1
|
Nguyen SV, Escobar VH, Ali SS, Puthuveetil NP, Petrone JR, Kirkland JL, Gaffney K, Tabron CL, Wax N, Duncan J, King S, Marlow R, Reese AL, Yarmosh DA, McConnell HH, Fernandes AS, Bagnoli J, Benton B, Jacobs JL. Reclassification of atypical Moraxella catarrhalis ATCC 23246 as Moraxella veridica sp. nov. Int J Syst Evol Microbiol 2025; 75. [PMID: 40397495 DOI: 10.1099/ijsem.0.006797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025] Open
Abstract
Whole-genome sequencing of cultures at the American Type Culture Collection (ATCC®) is ongoing, with reference-quality genome sequences for our microbial strains added to the ATCC® Genome Portal on a quarterly basis. Following genome assembly, authentication and taxonomy verification are needed for taxonomic updates based on the circumscription of genomic metrics for a species. Moraxella sp. ATCC 23246T was originally identified as an atypical Moraxella catarrhalis; however, an analysis of the complete and closed genome of this strain indicates that it represents a novel species within the Moraxella genus. We propose the name of Moraxella veridica sp. nov. for this long-mischaracterized strain as whole-genome sequencing was used to uncover the truth of this strain's identity. The type strain is ATCC 23246T (=NCTC 4103T).
Collapse
|
2
|
Boukeroui Y, González-Siso MI, DeCastro ME, Arab M, Aissaoui N, Nas F, Saibi ANE, Klouche Khelil N. Characterization, whole-genome sequence analysis, and protease production of a new thermophilic Bacillus licheniformis strain isolated from Debagh hot spring, Algeria. Int Microbiol 2025; 28:667-689. [PMID: 39129036 DOI: 10.1007/s10123-024-00569-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
A new thermophilic strain, designated as Bacillus sp. LMB3902, was isolated from Hammam Debagh, the hottest spring in Algeria (up to 98 °C). This isolate showed high protease production in skim milk media at 55 °C and exhibited significant specific protease activity by using azocasein as a substrate (157.50 U/mg). Through conventional methods, chemotaxonomic characteristics, 16S rRNA gene sequencing, and comparative genomic analysis with the closely related strain Bacillus licheniformis DSM 13 (ATCC 14580 T), the isolate Bacillus sp. LMB3902 was identified as a potentially new strain of Bacillus licheniformis. In addition, the gene functions of Bacillus sp. LMB3902 strain were predicted using the Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Clusters of Orthologous Groups, Non-Redundant Protein Sequence Database, Swiss-Prot, and Pfam databases. The results showed that the genome size of Bacillus sp. LMB3902 was 4.279.557 bp, with an average GC content of 46%. The genome contained 4.760 predicted genes, including 8 rRNAs, 78 tRNAs, and 24 sRNAs. A total of 235 protease genes were annotated including 50 proteases with transmembrane helix structures and eight secreted proteases with signal peptides. Additionally, the majority of secondary metabolites found by antiSMASH platform showed low similarity to identified natural products, such as fengicin (53%), lichenysin (57%), and surfactin (34%), suggesting that this strain may encode for novel uncharacterized natural products which can be useful for biotechnological applications. This study is the first report that describes the complete genome sequence, taxono-genomics, and gene annotation as well as protease production of the Bacillus genus in this hydrothermal vent.
Collapse
Affiliation(s)
- Yasmina Boukeroui
- Laboratory of Applied Microbiology in Food, Biomedical and Environment (LAMAABE Laboratory), Department of Biology, Faculty of Nature and Life, Earth and Universe Sciences, University of Tlemcen, 13000, Tlemcen, Algeria
| | - María-Isabel González-Siso
- Grupo EXPRELA, Centro Interdisciplinar de Química E Bioloxía (CICA), Facultade de Ciencias, Universidade da Coruña, 15071 , A Coruña, Spain
| | - María-Eugenia DeCastro
- Grupo EXPRELA, Centro Interdisciplinar de Química E Bioloxía (CICA), Facultade de Ciencias, Universidade da Coruña, 15071 , A Coruña, Spain
| | - Mounia Arab
- Laboratory of Applied Microbiology in Food, Biomedical and Environment (LAMAABE Laboratory), Department of Biology, Faculty of Nature and Life, Earth and Universe Sciences, University of Tlemcen, 13000, Tlemcen, Algeria
- Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, 16000, Algiers, Algeria
| | - Nadia Aissaoui
- Laboratory of Sustainable Management of Natural Resources in Arid and Semi Arid Areas (GDRN), Institute of Sciences, University Center of Naâma, 45000, Naâma, Algeria
| | - Fatima Nas
- Laboratory of Applied Microbiology in Food, Biomedical and Environment (LAMAABE Laboratory), Department of Biology, Faculty of Nature and Life, Earth and Universe Sciences, University of Tlemcen, 13000, Tlemcen, Algeria
| | - Amina Nour Elhouda Saibi
- Laboratory of Applied Microbiology in Food, Biomedical and Environment (LAMAABE Laboratory), Department of Biology, Faculty of Nature and Life, Earth and Universe Sciences, University of Tlemcen, 13000, Tlemcen, Algeria
| | - Nihel Klouche Khelil
- Laboratory of Applied Microbiology in Food, Biomedical and Environment (LAMAABE Laboratory), Department of Biology, Faculty of Nature and Life, Earth and Universe Sciences, University of Tlemcen, 13000, Tlemcen, Algeria.
- Laboratory of Experimental Surgery, Dental Surgery Department, Medical Faculty, University of Tlemcen, 13000, Tlemcen, Algeria.
| |
Collapse
|
3
|
Goldfarb T, Kodali V, Pujar S, Brover V, Robbertse B, Farrell C, Oh DH, Astashyn A, Ermolaeva O, Haddad D, Hlavina W, Hoffman J, Jackson J, Joardar V, Kristensen D, Masterson P, McGarvey K, McVeigh R, Mozes E, Murphy M, Schafer S, Souvorov A, Spurrier B, Strope P, Sun H, Vatsan A, Wallin C, Webb D, Brister J, Hatcher E, Kimchi A, Klimke W, Marchler-Bauer A, Pruitt K, Thibaud-Nissen F, Murphy T. NCBI RefSeq: reference sequence standards through 25 years of curation and annotation. Nucleic Acids Res 2025; 53:D243-D257. [PMID: 39526381 PMCID: PMC11701664 DOI: 10.1093/nar/gkae1038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Reference sequences and annotations serve as the foundation for many lines of research today, from organism and sequence identification to providing a core description of the genes, transcripts and proteins found in an organism's genome. Interpretation of data including transcriptomics, proteomics, sequence variation and comparative analyses based on reference gene annotations informs our understanding of gene function and possible disease mechanisms, leading to new biomedical discoveries. The Reference Sequence (RefSeq) resource created at the National Center for Biotechnology Information (NCBI) leverages both automatic processes and expert curation to create a robust set of reference sequences of genomic, transcript and protein data spanning the tree of life. RefSeq continues to refine its annotation and quality control processes and utilize better quality genomes resulting from advances in sequencing technologies as well as RNA-Seq data to produce high-quality annotated genomes, ortholog predictions across more organisms and other products that are easily accessible through multiple NCBI resources. This report summarizes the current status of the eukaryotic, prokaryotic and viral RefSeq resources, with a focus on eukaryotic annotation, the increase in taxonomic representation and the effect it will have on comparative genomics. The RefSeq resource is publicly accessible at https://www.ncbi.nlm.nih.gov/refseq.
