and microbiome analysis were applied to detect the morphology alterations, free amino acids profile alterations and the shift in host ruminal mucosal transcriptome and ruminal microbiota communities. Results Firstly, the results showed that feeding LP diet to goats decreased the rumen papilla width (P = 0.043), surface area (P = 0.013) and total ruminal free amino acids concentration (P = 0.016). Secondly, microbiome analysis indicated that 9 microbial genera, including Eubacterium and Prevotella, were enriched in LP group while 11 microbial genera, including Butyrivibrio and Ruminococcus, were enriched in CON group. Finally, in terms of immune-related genes, the expression levels of genes involved in tight junction categories (e.g., MYH11, PPP2R2C, and MYL9) and acquired immunity (e.g., PCP4 and CXCL13) were observed to be upregulated in the LP group when compared to the CON group. Conclusion Under the LP diet, the rumen exhibited increased relative abundance of pathogenic microbiota and VFA-degrading microbiota, leading to disruptions in immune homeostasis within the host's ruminal mucosa. These findings indicate that the ruminal microbiota interacts with host results in the disruption in animals' immune homeostasis under LP diet challenge.
Collapse
Affiliation(s)
- Jian Wu
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Changxin Tian
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinzhen Jiao
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Qiongxian Yan
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Chuanshe Zhou
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Zhiliang Tan
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| |
Collapse
|
4
|
Eliasson KA, Singh A, Isaksson S, Schnürer A. Co-substrate composition is critical for enrichment of functional key species and for process efficiency during biogas production from cattle manure. Microb Biotechnol 2022; 16:350-371. [PMID: 36507711 PMCID: PMC9871532 DOI: 10.1111/1751-7915.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022] Open
Abstract
Cattle manure has a low energy content and high fibre and water content, limiting its value for biogas production. Co-digestion with a more energy-dense material can improve the output, but the co-substrate composition that gives the best results in terms of degree of degradation, gas production and digestate quality has not yet been identified. This study examined the effects of carbohydrate, protein and fat as co-substrates for biogas production from cattle manure. Laboratory-scale semi-continuous mesophilic reactors were operated with manure in mono-digestion or in co-digestion with egg albumin, rapeseed oil, potato starch or a mixture of these, and chemical and microbiological parameters were analysed. The results showed increased gas yield for all co-digestion reactors, but only the reactor supplemented with rapeseed oil showed synergistic effects on methane yield. The reactor receiving potato starch indicated improved fibre degradation, suggesting a priming effect by the easily accessible carbon. Both these reactors showed increased species richness and enrichment of key microbial species, such as fat-degrading Syntrophomonadaceae and families known to include cellulolytic bacteria. The addition of albumin promoted enrichment of known ammonia-tolerant syntrophic acetate- and potential propionate-degrading bacteria, but still caused slight process inhibition and less efficient overall degradation of organic matter in general, and of cellulose in particular.
Collapse
Affiliation(s)
| | - Abhijeet Singh
- Department of Molecular Sciences, BioCenterSwedish University of Agricultural SciencesUppsalaSweden
| | - Simon Isaksson
- Department of Molecular Sciences, BioCenterSwedish University of Agricultural SciencesUppsalaSweden
| | - Anna Schnürer
- Department of Molecular Sciences, BioCenterSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
5
|
Köller N, Hahnke S, Zverlov V, Wibberg D, Klingl A, Busche T, Klocke M, Pühler A, Schlüter A, Liebl W, Maus I. Anaeropeptidivorans aminofermentans gen. nov., sp. nov., a mesophilic proteolytic salt-tolerant bacterium isolated from a laboratory-scale biogas fermenter, and emended description of Clostridium colinum. Int J Syst Evol Microbiol 2022; 72. [PMID: 36748496 DOI: 10.1099/ijsem.0.005668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
An anaerobic bacterial strain, designated strain M3/9T, was isolated from a laboratory-scale biogas fermenter fed with maize silage supplemented with 5 % wheat straw. Cells were straight, non-motile rods, which stained Gram-negative. Optimal growth occurred between 30 and 40°C, at pH 7.5-8.5, and up to 3.9 % (w/v) NaCl was tolerated. When grown on peptone from casein and soymeal, strain M3/9T produced mainly acetic acid, ethanol, and isobutyric acid. The major cellular fatty acids of the novel strain were C16 : 0 and C16 : 0 DMA. The genome of strain M3/9T is 3757 330 bp in size with a G+C content of 38.45 mol%. Phylogenetic analysis allocated strain M3/9T within the family Lachnospiraceae with Clostridium colinum DSM 6011T and Anaerotignum lactatifermentans DSM 14214T being the most closely related species sharing 57.86 and 56.99% average amino acid identity and 16S rRNA gene sequence similarities of 91.58 and 91.26 %, respectively. Based on physiological, chemotaxonomic and genetic data, we propose the description of a novel species and genus Anaeropeptidivorans aminofermentans gen. nov., sp. nov., represented by the type strain M3/9T (=DSM 100058T=LMG 29527T). In addition, an emended description of Clostridium colinum is provided.
Collapse
Affiliation(s)
- Nora Köller
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Sarah Hahnke
- Department of Human Medicine, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Vladimir Zverlov
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany.,Institute for Bio- and Geosciences (IBG-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Andreas Klingl
- Plant Development, Department Biology I - Botany, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Tobias Busche
- Medical Faculty OWL & Centrum für Biotechnologie (CeBiTec), Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Michael Klocke
- Institute of Agricultural and Urban Ecological Projects affiliated to Berlin Humboldt University (IASP), Philippstraße 13, 10115 Berlin, Germany
| | - Alfred Pühler
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Wolfgang Liebl
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Irena Maus
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany.,Institute for Bio- and Geosciences (IBG-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| |
Collapse
|