Collapse
Affiliation(s)
- Tamara Goldfarb
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Vamsi K Kodali
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Shashikant Pujar
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Vyacheslav Brover
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Barbara Robbertse
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Catherine M Farrell
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
- Division of Extramural Programs, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Dong-Ha Oh
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Alexander Astashyn
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Olga Ermolaeva
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Diana Haddad
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Wratko Hlavina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Jinna Hoffman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - John D Jackson
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Vinita S Joardar
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - David Kristensen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Patrick Masterson
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Kelly M McGarvey
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Richard McVeigh
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Eyal Mozes
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Michael R Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Susan S Schafer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Alexander Souvorov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Brett Spurrier
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Pooja K Strope
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Hanzhen Sun
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Anjana R Vatsan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Craig Wallin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - David Webb
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - J Rodney Brister
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Eneida Hatcher
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Avi Kimchi
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - William Klimke
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Aron Marchler-Bauer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Kim D Pruitt
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Françoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| |
Collapse
|
4
|
Zakalyukina YV, Alferova VA, Nikandrova AA, Kiriy AR, Chernyshova AP, Kabilov MR, Baturina OA, Biryukov MV, Sergiev PV, Lukianov DA. Genomic and Phenotypic Characterization of Streptomyces sirii sp. nov., Amicetin-Producing Actinobacteria Isolated from Bamboo Rhizospheric Soil. Microorganisms 2024; 12:2628. [PMID: 39770830 PMCID: PMC11677201 DOI: 10.3390/microorganisms12122628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
In our large-scale search for antimicrobial-producing bacteria, we isolated an actinomycete strain from rhizospheric soil of Bambusa vulgaris. The strain designated BP-8 showed noticeable antibacterial activity. BP-8 was subjected to a whole-genome analysis via a polyphasic taxonomy approach, and its antibacterial metabolite was identified by HRLS-MS. The results of the physiological and morphological analyses indicated that BP-8 is an aerobic, neutrophilic, mesophilic organism that is tolerant to 8% NaCl and can use a wide range of carbohydrates. It forms curly sporophores with a warty surface. The results of the phylogenetic and average nucleotide identity analyses and in silico DNA-DNA hybridization calculation indicated that BP-8 represents the type strain of a novel Streptomyces species. A comparative in silico analysis of the genome sequences of BP-8 and its closest related strains revealed the presence of genes encoding chemotaxonomic markers characteristic of Streptomyces. The antibacterial compound was identified as amicetin. Genomic mining also revealed more than 10 biosynthetic gene clusters that have not been described previously and may lead to the discovery of new valuable compounds. On the basis of these results, strain BP-8T (=VKM Ac-3066T = CCTCC AA 2024094T) is proposed as the type strain of the novel species Streptomyces sirii sp. nov.
Collapse
Affiliation(s)
- Yuliya V. Zakalyukina
- Department of Soil Science, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vera A. Alferova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.A.); (P.V.S.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Science, 117997 Moscow, Russia;
| | - Arina A. Nikandrova
- Center for Molecular and Cellular Biology, 121205 Moscow, Skolkovo, Russia; (A.A.N.); (D.A.L.)
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Albina R. Kiriy
- Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia;
| | - Alisa P. Chernyshova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Science, 117997 Moscow, Russia;
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Marsel R. Kabilov
- Institute of Chemical Biology and Fundamental Medicine Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.R.K.); (O.A.B.)
| | - Olga A. Baturina
- Institute of Chemical Biology and Fundamental Medicine Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.R.K.); (O.A.B.)
| | - Mikhail V. Biryukov
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Petr V. Sergiev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.A.); (P.V.S.)
- Center for Molecular and Cellular Biology, 121205 Moscow, Skolkovo, Russia; (A.A.N.); (D.A.L.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Dmitrii A. Lukianov
- Center for Molecular and Cellular Biology, 121205 Moscow, Skolkovo, Russia; (A.A.N.); (D.A.L.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
5
|
Nguyen SV, Edwards D, Vaughn EL, Escobar V, Ali S, Doss JH, Steyer JT, Scott S, Bchara W, Bruns N, Zelaya E, Tran A, Payne D, Hauser JR. Expanding the Stenotrophomonas maltophilia complex: phylogenomic insights, proposal of Stenotrophomonas forensis sp. nov. and reclassification of two Pseudomonas species. Int J Syst Evol Microbiol 2024; 74. [PMID: 39630504 DOI: 10.1099/ijsem.0.006602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
A novel Stenotrophomonas species was isolated as a contaminant in viral transport media at the District of Columbia Department of Forensic Sciences Public Health Laboratory. Phylogenomic and biochemical analyses of the isolate determined that it represented a novel species within Stenotrophomonas. Related strains in public genome databases suggested that this novel species is associated with clinically acquired infections, similar to closely related Stenotrophomonas maltophilia. The name Stenotrophomonas forensis sp. nov. is proposed. Comparative genomic and phylogenetic analyses of the S. maltophilia complex reveal that Stenotrophomonas africana is an independent species and is not a later heterotypic synonym of S. maltophilia. We also propose the transfer of two misclassified Pseudomonas species into Stenotrophomonas as Stenotrophomonas beteli comb. nov. and Stenotrophomonas hibiscicola comb. nov. The type strain for S. forensis sp. nov. is DFS-20110405T (=ATCC TSD-272T=NCTC 14893T).
Collapse
Affiliation(s)
- Scott V Nguyen
- Public Health Laboratory Division, District of Columbia Department of Forensic Sciences, Washington, District of Columbia, USA
- American Type Culture Collection, Manassas, Virginia, USA
| | - Denise Edwards
- Public Health Laboratory Division, District of Columbia Department of Forensic Sciences, Washington, District of Columbia, USA
| | - Eric L Vaughn
- Public Health Laboratory Division, District of Columbia Department of Forensic Sciences, Washington, District of Columbia, USA
| | | | - Shahin Ali
- American Type Culture Collection, Manassas, Virginia, USA
| | - Janis H Doss
- Public Health Laboratory Division, District of Columbia Department of Forensic Sciences, Washington, District of Columbia, USA
| | - Joel T Steyer
- Public Health Laboratory Division, District of Columbia Department of Forensic Sciences, Washington, District of Columbia, USA
| | - Sarah Scott
- Public Health Laboratory Division, District of Columbia Department of Forensic Sciences, Washington, District of Columbia, USA
| | - Wadih Bchara
- Public Health Laboratory Division, District of Columbia Department of Forensic Sciences, Washington, District of Columbia, USA
| | - Nathan Bruns
- Public Health Laboratory Division, District of Columbia Department of Forensic Sciences, Washington, District of Columbia, USA
| | - Elizabeth Zelaya
- Public Health Laboratory Division, District of Columbia Department of Forensic Sciences, Washington, District of Columbia, USA
- American Type Culture Collection, Manassas, Virginia, USA
| | - Anthony Tran
- Public Health Laboratory Division, District of Columbia Department of Forensic Sciences, Washington, District of Columbia, USA
| | - David Payne
- Public Health Laboratory Division, District of Columbia Department of Forensic Sciences, Washington, District of Columbia, USA
- Present address: City of Milwaukee Health Department, Milwaukee, Wisconsin, USA
| | - Jocelyn R Hauser
- Public Health Laboratory Division, District of Columbia Department of Forensic Sciences, Washington, District of Columbia, USA
| |
Collapse
|
6
|
Miller S, Hendry M, King J, Sankaranarayanan K, Lawson PA. Bacteroides vicugnae sp. nov. isolated from the fecal material of an alpaca. Anaerobe 2024; 88:102862. [PMID: 38718919 DOI: 10.1016/j.anaerobe.2024.102862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 06/10/2024]
Abstract
Two strictly anaerobic, Gram-stain-negative rod-shaped bacterial isolates, A2-P53T and A1-P5, were isolated from an enrichment of fecal material from two alpacas (Vicugna pacos). Based on a comparative 16S rRNA gene sequence analysis, the isolates were assigned to the genus Bacteroides with the highest sequence similarities to Bacteroides koreensis YS-aM39T (A2- P53T 97.7 % and A1-P5 97.9 %). Additionally, the average nucleotide identity and digital DNA-DNA hybridization values between these isolates and their closest relatives within Bacteroides were less than 92.1 % and 49.1 %, respectively. The average nucleotide identity between isolates A2-P53T and A1-P5 was 99.9 %. The predominant cellular fatty acid for isolates A2-P53T and A1-P5 was C15:0 antesio. The G+C % content of the isolates was 41.7 %. Based on biochemical, phylogenetic, genotypic, and chemotaxonomic criteria, these isolates A2-P53T and A1-P5 represent two individual strains of a novel species within the genus Bacteroides for which the name Bacteroides vicugnae sp. nov. is proposed. The type strain of this species is strain A2-P53T (CCUG 77273T = CCM 9377T = NRRL B-65693T).
Collapse
Affiliation(s)
- Samuel Miller
- School of Biological Sciences, 730 and 770 Van Vleet Oval, Norman, OK, 73019, USA; Laboratories of Molecular Anthropology and Microbiome Research, Stephenson Research and Technology Center, 101 David L. Boren Blvd, Norman, OK, 73019, USA.
| | - Meredith Hendry
- School of Biological Sciences, 730 and 770 Van Vleet Oval, Norman, OK, 73019, USA.
| | - Jacobey King
- School of Biological Sciences, 730 and 770 Van Vleet Oval, Norman, OK, 73019, USA.
| | - Krithivasan Sankaranarayanan
- School of Biological Sciences, 730 and 770 Van Vleet Oval, Norman, OK, 73019, USA; Laboratories of Molecular Anthropology and Microbiome Research, Stephenson Research and Technology Center, 101 David L. Boren Blvd, Norman, OK, 73019, USA.
| | - Paul A Lawson
- School of Biological Sciences, 730 and 770 Van Vleet Oval, Norman, OK, 73019, USA.
| |
Collapse
|
7
|
Behrendt U, Burghard V, Wende S, Ulrich K, Wolf J, Neumann-Schaal M, Ulrich A. Schauerella fraxinea gen. nov., sp. nov., a bacterial species that colonises ash trees tolerant to dieback caused by Hymenoscyphus fraxineus. Syst Appl Microbiol 2024; 47:126516. [PMID: 38772267 DOI: 10.1016/j.syapm.2024.126516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
The tolerance of ash trees against the pathogen Hymenoscyphus fraxineus seems to be associated with the occurrence of specific microbial taxa on leaves. A group of bacterial isolates, primarily identified on tolerant trees, was investigated with regard to their taxonomic classification and their potential to suppress the ash dieback pathogen. Examination of OGRI values revealed a separate species position. A phylogenomic analysis, based on orthologous and marker genes, indicated a separate genus position along with the species Achromobacter aestuarii. Furthermore, analysis of the ratio of average nucleotide identities and genome alignment fractions demonstrated genomic dissimilarities typically observed for inter-genera comparisons within this family. As a result of these investigations, the strains are considered to represent a separate species within a new genus, for which the name Schauerella fraxinea gen. nov., sp. nov. is proposed, with the type strain B3P038T (=LMG 33092 T = DSM 115926 T). Additionally, a reclassification of the species Achromobacter aestuarii as Schauerella aestuarii comb. nov. is proposed. In a co-cultivation assay, the strains were able to inhibit the growth of a H. fraxineus strain. Accordingly, a functional analysis of the genome of S. fraxinea B3P038T revealed genes mediating the production of antifungal substances. This potential, combined with the prevalent presence in the phyllosphere of tolerant ash trees, makes this group interesting for an inoculation experiment with the aim of controlling the pathogen in an integrative approach. For future field trials, a strain-specific qPCR system was developed to establish an efficient method for monitoring the inoculation success.
Collapse
Affiliation(s)
- Undine Behrendt
- Leibniz Center for Agricultural Landscape Research (ZALF), Microbial Biogeochemistry, Eberswalder Str. 84, D-15374 Müncheberg, Germany.
| | - Valentin Burghard
- Leibniz Center for Agricultural Landscape Research (ZALF), Microbial Biogeochemistry, Eberswalder Str. 84, D-15374 Müncheberg, Germany.
| | - Sonja Wende
- Leibniz Center for Agricultural Landscape Research (ZALF), Microbial Biogeochemistry, Eberswalder Str. 84, D-15374 Müncheberg, Germany.
| | - Kristina Ulrich
- Johann Heinrich Von Thünen Institute, Institute of Forest Genetics, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany.
| | - Jacqueline Wolf
- Research Group Bacterial Metabolomics, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany.
| | - Meina Neumann-Schaal
- Research Group Bacterial Metabolomics, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany.
| | - Andreas Ulrich
- Leibniz Center for Agricultural Landscape Research (ZALF), Microbial Biogeochemistry, Eberswalder Str. 84, D-15374 Müncheberg, Germany.
| |
Collapse
|
8
|
Jiao JY, Abdugheni R, Zhang DF, Ahmed I, Ali M, Chuvochina M, Dedysh SN, Dong X, Göker M, Hedlund BP, Hugenholtz P, Jangid K, Liu SJ, Moore ERB, Narsing Rao MP, Oren A, Rossello-Mora R, Rekadwad BN, Salam N, Shu W, Sutcliffe IC, Teo WFA, Trujillo ME, Venter SN, Whitman WB, Zhao G, Li WJ. Advancements in prokaryotic systematics and the role of Bergey's International Society for Microbial Systematicsin addressing challenges in the meta-data era. Natl Sci Rev 2024; 11:nwae168. [PMID: 39071100 PMCID: PMC11275469 DOI: 10.1093/nsr/nwae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 07/30/2024] Open
Abstract
Prokaryotes are ubiquitous in the biosphere, important for human health and drive diverse biological and environmental processes. Systematics of prokaryotes, whose origins can be traced to the discovery of microorganisms in the 17th century, has transitioned from a phenotype-based classification to a more comprehensive polyphasic taxonomy and eventually to the current genome-based taxonomic approach. This transition aligns with a foundational shift from studies focused on phenotypic traits that have limited comparative value to those using genome sequences. In this context, Bergey's Manual of Systematics of Archaea and Bacteria (BMSAB) and Bergey's International Society for Microbial Systematics (BISMiS) play a pivotal role in guiding prokaryotic systematics. This review focuses on the historical development of prokaryotic systematics with a focus on the roles of BMSAB and BISMiS. We also explore significant contributions and achievements by microbiologists, highlight the latest progress in the field and anticipate challenges and opportunities within prokaryotic systematics. Additionally, we outline five focal points of BISMiS that are aimed at addressing these challenges. In conclusion, our collaborative effort seeks to enhance ongoing advancements in prokaryotic systematics, ensuring its continued relevance and innovative characters in the contemporary landscape of genomics and bioinformatics.
Collapse
Affiliation(s)
- Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Rashidin Abdugheni
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Dao-Feng Zhang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization & College of Oceanography, Hohai University, Nanjing 210024, China
| | - Iftikhar Ahmed
- National Culture Collection of Pakistan (NCCP), Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad 45500, Pakistan
| | - Mukhtiar Ali
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Maria Chuvochina
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Queensland 4072, Australia
| | - Svetlana N Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 117312, Russia
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Markus Göker
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig D-38124, Germany
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV 89154, USA
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Queensland 4072, Australia
| | - Kamlesh Jangid
- Bioenergy Group, MACS Collection of Microorganisms, Agharkar Research Institute, Pune 411004, India
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Edward R B Moore
- Department of Infectious Disease, Institute for Biomedicine, and Culture Collection University of Gothenburg (CCUG), Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-40234, Sweden
| | - Manik Prabhu Narsing Rao
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Aharon Oren
- The Alexander Silberman Institute of Life Sciences, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ramon Rossello-Mora
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles 070190, Spain
| | - Bhagwan Narayan Rekadwad
- MicrobeAI Lab, Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Nimaichand Salam
- National Agri-Food Biotechnology Institute, Knowledge City, Mohali 140306, India
| | - Wensheng Shu
- Institute of Ecological Science, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Iain C Sutcliffe
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Wee Fei Aaron Teo
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Martha E Trujillo
- Microbiology and Genetics Department, University of Salamanca, Salamanca 37008, Spain
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| | - William B Whitman
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Guoping Zhao
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
9
|
Miller S, Hendry M, King J, Sankaranarayanan K, Lawson PA. Clostridium tanneri sp. nov., isolated from the faecal material of an alpaca. Int J Syst Evol Microbiol 2024; 74. [PMID: 38728064 DOI: 10.1099/ijsem.0.006372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
A strictly anaerobic, Gram-stain-negative rod-shaped bacterium, designated A1-XYC3T, was isolated from the faeces of an alpaca (Lama pacos). On the basis of the results of a comparative 16S rRNA gene sequence analysis, the isolate was assigned to the genus Clostridium with the highest sequence similarities to Clostridium magnum DSM 2767T (96.8 %), Clostridium carboxidivorans P7T (96.3 %) and Clostridium aciditolerans JW/YJL-B3T (96.1 %). The average nucleotide identity between A1-XYC3T, C. magnum, C. carboxidivorans and C. aciditolerans was 77.4, 76.1 and 76.6 %, respectively. The predominant components of the cellular fatty acids of A1-XYC3T were C14 : 0, C16 : 0 and summed feature 10, containing C18:0/C17:0 cyclo. The DNA G+C content was 32.4 mol%. On the basis of biochemical, phylogenetic, genotypic and chemotaxonomic criteria, this isolate represents a novel species within Clostridium sensu stricto for which the name Clostridium tanneri sp. nov. is proposed. The type strain of this species is strain A1-XYC3T (=CCM 9376T=NRRL B-65691T).
Collapse
Affiliation(s)
- Samuel Miller
- School of Biological Sciences, 730-770 Van Vleet Oval Norman, OK 73019, USA
- Laboratories of Molecular Anthropology and Microbiome Research, Stephenson Research and Technology Center 101 David L. Boren Blvd. Norman, OK 73019, USA
| | - Meredith Hendry
- School of Biological Sciences, 730-770 Van Vleet Oval Norman, OK 73019, USA
| | - Jacobey King
- School of Biological Sciences, 730-770 Van Vleet Oval Norman, OK 73019, USA
| | - Krithivasan Sankaranarayanan
- School of Biological Sciences, 730-770 Van Vleet Oval Norman, OK 73019, USA
- Laboratories of Molecular Anthropology and Microbiome Research, Stephenson Research and Technology Center 101 David L. Boren Blvd. Norman, OK 73019, USA
- Wadsworth Center, NYS Department of Health, 120 New Scotland Ave. Albany, New York 12208, USA
| | - Paul A Lawson
- School of Biological Sciences, 730-770 Van Vleet Oval Norman, OK 73019, USA
| |
Collapse
|
10
|
Eren Eroğlu AE, Eroğlu V, Yaşa İ. Genomic Insights into the Symbiotic and Plant Growth-Promoting Traits of " Candidatus Phyllobacterium onerii" sp. nov. Isolated from Endemic Astragalus flavescens. Microorganisms 2024; 12:336. [PMID: 38399740 PMCID: PMC10891626 DOI: 10.3390/microorganisms12020336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
A novel strain of Gram-negative, rod-shaped aerobic bacteria, identified as IY22, was isolated from the root nodules of Astragalus flavescens. The analysis of the 16S rDNA and recA (recombinase A) gene sequences indicated that the strain belongs to the genus Phyllobacterium. During the phylogenetic analysis, it was found that strain IY22 is closely related to P. trifolii strain PETP02T and P. bourgognense strain STM 201T. The genome of IY22 was determined to be 6,010,116 base pairs long with a DNA G+C ratio of 56.37 mol%. The average nucleotide identity (ANI) values showed a range from 91.7% to 93.6% when compared to its close relatives. Moreover, IY22 and related strains had digital DNA-DNA hybridization (dDDH) values ranging from 16.9% to 54.70%. Multiple genes (including nodACDSNZ, nifH/frxC, nifUS, fixABCJ, and sufABCDES) associated with symbiotic nitrogen fixation have been detected in strain IY22. Furthermore, this strain features genes that contribute to improving plant growth in various demanding environments. This study reports the first evidence of an association between A. flavescens and a rhizobial species. Native high-altitude legumes are a potential source of new rhizobia, and we believe that they act as a form of insurance for biodiversity against the threats of desertification and drought.
Collapse
Affiliation(s)
- Asiye Esra Eren Eroğlu
- Basic and Industrial Microbiology Section, Biology Department, Faculty of Science, Ege University, 35100 Izmir, Türkiye;
| | - Volkan Eroğlu
- Botany Section, Biology Department, Faculty of Science, Ege University, 35100 Izmir, Türkiye;
| | - İhsan Yaşa
- Basic and Industrial Microbiology Section, Biology Department, Faculty of Science, Ege University, 35100 Izmir, Türkiye;
| |
Collapse
|
11
|
Romagnoli CL, Conceição EC, Machado E, Barreto LBPF, Sharma A, Silva NM, Marques LE, Juliano MA, da Silva Lourenço MC, Digiampietri LA, Suffys PN, Leão SC, Viana-Niero C. Description of new species of Mycobacterium terrae complex isolated from sewage at the São Paulo zoological park foundation in Brazil. Front Microbiol 2024; 15:1335985. [PMID: 38322314 PMCID: PMC10844392 DOI: 10.3389/fmicb.2024.1335985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Five mycobacterial isolates from sewage were classified as members of the genus Mycobacterium but presented inconclusive species assignments. Thus, the isolates (MYC017, MYC098, MYC101, MYC123 and MYC340) were analyzed by phenotypical, biochemical, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and genomic features to clarify their taxonomic position. Phenotypic analysis and biochemical tests did not distinguish these isolates from other non-pigmented mycobacteria. In contrast, MALDI-TOF MS analysis showed that isolates were not related to any previously described Mycobacterium species. Comparative genomic analysis showed values of ANI and dDDH between 81.59-85.56% and 24.4-28.8%, respectively, when compared to the genomes of species of this genus. In addition, two (MYC101 and MYC123) presented indistinguishable protein spectra from each other and values of ANI = 98.57% and dDDH = 97.3%, therefore being considered as belonging to the same species. Phylogenetic analysis grouped the five isolates within the Mycobacterium terrae complex (MTC) but in a specific subclade and separated from the species already described and supported by 100% bootstrap value, confirming that they are part of this complex but different from earlier described species. According to these data, we propose the description of four new species belonging to the Mycobacterium genus: (i) Mycobacterium defluvii sp. nov. strain MYC017T (= ATCC TSD-296T = JCM 35364T), (ii) Mycobacterium crassicus sp. nov. strain MYC098T (= ATCC TSD-297T = JCM 35365T), (iii) Mycobacterium zoologicum sp. nov. strain MYC101T (= ATCC TSD-298T = JCM 35366T) and MYC123 (= ATCC BAA-3216 = JCM 35367); and (iv) Mycobacterium nativiensis sp. nov. strain MYC340T (= ATCC TSD-299T = JCM 35368T).
Collapse
Affiliation(s)
- Camila Lopes Romagnoli
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Emilyn Costa Conceição
- Laboratório de Bacteriologia e Bioensaios em Micobactérias, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Edson Machado
- Laboratório de Biologia Molecular Aplicada a Micobactérias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Leonardo Bruno Paz Ferreira Barreto
- Laboratório de Bacteriologia e Bioensaios em Micobactérias, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Abhinav Sharma
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Natalia Maria Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lucas Evangelista Marques
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Maria Cristina da Silva Lourenço
- Laboratório de Bacteriologia e Bioensaios em Micobactérias, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Philip Noel Suffys
- Laboratório de Biologia Molecular Aplicada a Micobactérias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Sylvia Cardoso Leão
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Cristina Viana-Niero
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Yao W, Zhang W, He W, Xiao W, Chen Y, Zhu Y, Zheng F, Zhang C. Lipidomic chemotaxonomy aligned with phylogeny of Halobacteria. Front Microbiol 2023; 14:1297600. [PMID: 38075936 PMCID: PMC10704169 DOI: 10.3389/fmicb.2023.1297600] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2024] Open
Abstract
Archaea play an important role in global biogeochemical cycles and are considered ancestral to eukaryotes. The unique lipid composition of archaea, characterized by isoprenoid alkyl chains and ether linkage to glycerol-1-phosphate, offers valuable insights into archaeal phylogeny and evolution. However, comprehensive studies focusing on archaeal lipidomes, especially at the intact polar lipid level, are currently limited. Here, we built an in-house library of archaeal lipids by using high-performance liquid chromatography coupled with mass-spectrometry, which was integrated with bioinformatics and molecular network analyses. Seven halobacterial strains, representing three distinct orders, were cultured under identical conditions to investigate their lipidomes. A total of 162 features were identified, corresponding to 107 lipids that could be assigned to different strains. Clustering analyses of both core lipids and total lipids matched the phylogeny of Halobacteria at the order level. Notably, lipids such as triglycosyl diether-phosphatidyl acid and bis-sulfate glycosyl lipids were specific to particular groups and could serve as diagnostic intact lipid biomarkers for Halobacteria. Furthermore, the analysis of network-coordinated features facilitated the linkage of unknown lipid compounds to phylogeny, which promotes a lipidome to phylogeny matchup among three Haloferax strains, thereby expanding the knowledge of the halobacterial lipidome. Our study provides a comprehensive view of the lipidomes of the seven strains of Halobacteria and highlights the potential of lipidomics for studying archaeal phylogeny.
Collapse
Affiliation(s)
- Wenyong Yao
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Wan Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Wei He
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Wenjie Xiao
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Department of Biology, Hadal, Nordcee & DIAS, University of Southern Denmark, Odense, Denmark
| | - Yufei Chen
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yuanqing Zhu
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai, China
| | - Fengfeng Zheng
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai, China
| |
Collapse
|
13
|
Dedysh SN. Describing difficult-to-culture bacteria: Taking a shortcut or investing time to discover something new? Syst Appl Microbiol 2023; 46:126439. [PMID: 37413783 DOI: 10.1016/j.syapm.2023.126439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/17/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Despite the growing interest in isolating representatives of poorly studied and as-yet-uncultivated bacterial phylogenetic groups, these microorganisms remain difficult objects for taxonomic studies. The time required for describing one of these fastidious bacteria is commonly measured in several years. What is even more problematic, many routine laboratory tests, which were originally developed for fast-growing and fast-responding microorganisms, are not fully suitable for many environmentally relevant, slow-growing bacteria. Standard techniques used in chemotaxonomic analyses do not identify unique lipids produced by these bacteria. A common practice of preparing taxonomic descriptions that report a minimal set of features to name a newly isolated organism deepens a gap between microbial ecologists and taxonomists. By contrast, investing time in detailed analysis of cell biology and experimental verification of genome-encoded capabilities of newly isolated microorganisms opens a window for novel, unexpected findings, which may shape our ideas about the functional role of these microbes in the environment.
Collapse
Affiliation(s)
- Svetlana N Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia.
| |
Collapse
|
14
|
Shelomi M, Han CJ, Chen WM, Chen HK, Liaw SJ, Mühle E, Clermont D. Chryseobacterium oryctis sp. nov., isolated from the gut of the beetle Oryctes rhinoceros, and Chryseobacterium kimseyorum sp. nov., isolated from a stick insect rearing cage. Int J Syst Evol Microbiol 2023; 73. [PMID: 37074162 DOI: 10.1099/ijsem.0.005813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Two strains of Chryseobacterium identified from different experiments are proposed to represent new species. Strain WLa1L2M3T was isolated from the digestive tract of an Oryctes rhinoceros beetle larva. Strain 09-1422T was isolated from a cage housing the stick insect Eurycantha calcarata. Sequence analysis of the 16S rRNA and rpoB genes found both strains to be similar but not identical to other Chryseobacterium species. Whole-genome sequencing suggested the isolates represent new species, with average nucleotide identity values ranging from 74.6 to 80.5 %. Genome-to-genome distance calculations produced values below 25.3 %, and digital DNA-DNA hybridization values were 13.7-29.9 %, all suggesting they are distinct species. The genomic DNA G+C content of WLa1L2M3T is approximately 32.53 %, and of 09-1422T is approximately 35.89 %. The predominant cellular fatty acids of strain WLa1L2M3T are C15 : 0 iso, summed feature 9 (C16 : 0 10OH or C17 : 1 iso ω6c), C17 : 0 iso 3OH, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C15 : 0 iso 3OH, C15 : 0 anteiso and C13 : 0 iso, and those of strain 09-1422T are C15 : 0 iso, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C17 : 0 iso 3OH, C15 : 0 anteiso, C15 : 0 iso 3OH, C16 : 1 ω7c, C17 : 0 2OH and C18 : 0. In addition, physiological and biochemical tests revealed phenotypic differences from related Chryseobacterium type strains. These cumulative data indicate that the two strains represent novel species of the genus Chryseobacterium for which the names Chryseobacterium oryctis sp. nov. and Chryseobacterium kimseyorum sp. nov. are proposed with WLa1L2M3T (=BCRC 81350T=JCM 35215T=CIP 112035T) and 09-1422T (=UCDFST 09-1422T=BCRC 81359T=CIP 112165T), as type strains, respectively.
Collapse
Affiliation(s)
- Matan Shelomi
- Department of Entomology, National Taiwan University, Taipei, Taiwan, ROC
| | - Chiao-Jung Han
- Department of Entomology, National Taiwan University, Taipei, Taiwan, ROC
| | - Wen-Ming Chen
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan, ROC
| | - Hsin-Kuang Chen
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan, ROC
| | - Shwu-Jen Liaw
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Estelle Mühle
- Institut Pasteur, Université Paris Cité, Collection of Institut Pasteur, F-75015 Paris, France
| | - Dominique Clermont
- Institut Pasteur, Université Paris Cité, Collection of Institut Pasteur, F-75015 Paris, France
| |
Collapse
|
15
|
Kannan S, Sharma S, Ciufo S, Clark K, Turner S, Kitts PA, Schoch CL, DiCuccio M, Kimchi A. Collection and curation of prokaryotic genome assemblies from type strains at NCBI. Int J Syst Evol Microbiol 2023; 73. [PMID: 36748495 DOI: 10.1099/ijsem.0.005707] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The public sequence databases are entrusted with the dual responsibility of providing an accessible archive to all submitters and supporting data reliability and its re-use to all users. Genomes from type materials can act as an unambiguous reference for a taxonomic name and play an important role in comparative genomics, especially for taxon verification or reclassification. The National Center for Biotechnology Information (NCBI) collects and curates information on prokaryotic type strains and genomes from type strains. The average nucleotide identity (ANI)-based quality control processes introduced at NCBI to verify the genomes from type strains and improve related sequence records are detailed here. Using the curated genomes from type strains as reference, the taxonomy of over 1.1 million GenBank genomes were verified and the taxonomy of over 7000 new submissions before acceptance to GenBank and over 1800 existing genomes in GenBank were reclassified.
Collapse
Affiliation(s)
- Sivakumar Kannan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 9600 Rockville Pike, Bethesda, MD, 20892, USA
| | - Shobha Sharma
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 9600 Rockville Pike, Bethesda, MD, 20892, USA
| | - Stacy Ciufo
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 9600 Rockville Pike, Bethesda, MD, 20892, USA
| | - Karen Clark
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 9600 Rockville Pike, Bethesda, MD, 20892, USA
| | - Seán Turner
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 9600 Rockville Pike, Bethesda, MD, 20892, USA
| | - Paul A Kitts
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 9600 Rockville Pike, Bethesda, MD, 20892, USA
| | - Conrad L Schoch
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 9600 Rockville Pike, Bethesda, MD, 20892, USA
| | - Michael DiCuccio
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 9600 Rockville Pike, Bethesda, MD, 20892, USA
| | - Avi Kimchi
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 9600 Rockville Pike, Bethesda, MD, 20892, USA
| |
Collapse
|
16
|
Lawson PA, Saavedra Perez L, Sankaranarayanan K. Reclassification of Clostridium cocleatum, Clostridium ramosum, Clostridium spiroforme and Clostridium saccharogumia as Thomasclavelia cocleata gen. nov., comb. nov., Thomasclavelia ramosa comb. nov., gen. nov., Thomasclavelia spiroformis comb. nov. and Thomasclavelia saccharogumia comb. nov. Int J Syst Evol Microbiol 2023; 73. [PMID: 36748617 DOI: 10.1099/ijsem.0.005694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The genus Clostridium is phenotypically and genotypically diverse, with many species phylogenetically located outside Clostridium sensu stricto. One such group consists of the species Clostridium cocleatum, Clostridium ramosum, Clostridium spiroforme and Clostridium saccharogumia (formally clostridial rRNA cluster XVIII) [1]. Sequencing of the 16S rRNA and, more recently, the results of genomic analyses have demonstrated that these species represent a coherent cluster separated from other closely related genera located in the family Coprobacillaceae within the order Erysipelotrichales [2]. In addition to phenotypic, phylogenetic and genomic comparisons, chemotaxonomic features were consistent between all four species, the predominant fatty acids were C16 : 0 and C18 : 1ω9c, while glucose and ribose were the whole cell sugars present in the cell walls. Furthermore, he results of peptidoglycan analysis indicated that meso-2,6-diaminopimelic acid was present as the diagnostic diamino acid in all four species. Biochemical profiles were also concordant with them being closely related species. Therefore, on the basis of phylogenetic, genomic, phenotypic and chemotaxonomic information, a novel genus, Thomasclavelia gen. nov., is proposed. It is suggested that Clostridium cocleatum, Clostridium ramosum, Clostridium spiroforme and Clostridium saccharogumia be transferred to this genus as Thomasclavelia cocleata comb. nov., Thomasclavelia ramosa comb. nov., Thomasclavelia saccharogumia comb. nov. and Thomasclavelia spiroformis comb. nov. The type species of the genus is Thomasclavelia ramosa CCUG 24038T (=ATCC 25582T=DSM 1402T).
Collapse
Affiliation(s)
- Paul A Lawson
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Liz Saavedra Perez
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA.,Present address: Molecular & Biomedical Sciences, University of Maine, 5735 Hitchner Hall, Orono, Maine 04469-5735, USA
| | - Krithivasan Sankaranarayanan
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA.,Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
17
|
Jelenko K, Cepec E, Nascimento FX, Trček J. Comparative Genomics and Phenotypic Characterization of Gluconacetobacter entanii, a Highly Acetic Acid-Tolerant Bacterium from Vinegars. Foods 2023; 12:foods12010214. [PMID: 36613429 PMCID: PMC9818992 DOI: 10.3390/foods12010214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
The bacterial species Gluconacetobacter entanii belongs to a group of acetic acid bacteria. In 2000, it was described as a primary species of submerged spirit vinegar-producing bioreactors with a strict requirement of acetic acid, ethanol, and glucose for growth. Over the years, the type-strain of G. entanii deposited in international culture collections has lost the ability for revitalization and is thus not available any more in a culturable form. Here, we have systematically characterized phenotypic features and genomes of recently isolated G. entanii strains and compared them with characteristics of the type-strain available from published data. Using the functional annotation, genes gmhB and psp were identified as unique for G. entanii genomes among species in the clade Novacetimonas. The genome stability of G. entanii was assessed after 28 and 43 months of preculturing the strain Gluconacetobacter entanii AV429 twice a week. The strain G. entanii AV429 did not accumulate giant insertions or deletions but a few gene mutations. To unify further research into acetic acid bacteria systematics and taxonomy, we propose G. entanii AV429 as the neotype strain.
Collapse
Affiliation(s)
- Karin Jelenko
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
| | - Eva Cepec
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
| | | | - Janja Trček
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia
- Correspondence: ; Tel.: +386-2-229-3749
| |
Collapse
|
18
|
Du J, Liu Y, Zhu H. Genome-based analyses of the genus Acidovorax: proposal of the two novel genera Paracidovorax gen. nov., Paenacidovorax gen. nov. and the reclassification of Acidovorax antarcticus as Comamonas antarctica comb. nov. and emended description of the genus Acidovorax. Arch Microbiol 2022; 205:42. [PMID: 36574033 DOI: 10.1007/s00203-022-03379-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022]
Abstract
The genus Acidovorax is a genetically heterogeneous species clustering that comprises many environmental and plant-pathogenic taxa. To better understand the evolutionary relationships among the Acidovorax species, 22 available genome sequences of type strains including the genera Acidovorax and Comamonas were used to conduct the genome-based analyses. Three well-supported monophyletic clusters of the Acidovorax species were determined based on the phylogenomic tree reconstructed using core genes, while they were not grouped in the 16S rRNA gene-based phylogenetic tree. The species arrangements of the genus Acidovorax were further confirmed by the comparisons of the digital DNA-DNA hybridization and average nucleotide identity (ANI) values. The ANI, average amino acid identity, and the percentage of conserved proteins values among the inter-clusters were approximately 83, 81, and 61%, respectively, and thus were proposed as practical thresholds for genus delineation. Besides, Acidovorax antarcticus was much closer to members of the genus Comamonas rather than those of the genus Acidovorax based on the genome-based analysis. Taken together, we propose the division of the current genus Acidovorax into the emended genus Acidovorax and the two novel genera Paracidovorax gen. nov., Paenacidovorax gen. nov. and the transfer of Acidovorax antarcticus into the genus Comamonas as Comamonas antarctica comb. nov.
Collapse
Affiliation(s)
- Juan Du
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Building 66, Xianlie Middle Road 100, Guangzhou, 510070, Guangdong Province, People's Republic of China
| | - Yang Liu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Building 66, Xianlie Middle Road 100, Guangzhou, 510070, Guangdong Province, People's Republic of China
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Building 66, Xianlie Middle Road 100, Guangzhou, 510070, Guangdong Province, People's Republic of China.
| |
Collapse
|
19
|
Montero-Calasanz MDC, Yaramis A, Rohde M, Schumann P, Klenk HP, Meier-Kolthoff JP. Genotype-phenotype correlations within the Geodermatophilaceae. Front Microbiol 2022; 13:975365. [PMID: 36439792 PMCID: PMC9686282 DOI: 10.3389/fmicb.2022.975365] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
The integration of genomic information into microbial systematics along with physiological and chemotaxonomic parameters provides for a reliable classification of prokaryotes. In silico analysis of chemotaxonomic traits is now being introduced to replace characteristics traditionally determined in the laboratory with the dual goal of both increasing the speed of the description of taxa and the accuracy and consistency of taxonomic reports. Genomics has already successfully been applied in the taxonomic rearrangement of Geodermatophilaceae (Actinomycetota) but in the light of new genomic data the taxonomy of the family needs to be revisited. In conjunction with the taxonomic characterisation of four strains phylogenetically located within the family, we conducted a phylogenetic analysis of the whole proteomes of the sequenced type strains and established genotype-phenotype correlations for traits related to chemotaxonomy, cell morphology and metabolism. Results indicated that the four isolates under study represent four novel species within the genus Blastococcus. Additionally, the genera Blastococcus, Geodermatophilus and Modestobacter were shown to be paraphyletic. Consequently, the new genera Trujillonella, Pleomorpha and Goekera were proposed within the Geodermatophilaceae and Blastococcus endophyticus was reclassified as Trujillonella endophytica comb. nov., Geodermatophilus daqingensis as Pleomorpha daqingensis comb. nov. and Modestobacter deserti as Goekera deserti comb. nov. Accordingly, we also proposed emended descriptions of Blastococcus aggregatus, Blastococcus jejuensis, Blastococcus saxobsidens and Blastococcus xanthilyniticus. In silico chemotaxonomic results were overall consistent with wet-lab results. Even though in silico discriminatory levels varied depending on the respective chemotaxonomic trait, this approach is promising for effectively replacing and/or complementing chemotaxonomic analyses at taxonomic ranks above the species level. Finally, interesting but previously overlooked insights regarding morphology and ecology were revealed by the presence of a repertoire of genes related to flagellum synthesis, chemotaxis, spore production and pilus assembly in all representatives of the family. A rich carbon metabolism including four different CO2 fixation pathways and a battery of enzymes able to degrade complex carbohydrates were also identified in Blastococcus genomes.
Collapse
Affiliation(s)
- Maria del Carmen Montero-Calasanz
- IFAPA Las Torres-Andalusian Institute of Agricultural and Fisheries Research and Training, Junta de Andalucía, Seville, Spain
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Adnan Yaramis
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Manfred Rohde
- Central Facility for Microscopy, HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peter Schumann
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jan P. Meier-Kolthoff
- Department Bioinformatics and Databases, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
20
|
Ramírez-Sánchez D, Gibelin-Viala C, Mayjonade B, Duflos R, Belmonte E, Pailler V, Bartoli C, Carrere S, Vailleau F, Roux F. Investigating genetic diversity within the most abundant and prevalent non-pathogenic leaf-associated bacteria interacting with Arabidopsis thaliana in natural habitats. Front Microbiol 2022; 13:984832. [PMID: 36212843 PMCID: PMC9537739 DOI: 10.3389/fmicb.2022.984832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Microbiota modulates plant health and appears as a promising lever to develop innovative, sustainable and eco-friendly agro-ecosystems. Key patterns of microbiota assemblages in plants have been revealed by an extensive number of studies based on taxonomic profiling by metabarcoding. However, understanding the functionality of microbiota is still in its infancy and relies on reductionist approaches primarily based on the establishment of representative microbial collections. In Arabidopsis thaliana, most of these microbial collections include one strain per OTU isolated from a limited number of habitats, thereby neglecting the ecological potential of genetic diversity within microbial species. With this study, we aimed at estimating the extent of genetic variation between strains within the most abundant and prevalent leaf-associated non-pathogenic bacterial species in A. thaliana located south-west of France. By combining a culture-based collection approach consisting of the isolation of more than 7,000 bacterial colonies with an informative-driven approach, we isolated 35 pure strains from eight non-pathogenic bacterial species. We detected significant intra-specific genetic variation at the genomic level and for growth rate in synthetic media. In addition, significant host genetic variation was detected in response to most bacterial strains in in vitro conditions, albeit dependent on the developmental stage at which plants were inoculated, with the presence of both negative and positive responses on plant growth. Our study provides new genetic and genomic resources for a better understanding of the plant-microbe ecological interactions at the microbiota level. We also highlight the need of considering genetic variation in both non-pathogenic bacterial species and A. thaliana to decipher the genetic and molecular mechanisms involved in the ecologically relevant dialog between hosts and leaf microbiota.
Collapse
Affiliation(s)
| | | | | | - Rémi Duflos
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Elodie Belmonte
- Gentyane, UMR 1095 GDEC, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Vincent Pailler
- Gentyane, UMR 1095 GDEC, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Claudia Bartoli
- Institute for Genetics, Environment and Plant Protection (IGEPP), INRAE, Institut Agro AgroCampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Sébastien Carrere
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Fabienne Vailleau
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Fabrice Roux
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| |
Collapse
|
21
|
Yamano R, Yu J, Jiang C, Harjuno Condro Haditomo A, Mino S, Sakai Y, Sawabe T. Taxonomic revision of the genus Amphritea supported by genomic and in silico chemotaxonomic analyses, and the proposal of Aliamphritea gen. nov. PLoS One 2022; 17:e0271174. [PMID: 35947547 PMCID: PMC9365125 DOI: 10.1371/journal.pone.0271174] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
A Gram-staining-negative, aerobic bacterium, designated strain PT3T was isolated from laboratory-reared larvae of the Japanese sea cucumber Apostichopus japonicus. Phylogenetic analysis based on the 16S rRNA gene nucleotide sequences revealed that PT3T was closely related to Amphritea ceti RA1T (= KCTC 42154T = NBRC 110551T) and Amphritea spongicola MEBiC05461T (= KCCM 42943T = JCM 16668T) both with 98.3% sequence similarity, however, average nucleotide identity (ANI) and in silico DNA-DNA hybridization (in silico DDH) values among these three strains were below 95% and 70%, respectively, confirming the novelty of PT3T. Furthermore, the average amino acid identity (AAI) values of PT3T against other Amphritea species were on the reported genus delineation boundary (64-67%). Multilocus sequence analysis using four protein-coding genes (recA, mreB, rpoA, and topA) further demonstrated that PT3T, Amphritea ceti and Amphritea spongicola formed a monophyletic clade clearly separate from other members of the genus Amphritea. Three strains (PT3T, A. ceti KCTC 42154T and A. spongicola JCM 16668T) also showed higher similarities in their core genomes compared to those of the other Amphritea spp. Based on the genome-based taxonomic approach, Aliamphritea gen. nov. was proposed together with the reclassification of the genus Amphritea and Aliamphritea ceti comb. nov. (type strain RA1T = KCTC 42154T = NBRC 110551T), Aliamphritea spongicola comb. nov. (type strain MEBiC05461T = KCCM 42943T = JCM 16668T), and Aliamphritea hakodatensis sp. nov. (type strain PT3T = JCM 34607T = KCTC 82591T) were suggested.
Collapse
Affiliation(s)
- Ryota Yamano
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Juanwen Yu
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Chunqi Jiang
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Alfabetian Harjuno Condro Haditomo
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
- Aquaculture Department, Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Yuichi Sakai
- Hakodate Fisheries Research, Hokkaido Research Organization, Local Independent Administrative Agency, Hakodate, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| |
Collapse
|
22
|
Pangenome analyses of Bacillus pumilus, Bacillus safensis, and Priestia megaterium exploring the plant-associated features of bacilli strains isolated from canola. Mol Genet Genomics 2022; 297:1063-1079. [PMID: 35612623 DOI: 10.1007/s00438-022-01907-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/05/2022] [Indexed: 12/11/2022]
Abstract
Previous genome mining of the strains Bacillus pumilus 7PB, Bacillus safensis 1TAz, 8Taz, and 32PB, and Priestia megaterium 16PB isolated from canola revealed differences in the profile of antimicrobial biosynthetic genes when compared to the species type strains. To evaluate not only the similarities among B. pumilus, B. safensis, and P. megaterium genomes but also the specificities found in the canola bacilli, we performed comparative genomic analyses through the pangenome evaluation of each species. Besides that, other genome features were explored, especially focusing on plant-associated and biotechnological characteristics. The combination of the genome metrics Average Nucleotide Identity and digital DNA-DNA hybridization formulas 1 and 3 adopting the universal thresholds of 95 and 70%, respectively, was suitable to verify the identification of strains from these groups. On average, core genes corresponded to 45%, 52%, and 34% of B. pumilus, B. safensis, and P. megaterium open pangenomes, respectively. Many genes related to adaptations to plant-associated lifestyles were predicted, especially in the Bacillus genomes. These included genes for acetoin production, polyamines utilization, root exudate chemoreceptors, biofilm formation, and plant cell-wall degrading enzymes. Overall, we could observe that strains of these species exhibit many features in common, whereas most of their variable genome portions have features yet to be uncovered. The observed antifungal activity of canola bacilli might be a result of the synergistic action of secondary metabolites, siderophores, and chitinases. Genome analysis confirmed that these species and strains have biotechnological potential to be used both as agricultural inoculants or hydrolases producers. Up to our knowledge, this is the first work that evaluates the pangenome features of P. megaterium.
Collapse
|